А на каких планетах солнечной системы есть атмосфера? какой её состав? У каких планет Солнечной системы есть атмосферное давление.

На самом деле, даже в будущем, когда отпуск где-нибудь в окрестностях Юпитера будет таким же обычным делом, как сегодня – на египетском пляже, главным туристическим центром все равно останется Земля. Причина этому проста: здесь всегда хорошая погода. А вот на других планетах и спутниках с этим совсем плохо.

Меркурий

Поверхность планеты Меркурий напоминает лунную

Хотя атмосферы у Меркурия нет вовсе, климат здесь, все же, имеется. И создает его, конечно, обжигающая близость Солнца. А поскольку воздух и вода не могут эффективно переносить тепло с одной части планеты на другую, здесь встречаются поистине смертоносные перепады температуры.

На дневной стороне Меркурия поверхность может прогреваться до 430 градусов Цельсия – достаточно, чтобы расплавилось олово, а на ночной – опускаться до - 180 градусов Цельсия. На фоне ужасающей жары рядом, на дне некоторых кратеров так холодно, что в этой вечной тени миллионы лет сохраняется грязноватый лед.

Ось вращения Меркурия не наклонена, как у Земли, а строго перпендикулярна орбите. Поэтому сменой сезонов здесь не полюбуешься: одна и та же погода стоит круглый год. Вдобавок к этому и день на планете длится примерно полтора наших года.

Венера

Кратеры на поверхности Венеры

Скажем прямо: не ту планету назвали Венерой. Да, в рассветном небе она действительно сияет, как чистой воды драгоценный камень. Но это пока Вы не познакомитесь с ней поближе. Соседнюю планету можно рассматривать в качестве наглядного пособия по вопросу о том, что способен сотворить перешедший все границы парниковый эффект.

Атмосфера Венеры невероятно плотна, неспокойна и агрессивна. Состоя по большей части из углекислого газа, она поглощает больше солнечной энергии, чем тот же Меркурий, хотя находится от Солнца намного дальше него. Поэтому на планете еще жарче: почти не меняясь с течением года, температура здесь держится в районе 480 градусов Цельсия. Добавьте сюда атмосферное давление, которое на Земле можно получить разве что погрузившись в океан на километровую глубину, и Вы вряд ли захотите здесь оказаться.

Но это еще не вся правда о скверном характере красавицы. На поверхности Венеры беспрерывно извергаются мощнейшие вулканы, наполняя атмосферу сажей и соединениями серы, которые быстро превращаются в серную кислоту. Да, на этой планете идут кислотные дожди – причем действительно кислотные, которые легко оставили бы раны на коже и разъели фототехнику туристов.

Впрочем, туристы не смогли бы здесь даже выпрямиться, чтобы сделать снимок: атмосфера Венеры вращается гораздо быстрее ее самой. На Земле воздух огибает планету почти за год, на Венере – за четыре часа, порождая постоянный ветер ураганной силы. Неудивительно, что до сих пор даже специально подготовленные космические аппараты не смогли просуществовать дольше нескольких минут в этом отвратительном климате. Как хорошо, что на нашей родной планете нет такого. У нашей природы нет плохой погоды, что подтверждается на http://www.gismeteo.ua/city/daily/4957/ , и это не может не радовать.

Марс

Атмосфера Марса, снимок получен искусственным спутником «Викинг» в 1976. Слева виден «кратер-смайлик» Галле

Увлекательные находки, которые сделаны на Красной планете за последние годы, показывают, что в далеком прошлом Марс был совсем другим. Миллиарды лет назад это была влажная планета с неплохой атмосферой и обширными водоемами. Кое-где на нем остались следы древней береговой линии – но это всё: сегодня сюда лучше не попадать. Современный Марс – это голая и мертвая ледяная пустыня, по которой то и дело проносятся мощные пылевые бури.

Плотной атмосферы, которая могла бы удерживать тепло и воду, на планете давно нет. Как она исчезла, еще не очень понятно, но скорее всего, Марс просто не обладает достаточной «притягательной силой»: примерно вдвое меньше Земли, он обладает почти втрое меньшей гравитацией.

В итоге на полюсах здесь царит глубокий холод и сохраняются полярные шапки, состоящие, в основном, из «сухого снега» – замерзшего углекислого газа. Стоит признать, что близ экватора температура днем может быть очень комфортной, около 20 градусов Цельсия. Но, впрочем, ночью она все равно упадет на несколько десятков градусов ниже нуля.

Несмотря на откровенно слабую атмосферу Марса, снеговые бури у его полюсов и пылевые в остальных частях – вовсе не редкость. Самумы, хамсины и прочие изнурительные пустынные ветры, несущие мириады всепроникающих и колючих песчинок, ветры, с которыми на Земле сталкиваются лишь в некоторых регионах, здесь могут охватить всю планету, на несколько дней сделав ее совершенно нефотографируемой.

Юпитер и окрестности

Чтобы оценить масштаб юпитерианских штормов, даже мощного телескопа не требуется. Самый внушительный из них – Большое красное пятно – не утихает уже несколько столетий, а размеры имеет втрое больше всей нашей Земли. Впрочем, и он скоро может потерять положение долговременного лидера. Несколько лет назад астрономы обнаружили на Юпитере новый вихрь – Овал ВА, который пока не достигает размеров Большого красного пятна, но растет угрожающе быстро.

Нет, Юпитер вряд ли привлечет даже любителей экстремального отдыха. Ураганные ветры здесь дуют постоянно, они охватывают всю планету, двигаясь со скоростью под 500 км/ч, причем нередко в противоположных направлениях, что создает на их границах ужасающие турбулентные вихри (такие, как знакомое нам Большое красное пятно, или Овал ВА).

Кроме температуры ниже - 140 градусов Цельсия и смертельной силы притяжения, нужно не забыть об еще одном факте – на Юпитере негде гулять. Эта планета – газовый гигант, вообще лишенный определенной твердой поверхности. И если б даже какому-то отчаянному скайдайверу удалось нырнуть в его атмосферу, закончил бы он в полужидкой глубине планеты, где колоссальная гравитация создает материю экзотических форм – скажем, сверхтекучий металлический водород.

Зато обычным дайверам стоит обратить внимание на один из спутников планеты-великана – Европу. Вообще, из множества спутников Юпитера по крайней мере два в будущем наверняка смогут претендовать на звание «туристической Мекки».

Например, Европа целиком покрыта океаном соленой воды. Ныряльщику здесь раздолье – глубина достигает 100 км – если только пробиться сквозь ледяную корку, которая охватывает весь спутник. Пока никто не знает, что обнаружит на Европе будущий последователь Жака-Ива Кусто: некоторые планетологи предполагают, что здесь могут найтись условия, подходящие и для жизни.

Другой юпитерианский спутник – Ио, без сомнения, станет любимчиком фотоблогеров. Мощная гравитация близкой и громадной планеты постоянно деформирует, «мнёт» спутник и нагревает его недра до огромных температур. Эта энергия прорывается на поверхность в областях геологической активности и питает сотни постоянно действующих вулканов. Из-за слабого притяжения на спутнике извержения выбрасывают впечатляющие потоки, которые поднимаются на сотни километров в высоту. Фотографов ждут чрезвычайно аппетитные кадры!

Сатурн с «пригородами»

Не менее заманчив с точки зрения фотоискусства, конечно, Сатурн со своими блистательными кольцами. Особый интерес может представлять необычная буря у северного полюса планеты, имеющая форму почти правильного шестиугольника со сторонами почти по 14 тыс. км.

Но для нормального отдыха Сатурн совсем не приспособлен. В общем и целом, это такой же газовый гигант, как Юпитер, только хуже. Атмосфера здесь холодная и плотная, а местные ураганы могут двигаться быстрее звука и быстрее пули – зафиксирована скорость более 1600 км/ч.

А вот климат спутника Сатурна Титана может привлечь целую толпу олигархов. Дело, правда, вовсе не в удивительной мягкости погоды. Титан – единственное известное нам небесное тело, на котором имеется круговорот жидкости, как на Земле. Только роль воды здесь играют... жидкие углеводороды.

Те самые вещества, которые на Земле составляют главное богатство страны – природный газ (метан) и другие горючие соединения – на Титане присутствуют в избытке, в жидкой форме: для этого тут достаточно холодно (- 162 градусов Цельсия). Метан клубится в облаках и проливается дождями, наполняет реки, которые впадают в почти полноценные моря... Качать – не перекачать!

Уран

Не самая далекая, но самая холодная планета во всей Солнечной системе: «столбик термометра» здесь может опускаться до неприятной отметки в − 224 градусов Цельсия. Это ненамного теплее абсолютного нуля. Почему-то – возможно, из-за столкновения с каким-то большим телом – Уран вращается лежа на боку, и северный полюс планеты повернут в сторону Солнца. Помимо мощных ураганов, здесь не на что смотреть.

Нептун и Тритон

Нептун (вверху) и Тритон (ниже)

Как и другие газовые гиганты, Нептун – место совсем неспокойное. Бури здесь могут достигать размеров больше всей нашей планеты и двигаться на рекордной известной нам скорости: почти 2500 км/ч. В остальном – это скучное место. Посетить Нептун стоит разве что из-за одного из его спутников – Тритона.

В целом Тритон так же холоден и однообразен, как его планета, но туристов всегда интригует все преходящее и гибнущее. Тритон как раз из таких: спутник медленно сближается с Нептуном, и спустя некоторое время будет разорван его гравитацией. Часть обломков упадет на планету, а часть может образовать некое подобие кольца, как у Сатурна. Точно сказать, когда это произойдет, пока не получается: где-то через 10 или 100 млн лет. Так что стоит поторопиться, чтобы успеть увидеть Тритон – знаменитый «Гибнущий спутник».

Плутон

Лишенный высокого звания планеты, Плутон остался в карликах, но можно смело сказать: это очень странное и негостеприимное место. Орбита Плутона очень длинна и сильно вытянута в овал, из-за чего год здесь длится почти 250 земных лет. За это время погода успевает сильно измениться.

Пока на карликовой планете царит зима, она замерзает целиком. Приближаясь к Солнцу, Плутон разогревается. Поверхностный лед, состоящий из метана, азота и угарного газа, начинает испаряться, создавая тонкую атмосферную оболочку. Временно Плутон становится похож на вполне полноценную планету, а заодно и на комету: из-за карликовых размеров газ не удерживается, а уносится прочь с него, создавая хвост. Нормальные планеты так себя не ведут.

Все эти климатические аномалии вполне понятны. Жизнь возникла и развивалась именно в земных условиях, поэтому здешний климат для нас практически идеален. Даже самые ужасные сибирские морозы и тропические бури выглядят детскими шалостями в сравнении с тем, что ждет отпускников на Сатурне или Нептуне. Поэтому наш Вам совет на будущее: не стоит тратить долгожданные дни отдыха на эти экзотические места. Лучше будем беречь нашу собственную уютную , чтобы и тогда, когда межпланетные путешествия станут доступны, наши потомки могли отдохнуть на египетском пляже или просто за городом, на чистой речке.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему: « Атмосферы планет »

Атмосфера Меркурия

Атмосфера Меркурия имеет крайне низкую плотность. Она состоит из водорода, гелия, кислорода, паров кальция, натрия и калия. Водород и гелий планета, вероятно, получает от Солнца, а металлы испаряются с ее поверхности. «Атмосферой» эту тонкую оболочку можно назвать лишь с большой натяжкой. Давление у поверхности планеты в 500 млрд раз меньше, чем у поверхности Земли (это меньше, чем в современных вакуумных установках на Земле).

Максимальная температура поверхности Меркурия, зарегистрированная датчиками, +410 °С. Средняя температура ночного полушария равна -162 °С, а дневного +347 °С (этого достаточно, чтобы расплавить свинец или олово). Перепады температур из-за смены времен года, вызванной вытянутостью орбиты, на дневной стороне достигают 100 °С. На глубине 1 м температура постоянна и равна +75 °С, ведь пористый грунт плохо проводит тепло. Органическая жизнь на Меркурии исключается.

Атмосфера Венеры

Атмосфера Венеры крайне жаркая и сухая. Температура на поверхности достигает своего максимума, примерно у отметки 480°С. В атмосфере Венеры содержится в 105 раз больше газа, чем в атмосфере Земли. Давление этой атмосферы у поверхности очень велико, в 95 раз выше, чем на Земле. Космические корабли приходится конструировать так, чтобы они выдерживали сокрушительную, раздавливающую силу атмосферы.

В 1970 г. первый космический корабль, прибывший на Венеру, смог выдержать страшную жару лишь около одного часа - этого как раз хватило, чтобы послать на Землю данные об условиях на поверхности. Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал.

Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии.

Атмосфера Венеры разделена на несколько слоёв. Наиболее плотная часть атмосферы -- тропосфера, начинается на поверхности планеты и простирается вплоть до 65 км. Ветры у раскалённой поверхности слабые, однако в верхней части тропосферы температура и давление уменьшаются до земных значений, и скорость ветра возрастает до 100 м/с.

Атмосферное давление на поверхности Венеры в 92 раза выше, чем на Земле, и сравнимо с давлением, создаваемым слоем воды на глубине 910 метров. Из-за такого высокого давления углекислый газ фактически является уже не газом, а сверхкритическим флюидом. Атмосфера Венеры имеет массу 4,8·1020 кг, что в 93 раза превышает массу всей атмосферы Земли, а плотность воздуха у поверхности составляет 67 кг/м3, то есть 6,5 % от плотности жидкой воды на Земле.

Тропосфера Венеры содержит 99 % всей атмосферы планеты по массе. 90 % атмосферы Венеры находится в пределах 28 км от поверхности. На высоте 50 км атмосферное давление примерно равно давлению на поверхности Земли. На ночной стороне Венеры облака можно обнаружить даже в 80 км над поверхностью.

Верхняя атмосфера и ионосфера

Мезосфера Венеры находится в интервале между 65 и 120 км. Далее начинается термосфера, достигающая верхней границы атмосферы (экзосферы) на высоте 220--350 км.

Мезосфера Венеры может быть разделена на два уровня: нижний (62--73 км) и верхний (73--95) км. В первом слое температура почти постоянна и составляет 230К (?43 °С). Этот уровень совпадает с верхним слоем облаков. На втором уровне температура начинает понижаться, опускаясь до 165 К (?108 °C) на высоте 95 км. Это самое холодное место на дневной стороне атмосферы Венеры. Далее начинается мезопауза, которая является границей между мезосферой и термосферой и находится между 95 и 120 км. На дневной стороне мезопаузы температура возрастает до 300--400 К (27--127 °C) -- значений, преобладающих в термосфере. В противоположность этому, ночная сторона термосферы является самым холодным местом на Венере с температурой 100К (?173 °C). Её иногда называют криосферой. В 2015 году с помощью зонда «Венера-Экспресс» учёные зафиксировали тепловую аномалию в промежутке высот от 90 до 100 километров -- средние показатели температур тут выше на 20-40 градусов и равняются 220-224 градусам Кельвина.

Венера имеет вытянутую ионосферу, расположенную на высоте 120--300 км и почти совпадающую с термосферой. Высокие уровни ионизации сохраняются только на дневной стороне планеты. На ночной стороне концентрация электронов практически равна нулю. Ионосфера Венеры состоит из трёх слоев: 120--130 км, 140--160 км и 200--250 км. Также может быть дополнительный слой в районе 180 км. Максимальная плотность электронов (число электронов в единице объёма) 3·1011 м3 достигается во втором слое вблизи подсолнечной точки. Верхняя граница ионосферы -- ионопауза -- расположена на высоте 220--375 км. Основные ионы в первом и втором слое -- это O2+ ионы, в то время как третий слой состоит из O+ ионов. Согласно наблюдениям, ионосферная плазма находится в движении, а солнечная фотоионизация на дневной стороне и рекомбинация ионов на ночной являются процессами, главным образом, ответственными за ускорение плазмы до наблюдаемых скоростей. Плазменный поток, видимо, достаточен для поддержания наблюдаемого уровня концентрации ионов на ночной стороне.

Атмосфера Земли

Атмосфера планеты Земля, одна из геосфер, смесь газов, окружающих Землю, и содержатся благодаря силе тяжести. Атмосфера в основном состоит из азота (N2, 78%) и кислорода (O2, 21%; O3, 10%). Остальные (~ 1%) состоит в основном из аргона (0,93%) с небольшими примесями других газов, в частности углекислого газа (0,03%). Кроме того атмосфера содержит около 1,3 ч 1,5 Ч 10кг воды, основную массу которой сосредоточено в тропосфере.

Согласно изменениям температуры с высотой в атмосфере выделяют следующие слои:

· Тропосфера - до 8-10 км в полярных областях и до 18 км - над экватором. В тропосфере сосредоточено почти 80% атмосферного воздуха, почти весь водяной пар, здесь образуются облака и выпадают осадки. Теплообмен в тропосфере осуществляется преимущественно конвективно. Процессы, происходящие в тропосфере, непосредственно влияют на жизнь и деятельность людей. Температура в тропосфере с высотой понижается в среднем на 6 ° C на 1 км, а давление - на 11 мм рт. в. на каждые 100 м. Условной границей тропосферы считают тропопаузы, в которой снижение температуры с высотой прекращается.

· Стратосфера - от тропопаузы до стратопаузе, которая расположена на высоте около 50-55 км. Характеризуется незначительным увеличением температуры с высотой, которая достигает локального максимума на верхней границе. На высоте 20-25 км в стратосфере располагается слой озона, который защищает живые организмы от губительного воздействия ультрафиолетового излучения.

· Мезосфера - расположена на высотах 55-85 км. Температура постепенно падает (от 0 ° C в стратопаузе до -70 ч -90 ° C в мезопаузе).

· Термосфера - пролегает на высотах от 85 до 400-800 км. Температура растет с высотой (от 200 K до 500-2000 K в турбопаузы). По степени ионизации атмосферы в ней выделяют нейтральный слой (нейтросфера) - до высоты 90 км, и ионизированный слой - ионосферу - выше 90 км. По однородности атмосферу подразделяют на гомосферу (однородную атмосферу постоянного химического состава) и гетеросферу (состав атмосферы меняется с высотой). Условным пределом между ними на высоте около 100 км является гомопауза. Верхняя часть атмосферы, где концентрация молекул снижается настолько, что они движутся преимущественно баллистическими траекториями, почти без столкновений между собой, называется экзосфера. Она начинается на высоте около 550 км, состоящий преимущественно гелия и водорода и постепенно переходит в межпланетное пространство.

Значение атмосферы

Несмотря на то, что масса атмосферы составляет лишь одну миллионную долю массы Земли, она играет решающую роль в различных природных циклах (круговороте воды, углеродном цикле и азотном цикле). Атмосфера является промышленным источником азота, кислорода и аргона, которые получают путем фракционной дистилляции сжиженного воздуха.

Атмосфера Марса

Атмосфера Марса открыта была еще до полета автоматических межпланетных станции к планете. Благодаря противостояниям планеты, которые случаются раз в три года и спектральному анализу, астрономы уже в 19 веке знали, что она имеет весьма однородный состав, более 95% которого составляет CO2.

В 20 веке, благодаря межпланетным зондам мы узнали, что атмосфера Марса и его температура сильно взаимосвязаны, ведь благодаря переносу мельчайших частичек оксида железа возникают огромные пылевые бури, которые могут охватить половину планеты, попутно подняв ее температуру.

Примерный состав

Газовая оболочка планеты состоит из состоит из 95% углекислого газа, 3% азота, 1,6% аргона, и следовых количеств кислорода, водяного пара и других газов. Кроме того, она очень сильно наполнена мелкими частицами пыли (в основном из оксида железа), которые придают ей красноватый оттенок. Благодаря сведениям о частичках оксида железа, ответить на вопрос какого цвета атмосфера, совсем не трудно.

Почему атмосфера красной планеты состоит из углекислого газа? На планете нет тектоники плит вот уже в течение миллиардов лет. Отсутствие движения плит позволило вулканическим точкам извергать магму на поверхность миллионы лет подряд. Углекислый газ также является продуктом извержения и это единственный газ, которым постоянно пополняется атмосфера, собственно это фактически единственная причина, почему она существует. К тому же планета лишилась своего магнитного поля, что способствовало тому, что более легкие газы уносились солнечным ветром. Из-за непрерывных извержений, появилось множество больших вулканических гор. Гора Олимп, является крупнейшей горой в Солнечной системе.

Ученые считают, что Марс растерял всю свою атмосферу, из-за того, что потерял свою магнитосферу около 4 миллиардов лет назад. Когда-то газовая оболочка планеты была плотнее и магнитосфера защищала от солнечного ветра планету. Солнечный ветер, атмосфера и магнитосфера сильно взаимосвязаны. Солнечные частицы взаимодействует с ионосферой и уносит из нее молекулы, снижая плотность. Это и является разгадкой на вопрос куда делась атмосфера. Эти ионизированные частицы были обнаружены космическими аппаратами, в пространстве позади Марса. Это приводит к тому, что на поверхности давление в среднем 600 Па, по сравнению со средним давлением на Земле 101300 Па.

Строение

Атмосфера делится на четыре основных слоя: нижний, средний, верхний и экзосфера. Нижние слои это теплая область (температура около 210 К). Она нагревается от пыли в воздухе (пыль 1,5 мкм в поперечнике) и теплового излучения от поверхности.

Следует учесть, что, несмотря на очень большую разрежённость, концентрация углекислого газа, в газовой оболочке планеты, примерно в 23 раза больше, чем в нашей. Поэтому, не такая уж и дружелюбная атмосфера Марса, нельзя дышать в ней не только людям, но и другим земным организмам.

Средняя -- похожа на Земную. Верхние слои атмосферы нагревается от солнечного ветра и там температура гораздо выше, чем на поверхности. Это тепло заставляет газ покидать газовую оболочку. Экзосфера начинается примерно в 200 км от поверхности и не имеет четкой границы. Как видите, распределение температуры по высоте, достаточно предсказуемо для планеты земной группы.

Атмосфера Юпитера

Единственная видимая часть Юпитера - это атмосферные облака и пятна. Облака располагаются параллельно экватору в зависимости от восходящих тёплых или нисходящих холодных потоков, они светлые и тёмные атмосфера планета меркурий земля

В атмосфере Юпитера свыше 87% по объёму водорода и ~13% гелия, остальные газы, включая метан, аммиак, водяной пар находятся в виде примесей на уровне десятых и сотых долей процента.

Давлению 1 атм соответствует температура 170 К. Тропопауза находится на уровне с давлением 0,1 атм и температурой 115 К. Во всей нижележащей тропосфере высотных ход температуры можно охарактеризовать адиабатическим градиентом в водородногелиевой среде - около 2 К на километр. Спектр радиоизлучения Юпитера также свидетельствует об устойчивом росте радиояркостной температуры с глубиной. Выше тропопаузы расположена область температурной инверсии, где температура вплоть до давлений порядка 1 мбар постепенно нарастает до ~180 К. Это значение сохраняется в мезосфере, которая характеризуется почти изотермией до уровня с давлением ~10-6 атм, а выше начинается термосфера, переходящая в экзосферу с температурой 1250 К.

Облака Юпитера

Выделяется три основных слоя:

1. Самый верхний, при давлении около 0,5 атм, состоящий из кристаллического аммиака.

2. Промежуточный слой состоит из гидросульфида аммония

3. Нижний слой, при давлении в несколько атмосфер, состоящий из обычного водяного льда.

В некоторых моделях также допускается существования самого нижнего, четвёртого слоя облаков, состоящего из жидкого аммиака. Такая модель в целом удовлетворяет совокупности имеющихся экспериментальных данных и хорошо объясняет окраску зон и поясов: расположенные выше в атмосфере светлые зоны содержат ярко-белые кристаллы аммиака, а расположенные глубже пояса - красно-коричневые кристаллы гидросульфида аммония.

Подобно Земле и Венере, в атмосфере Юпитера зарегистрированы молнии. Судя по запечатленным на фотографиях "Вояджера" световым вспышкам, интенсивность разрядов чрезвычайно велика. Пока неясно, однако, в какой мере эти явления связаны с облаками, поскольку вспышки обнаружены на больших высотах, чем ожидалось.

Циркуляция на Юпитере

Характерным движением на Юпитере является наличие зональной циркуляции тропических и умеренных широт. Сама циркуляция является осесимметричной, то есть почти не имеющей отличий на различных долготах. Скорости восточных и западных ветров в зонах и поясах составляют от 50 до 150 м/с. на экваторе дует ветер в восточном направлении со скоростью около 100 м/с.

Структура зон и поясов различается характером вертикальных движений от которых зависит формирование горизонтальных течений. В светлых зонах, температура которых ниже, движения восходящие, облака плотнее и располагаются на более высоких уровнях в атмосфере. В более тёмных (красно- коричневых) поясах с более высокой температурой движения нисходящие, они расположены глубже в атмосфере и закрыты менее плотными облаками.

Кольца Юпитера

Кольца Юпитера, окружая планету перпендикулярно экватору, находятся на высоте 55 000 км от атмосферы.

Они были открыты зондом "Вояджер-1" в марте 1979 г, с тех пор с Земли за ними ведётся наблюдение. Существуют два основных кольца и одно, очень тонкое, внутреннее с характерной оранжевой окраской. Толщина колец, похоже, не превышает 30 км, а ширина - 1000 км.

В отличие от колец Сатурна, кольца Юпитера темны (альбедо (отражательная способность) - 0,05). И, вероятно, состоят из очень небольших твердых частиц метеорной природы. Частицы колец Юпитера, скорее всего, не остаются в них долго (из-за препятствий, создаваемых атмосферой и магнитным полем). Следовательно, раз кольца постоянны, то они должны непрерывно пополняться. Небольшие спутник Метис и Адрастея, чьи орбиты лежат в пределах колец, - очевидные источники таких пополнений. С Земли кольца Юпитера могут быть замечены при наблюдении только в инфракрасном диапазоне.

Атмосфера Сатурна

Верхние слои атмосферы Сатурна состоят на 96,3 % из водорода (по объёму) и на 3,25 % -- из гелия (по сравнению с 10 % в атмосфере Юпитера). Имеются примеси метана, аммиака, фосфина, этана и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских. Облака нижней части атмосферы состоят из гидросульфида аммония (NH4SH) или воды.

По данным «Вояджеров», на Сатурне дуют сильные ветры, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветры дуют в основном в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что циркуляция атмосферы происходит не только в слое верхних облаков, но и на глубине, по крайней мере, до 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветры в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы (см. Большое красное пятно на Юпитере, Большое тёмное пятно на Нептуне). Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).

12 ноября 2008 года камеры станции «Кассини» получили изображения северного полюса Сатурна в инфракрасном диапазоне. На них исследователи обнаружили полярные сияния, подобные которым не наблюдались ещё ни разу в Солнечной системе. Также данные сияния наблюдались в ультрафиолетовом и видимом диапазонах. Полярные сияния представляют собой яркие непрерывные кольца овальной формы, окружающие полюс планеты. Кольца располагаются на широте, как правило, в 70--80°. Южные кольца располагаются на широте в среднем 75 ± 1°, а северные -- ближе к полюсу примерно на 1,5°, что связано с тем, что в северном полушарии магнитное поле несколько сильнее. Иногда кольца становятся спиральной формы вместо овальной.

В отличие от Юпитера полярные сияния Сатурна не связаны с неравномерностью вращения плазменного слоя во внешних частях магнитосферы планеты. Предположительно, они возникают из-за магнитного пересоединения под действием солнечного ветра. Форма и вид полярных сияний Сатурна сильно меняются с течением времени. Их расположение и яркость сильно связаны с давлением солнечного ветра: чем оно больше, тем сияния ярче и ближе к полюсу. Среднее значение мощности полярного сияния составляет 50 ГВт в диапазоне 80--170 нм (ультрафиолет) и 150--300 ГВт в диапазоне 3--4 мкм (инфракрасный).

Во время бурь и штормов на Сатурне наблюдаются мощные разряды молнии. Электромагнитная активность Сатурна, вызванная ими колеблется с годами от почти полного отсутствия до очень сильных электрических бурь.

28 декабря 2010 года «Кассини» сфотографировал шторм, напоминающий сигаретный дым. Ещё один, особенно мощный шторм, был зафиксирован 20 мая 2011 года.

Атмосфера Урана

Атмосфера Урана, так же как и атмосферы Юпитера и Сатурна, состоит в основном из водорода и гелия. На больших глубинах она содержит значительные количества воды, аммиака и метана, что является отличительной чертой атмосфер Урана и Нептуна. Обратная картина наблюдается в верхних слоях атмосферы, которые содержит очень мало веществ тяжелее водорода и гелия. Атмосфера Урана -- самая холодная из всех планетарных атмосфер в Солнечной системе, с минимальной температурой 49 K.

Атмосфера Урана может быть разделена на три основных слоя:

1. Тропосфера -- занимает промежуток высот от?300 км до 50 км (за 0 принята условная граница, где давление составляет 1 бар;) и диапазон давления от 100 до 0,1 бар

2. Стратосфера -- покрывает высоты от 50 до 4000 км и давления между 0,1 и 10?10 бар

3. Экзосфера -- простирается от высоты 4000 км до нескольких радиусов планеты, давление в этом слое при удалении от планеты стремится к нулю.

Примечательно, что в отличие от земной, атмосфера Урана не имеет мезосферы.

В тропосфере существует четыре облачных слоя: метановые облака на границе, соответствующей давлению примерно в 1,2 бар; сероводородные и аммиачные облака в слое давлений 3-10 бар; облака из гидросульфида аммония при 20-40 бар, и, наконец, водяные облака из кристалликов льда ниже условной границы давления 50 бар. Только два верхних облачных слоя доступны прямому наблюдению, существование же нижележащих слоев предсказано только теоретически. Яркие тропосферные облака редко наблюдаются на Уране, что, вероятно, связано с низкой активностью конвекции в глубинных областях планеты. Тем не менее, наблюдения таких облаков использовались для измерения скорости зональных ветров на планете, которая доходит до 250 м/с.

Об атмосфере Урана в настоящее время имеется меньше сведений, чем об атмосферах Сатурна и Юпитера. По состоянию на май 2013 года только один космический корабль, Вояджер 2, изучал Уран с близкого расстояния. Никаких других миссий на Уран в настоящее время не запланировано.

Атмосфера Нептуна

В верхних слоях атмосферы обнаружен водород и гелий, которые составляют соответственно 80 и 19 % на данной высоте. Также наблюдаются следы метана. Заметные полосы поглощения метана встречаются на длинах волн выше 600 нм в красной и инфракрасной части спектра. Как и в случае с Ураном, поглощение красного света метаном является важнейшим фактором, придающим атмосфере Нептуна синий оттенок, хотя яркая лазурь Нептуна отличается от более умеренного аквамаринового цвета Урана. Так как содержание метана в атмосфере Нептуна не сильно отличается от такового в атмосфере Урана, предполагается, что существует также некий, пока неизвестный, компонент атмосферы, способствующий образованию синего цвета. Атмосфера Нептуна подразделяется на 2 основные области: более низкая тропосфера, где температура снижается вместе с высотой, и стратосфера, где температура с высотой, наоборот, увеличивается. Граница между ними, тропопауза, находится на уровне давления в 0,1 бар. Стратосфера сменяется термосферой на уровне давления ниже, чем 10?4 -- 10?5 микробар. Термосфера постепенно переходит в экзосферу. Модели тропосферы Нептуна позволяют полагать, что в зависимости от высоты, она состоит из облаков переменных составов. Облака верхнего уровня находятся в зоне давления ниже одного бара, где температура способствует конденсации метана.

При давлении между одним и пятью барами, формируются облака аммиака и сероводорода. При давлении более 5 бар облака могут состоять из аммиака, сульфида аммония, сероводорода и воды. Глубже, при давлении в приблизительно 50 бар, могут существовать облака из водяного льда, при температуре, равной 0 °C. Также, не исключено, что в данной зоне могут быть найдены облака из аммиака и сероводорода. Высотные облака Нептуна наблюдались по отбрасываемым ими теням на непрозрачный облачный слой ниже уровнем. Среди них выделяются облачные полосы, которые «обёртываются» вокруг планеты на постоянной широте. У данных периферических групп ширина достигает 50--150 км, а сами они находятся на 50--110 км выше основного облачного слоя. Изучение спектра Нептуна позволяет предполагать, что его более низкая стратосфера затуманена из-за конденсации продуктов ультрафиолетового фотолиза метана, таких как этан и ацетилен. В стратосфере также обнаружены следы циановодорода и угарного газа. Стратосфера Нептуна более тёплая, чем стратосфера Урана из-за более высокой концентрации углеводородов. По невыясненным причинам, термосфера планеты имеет аномально высокую температуру около 750 К.. Для столь высокой температуры планета слишком далека от Солнца, чтобы оно могло так разогреть термосферу ультрафиолетовой радиацией. Возможно, данное явление является следствием атмосферного взаимодействия с ионами в магнитном поле планеты. Согласно другой теории, основой механизма разогревания являются волны гравитации из внутренних областей планеты, которые рассеиваются в атмосфере. Термосфера содержит следы угарного газа и воды, которая попала туда, возможно, из внешних источников, таких как метеориты и пыль.

Размещено на Allbest.ru

...

Подобные документы

    Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.

    реферат , добавлен 07.05.2012

    Проблема изучения солнечной системы. Открыты не все тайны и загадки даже нашей системы. Ресурсы других планет и астероидов нашей системы. Исследование Меркурия, Венеры, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона.

    реферат , добавлен 22.04.2003

    Понятие газовых гигантов. Юпитер как крупнейшая планета в Солнечной системе. Особенности Сатурна как небесного тела, обладающего системой колец. Специфика планетарной атмосферы Урана. Основные параметры Нептуна. Сравнительная характеристика этих планет.

    презентация , добавлен 31.10.2014

    Юпитер: общие сведения о планете и ее атмосфера. Состав юпитерианского океана. Спутники Юпитера и его кольцо. Редкие выбросы в атмосфере Сатурна. Кольца и спутники Сатурна. Состав атмосферы и температура Урана. Строение и состав Нептуна, его спутники.

    реферат , добавлен 17.01.2012

    Межпланетная система, состоящая из Солнца и естественных космических объектов, вращающихся вокруг него. Характеристика поверхности Меркурия, Венеры и Марса. Место расположения Земли, Юпитера, Сатурна и Урана в системе. Особенности пояса астероидов.

    презентация , добавлен 08.06.2011

    Построение графика распределения официально известных планет. Определение точных расстояний до Плутона и заплутоновых планет. Формула вычисления скорости усадки Солнца. Зарождение планет Солнечной системы: Земли, Марса, Венеры, Меркурия и Вулкана.

    статья , добавлен 23.03.2014

    Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

    презентация , добавлен 15.06.2010

    История образования атмосферы планеты. Баланс кислорода, состав атмосферы Земли. Слои атмосферы, тропосфера, облака, стратосфера, средняя атмосфера. Метеоры, метеориты и болиды. Термосфера, полярные сияния, озоносфера. Интересные факты об атмосфере.

    презентация , добавлен 23.07.2016

    Спостереження за положеннями зірок та планет. Рух зореподібних планет, розташованих поблизу екліптики. "Петлі" на небі верхніх планет - Марса, Юпітера, Сатурна, Урана і Нептуна. Створення теорій руху планет: основні практичні аспекти небесної механіки.

    реферат , добавлен 18.07.2010

    Понятие и отличительные особенности планет-гигантов, характеристика каждой из них и оценка значения в Галактике: Юпитера, Сатурна, Урана и Нептуна. Физические характеристики данных планет: полярное сжатие, скорость вращения, объем, ускорение, площадь.

Атмосфера планет и их спутников - плотность и состав ее определяются диаметром и массой планет, расстоянием от Солнца, особенностями их формирования и развития. Чем дальше планета расположена от Солнца, тем больше летучих компонентов входило и входит сейчас в ее состав; чем меньше масса планеты, тем меньше ее способность удерживать эти летучие и т. д. Вероятно, планеты земной группы давно уже утратили свою первичную атмосферу. Ближайшая к Солнцу планета Меркурий при своей относительно малой массе (не способной удерживать в поле тяготения молекулы с атомным весом менее 40) и высокой температуре поверхности практически не имеет атмосферы (СО 2 = = 2000 атм-см). Имеется некоторая атмосферная корона, состоящая из инертных газов - аргона, неона и гелия. По-видимому, аргон и гелий являются радиогенными и постоянно попадают в атмосферу за счет своеобразного «эманирования» горных пород, слагающих Меркурий, и, возможно, эндогенных процессов. Наличие неона представляет собой загадку. Трудно предположить, что в первоначальном веществе Меркурия могло присутствовать столь много неона, чтобы он мог до сих пор выделяться из недр этой планеты, тем более, что веских доказательств плутонической активности у этой планеты не обнаружено.

Венера обладает наиболее теплой и мощной атмосферой из всех планет земного типа. Атмосфера планеты на 97 % состоит из СО 2 , в ней обнаружены 0 2 , N 2 и Н 2 0. Температура у поверхности достигает 747+20 К, давление (8,83+0,15) 10 6 Па. Атмосфера Венеры - скорее всего результат ее внутренней активности. А. П. Виноградов считал, что весь СО 2 атмосферы Венеры обусловлен дегазацией всех карбонатов при высокой температуре ее поверхности. По-видимому, это не совсем так, ибо непонятно, как же тогда могли образоваться эти карбонаты? Вряд ли температура поверхности Венеры была в прошлом существенно ниже, вряд ли на ее поверхности когда-то была гидросфера, и, следовательно, карбонаты образоваться не могли. Существовало мнение о том, что вся вода Венерой была утрачена за счет диссоциации ее молекул в атмосфере на водород и кислород с последующей диссипацией водорода в космос. Кислород же вступал в химические реакции с углеродистым веществом, что приводило к обогащению атмосферы углекислотой. Может быть, это было и так, но тогда мы должны предположить на Венере наличие плутонизма, обеспечивающего подвод все новых порций вещества из ее глубины в зону реакции с кислородом, т. е. на поверхность, что как будто находит подтверждение данными, полученными в результате исследований «Венеры-13» и «Венеры-14».

На Марсе имеется небольшая атмосфера, давление которой у основания в зависимости от условий находится в пределах (2,9-8,8) 10 2 Па. В районе посадки станции «Ви-кинг-1» давление атмосферы составляло 7,6-10 2 Па. Масса марсианской атмосферы в северном полушарии несколько больше, чем в южном. В атмосфере обнаружены небольшие количества паров воды и следы озона. Температура поверхности Марса изменяется в зависимости от широты и на границе полярных шапок достигает 140-150 К. Температура на поверхности экваториальных областей днем может быть 300 К, а ночью падает до 180 К. Максимальное охлаждение происходит в высоких широтах Марса за долгую полярную ночь. При падении температуры до 145 К начинается конденсация атмосферной углекислоты, однако перед этим из атмосферы вымерзает водяной пар. Полярные шапки Марса состоят, вероятно, в нижнем слое из водяного льда, который покрывается сверху твердой углекислотой.

Атмосферы больших планет Юпитера, Сатурна и Урана состоят из водорода, гелия, метана; атмосфера Юпитера наиболее мощная среди других внешних планет. На основании анализа фото- и ИК.спектров, различных моделей отражения света в атмосферах внешних планет помимо преобладающих Н 2 , СН 4 , Н 3 и Не, обнаружены также такие компоненты, как С 2 Н 2 , С 2 Н 6 , РН 3 ; не исключена возможность и наличия более сложных органических веществ. Отношение Н/Не -около 10, т. е. близко к солнечному, отношение изотопов водорода D/H, например, для Юпитера равно 2-10~ 5 , что близко к межзвездному отношению, равному 1,4-10~ 5 . На основании сказанного можно сделать вывод, что вещество внешних планет не испытывает ядерных превращений и со времени образования Солнечной системы легкие газы не удалялись из атмосферы внешних планет. .Весьма примечательно также и такое явление, как наличие атмосфер у спутников внешних планет. Даже такие спутники Юпитера, как Ио и Европа, с массами, близкими к массе Луны, тем не менее имеют атмосферу, а спутник Ио, в частности, окружен натриевым облаком. Атмосферы Ио и Титана имеют красноватый оттенок, при этом установлено, что эта окраска вызвана разными соединениями.

А. Михайлов, проф.

Наука и жизнь // Иллюстрации

Лунный ландшафт.

Таяние полярного пятна на Марсе.

Орбиты Марса и Земли.

Карта Марса, составленная Лоуеллом.

Модель Марса, сделанная Кюлем.

Рисунок Марса, сделанный Антониади.

Рассматривая вопрос о существовании жизни на других планетах, мы будем говорить только о планетах нашей солнечной системы, так как нам ничего не известно о наличии у других солнц, каковыми являются звезды, собственных планетных систем, подобных нашей. По современным воззрениям на происхождение солнечной системы можно даже полагать, что образование планет, обращающихся вокруг центральной звезды, есть случай, вероятность которого ничтожно мала, и что поэтому огромное большинство звезд не имеет своих планетных систем.

Далее нужно оговориться, что вопрос о жизни на планетах мы поневоле рассматриваем с нашей, земной точки зрения, предполагая, что эта жизнь проявляется в таких же формах, как и на Земле, т. е. предполагая жизненные процессы и общее строение организмов подобными земным. В таком случае для развития жизни на поверхности какой-либо планеты должны существовать определенные физико-химические условия, должна быть не слишком высокая и не слишком низкая температура, необходимо наличие воды и кислорода, основой же органического вещества должны являться соединения углерода.

Атмосферы планет

Присутствие у планет атмосферы определяется напряжением силы тяжести на их поверхности. Большие планеты обладают достаточной силой притяжения, чтобы удерживать около себя газообразную оболочку. Действительно, молекулы газа находятся в постоянном быстром движении, скорость которого определяется химической природой этого газа и температурой.

Наибольшую скорость имеют легкие газы - водород и гелий; при повышении температуры скорость возрастает. При нормальных условиях, т. е. температуре в 0° и атмосферном давлении, средняя скорость молекулы водорода составляет 1840 м/сек, а кислорода 460 м/сек. Но под влиянием взаимных столкновений отдельные молекулы приобретают скорости, в несколько раз превосходящие указанные средние числа. Если в верхних слоях земной атмосферы появится молекула водорода со скоростью, превосходящей 11 км/сек, то такая молекула отлетит прочь от Земли в межпланетное пространство, так как сила земного притяжения окажется недостаточной для ее удержания.

Чем меньше планета, чем она менее массивна, тем меньше эта предельная или, как говорят, критическая скорость. Для Земли критическая скорость составляет 11 км/сек, для Меркурия она равна лишь 3,6 км/сек, для Марса 5 км/сек, для Юпитера же, самой большой и массивной из всех планет, - 60 км/сек. Отсюда следует, что Меркурий, а тем более еще меньшие тела, как спутники планет (в том числе и наша Луна) и все малые планеты (астероиды), не могут удержать своим слабым притяжением атмосферную оболочку у своей поверхности. Марс в состоянии, хотя и с трудом, удерживать атмосферу, значительно более разреженную, чем атмосфера Земли, что же касается Юпитера, Сатурна, Урана и Нептуна, то их притяжение достаточно сильно для того, чтобы удерживать мощные атмосферы, содержащие легкие газы, вроде аммиака и метана, а возможно также и свободный водород.

Отсутствие атмосферы неминуемо влечет за собою и отсутствие воды в жидком состоянии. В безвоздушном пространстве испарение воды происходит гораздо энергичнее, чем при атмосферном давлении; поэтому вода быстро обращается в пар, который представляет собою весьма легкий таз, подвергающийся той же участи, что и другие газы атмосферы, т. е. он более или менее быстро покидает поверхность планеты.

Понятно, что на планете, лишенной атмосферы и воды, условия для развития жизни совершенно неблагоприятны, и мы не можем ожидать на такой планете ни растительной ни животной жизни. Под эту категорию попадают все малые планеты, спутники планет, а из больших планет - Меркурий. Скажем немного подробнее о двух телах этой категории, именно о Луне и Меркурии.

Луна и Меркурий

Для этих тел отсутствие атмосферы установлено не только путем приведенных выше соображений, но и посредством прямых наблюдений. Когда Луна движется по небу, совершая свой путь вокруг Земли, она часто закрывает собою звезды. Исчезновение звезды за диском Луны можно наблюдать уже в небольшую трубу, и происходит оно всегда вполне мгновенно. Если бы лунный рай был окружен хотя бы редкой атмосферой, то, прежде чем вполне исчезнуть, звезда просвечивала бы в течение некоторого времени сквозь эту атмосферу, причем постепенно уменьшалась бы видимая яркость звезды, кроме того, вследствие преломления света звезда казалась бы смещенной со своего места. Все эти явления совершенно отсутствуют при покрытии звезд Луною.

Лунные ландшафты, наблюдаемые в телескопы, поражают резкостью и контрастностью своего освещения. На Луне нет полутеней. Рядом с яркими, освещенными Солнцем местами встречаются глубокие черные тени. Происходит это потому, что вследствие отсутствия атмосферы на Луне нет голубого дневного неба, которое своим светом смягчало бы тени; небо там всегда черное. Нет на Луне и сумерек, и после захода Солнца сразу наступает темная ночь.

Меркурий находится от нас гораздо дальше, чем Луна. Поэтому таких подробностей как на Луне, мы наблюдать на нем не можем. Нам неизвестен вид его ландшафта. Покрытие звезд Меркурием вследствие его видимой малости чрезвычайно редкое явление, и нет указаний на то, чтобы такие покрытия когда-либо наблюдались. Зато бывают прохождения Меркурия перед диском Солнца, когда мы наблюдаем, что эта планета в виде крохотной черной точки медленно проползает по яркой солнечной поверхности. Край Меркурия при этом бывает резко очерчен, и те явления, которые усматривались при прохождении перед Солнцем Венеры, у Меркурия не наблюдались. Но все же возможно, чтобы небольшие следы атмосферы у Меркурия сохранились, однако эта атмосфера имеет совсем ничтожную плотность по сравнению с земной.

На Луне и Меркурии совершенно неблагоприятны для жизни и температурные условия. Луна вращается вокруг своей оси чрезвычайно медленно, благодаря чему день и ночь продолжаются на ней по четырнадцать суток. Зной солнечных лучей не умеряется воздушной оболочкой, и в результате днем на Луне температура поверхности повышается до 120°, т. е. выше точки кипения воды. Во время же долгой ночи температура падает до 150° ниже нуля.

Во время лунного затмения наблюдалось, как в течение всего лишь часа с небольшим температура упала с 70° тепла до 80° мороза, а после окончания затмения почти в столь же короткий срок вернулась к своему исходному значению. Это наблюдение указывает на чрезвычайно малую теплопроводность горных пород, образующих лунную поверхность. Солнечное тепло не проникает вглубь, а остается в самом тонком верхнем слое.

Нужно думать, что поверхность Луны покрыта легкими и рыхлыми вулканическими туфами, может быть даже пеплом. Уже на глубине метра контрасты тепла и холода оглаживаются «эстолько, что вероятно там господствует средняя температура, мало отличающаяся от средней температуры земной поверхности, т. е. составляющая несколько градусов выше нуля. Быть.может там и сохранились некоторые зародыши живого вещества, но участь их, конечно, незавидная.

На Меркурии разница температурных условий еще более резкая. Эта планета всегда повернута к Солнцу одной стороной. На дневном полушарии Меркурия температура достигает 400°, т. е. она выше точки плавления свинца. А на ночном полушарии мороз должен доходить до температуры жидкого воздуха, и если бы на Меркурии существовала атмосфера, то на ночной стороне она должна была превратиться в жидкость, а может быть даже замерзнуть. Лишь на границе между дневным и ночными полушариями в пределах узкой зоны могут быть температурные условия, хоть сколько-нибудь благоприятные для жизни. Однако о возможности там развитой органической жизни думать не приходиться. Далее при наличии следов атмосферы в ней не мог удержаться свободный кислород, так как при температуре дневного полушария кислород энергично соединяется с большинством химических элементов.

Итак, в отношении возможности жизни на Луне перспективы достаточно неблагоприятны.

Венера

В отличие от Меркурия на Венере наблюдаются определенные признаки густой атмосферы. Когда Венера проходит между Солнцем и Землей, она бывает окружена светлым колечком, - это ее атмосфера, которая на просвет освещается Солнцем. Такие прохождения Венеры перед диском Солнца бывают очень редко: последнее прохождение имело место в 18S2 г., ближайшее следующее произойдет в 2004 г. Однако почти ежегодно Венера проходит хотя и не через самый солнечный диск, но достаточно близко от него, и тогда она бывает видна в форме очень узкого серпа, вроде Луны тотчас после новолуния. По законам перспективы освещенный Солнцем серп Венеры должен был бы составлять дугу ровно в 180°, но в действительности наблюдается более длинная светлая дуга, что происходит вследствие отражения и загибания солнечных лучей в атмосфере Венеры. Другими словами, на Венере существуют сумерки, которые увеличивают продолжительность дня и частично освещают ее ночное полушарие.

Состав атмосферы Венеры пока еще мало изучен. В 1932 г. при помощи спектрального анализа в ней было обнаружено присутствие большого количества углекислоты, соответствующее слою мощностью в 3 км при стандартных условиях (т. е. при 0° и 760 мм давления).

Поверхность Венеры всегда представляется нам ослепительно белой и без заметных постоянных пятен или очертаний. Полагают, что в атмосфере Венеры всегда находится густой слой белых облаков, вполне закрывающий собою твердую поверхность планеты.

Состав этих облаков неизвестен, но вероятнее всего, что это водяные пары. Что находится под ними, мы не видим, но понятно, что облака должны умерять зной солнечных лучей, который на Венере, находящейся ближе к Солнцу, чем Земля, был бы иначе чрезмерно силен.

Измерения температуры дали для дневного полушария около 50-60° тепла, а для ночного 20° мороза. Такие контрасты объясняются медленностью вращения Венеры около оси. Хотя точный период ее вращения неизвестен из-за отсутствия на поверхности планеты заметных пятен, но, по-видимому, сутки продолжаются на Венере не меньше наших 15 суток.

Каковы шансы на существование жизни на Венере?

В этом отношении мления ученых расходятся. Некоторые считают, что весь кислород в ее атмосфере химически связан и существует лишь в составе углекислоты. Так как этот газ обладает малой теплопроводностью, то в таком случае температура близ поверхности Венеры должна быть довольно высокой, быть может даже близкой к точке кипения воды. Этим можно было бы объяснить присутствие в верхних слоях ее атмосферы большого количества водяных паров.

Заметим, что приведенные выше результаты определения температуры Венеры относятся к наружной поверхности облачного покрова, т.е. к довольно большой высоте над ее твердой поверхностью. Во всяком случае нужно думать, что условия на Венере напоминают теплицу или оранжерею, но, вероятно, с еще значительно более высокой температурой.

Марс

Наибольший интерес с точки зрения вопроса о существовании жизни представляет планета Марс. Во многих отношениях он похож на Землю. По пятнам, которые хорошо видны на его поверхности, установлено, что Марс вращается около оси, совершая один оборот в 24 ч. и 37 м. Поэтому на нем существует смена дня и ночи почти такой же продолжительности, как и на Земле.

Ось вращения Марса составляет с плоскостью его орбиты угол в 66°, почти в точности такой же, как и у Земли. Благодаря этому наклону оси на Земле происходит смена времен года. Очевидно, и на Марсе существует такая же смена, но только каждое время года на «ем почти вдвое продолжительнее нашего. Причина этого заключается в том, что Марс, будучи в среднем в полтора раза дальше от Солнца, чем Земля, совершает свой оборот вокруг Солнца почти в два земных года, точнее в 689 суток.

Наиболее отчетливая подробность на поверхности Марса, заметная при рассматривании его в телескоп,- белое пятно, по своему положению совпадающее с одним из его полюсов. Лучше всего бывает видно пятно у южного полюса Марса, потому что в периоды своей наибольшей близости к Земле Марс бывает наклонен в сторону Солнца и Земли своим южным полушарием. Замечено, что с наступлением зимы в соответствующем полушарии Марса белое пятно начинает увеличиваться, а летом оно уменьшается. Бывали даже случаи (например, в 1894 г.), когда полярное пятно осенью почти совсем исчезало. Можно думать, что это снег или лед, который отлагается зимою тонким покровом близ полюсов планеты. Что этот покров очень тонкий, следует из указанного наблюдения над исчезновением белого пятна.

Вследствие удаленности Марса от Солнца температура на нем сравнительно низкая. Лето там очень холодное, и тем не менее бывает, что полярные снега полностью стаивают. Большая продолжительность лета не компенсирует в достаточной, мере недостатка тепла. Отсюда следует, что снега выпадает там мало, быть может всего лишь на несколько сантиметров, возможно даже, что белые полярные пятна состоят не из снега, а из инея.

Это обстоятельство находится в полном согласии с тем, что по всем данным на Марсе мало влаги, мало воды. Морей и больших водных пространств на нем не обнаружено. В его атмосфере очень редко наблюдаются облака. Сама оранжевая окраска поверхности планеты, благодаря которой невооруженному глазу Марс представляется красной звездой (откуда и произошло его название по имени древнеримского бога.войны), большинством "наблюдателей объясняется тем, что поверхность Марса представляет безводную песчаную пустыню, окрашенную окислами железа.

Марс движется вокруг Солнца по заметно вытянутому эллипсу. Благодаря этому его расстояние от Солнца меняется в довольно широких пределах - от 206 до 249 млн. км. Когда Земля находится с той же стороны Солнца, что и Марс, происходят так называемые противостояния Марса (потому что Марс в это время находится в стороне неба, противоположной Солнцу). Во время противостояний Марс наблюдается на ночном небе в благоприятных условиях. Противостояния чередуются в среднем через 780 дней, или через два года и два месяца.

Однако далеко не в каждое противостояние Марс приближается к Земле.на свое кратчайшее расстояние. Для этого нужно, чтобы противостояние совпало с временем наибольшего приближения Марса к Солнцу, что бывает лишь каждое седьмое или восьмое противостояние, т. е. примерно через пятнадцать лет. Такие противостояния называются великими противостояниями; они имели место в 1877, 1892, 1909 и 1924 гг. Следующее великое противостояние будет в 1939 т. Именно к этим срокам и приурочены главные наблюдения Марса и связанные с ними открытия. Ближе всего к Земле Марс был во время - противостояния 1924 г., но и тогда его расстояние от нас составляло 55 млн. км. Ha более близком расстоянии от Земли Марс никогда не бывает.

"Каналы" на Марсе

В 1877 г. итальянский астроном Скиапарелли, производя наблюдения в сравнительно скромный по своим размерам телескоп, но под прозрачным небом Италии, обнаружил на поверхности Марса, кроме темных пятен, названных хотя и неправильно морями, еще целую сеть узких прямых линий или полосок, которые он назвал проливами (по-итальянски canale). Отсюда слово «канал» стало употребляться и на других языках для обозначения этих загадочных образований.

Скиапарелли в результате своих многолетних наблюдений составил подробную карту поверхности Марса, на которой нанесены сотни каналов, соединяющих между собок> темные пятна «морей». Позднее американский астроном Лоуелл, построивший в Аризоне даже специальную обсерваторию для наблюдения Марса, обнаружил каналы и на темных пространствах «морей». Он нашел, что как «моря», так и каналы меняют свою видимость в зависимости от времен года: летом они становятся темнее, принимая иногда серо-зеленоватый оттенок зимою бледнеют и становятся буроватыми. Карты Лоуелла еще подробнее карт Скиапарелли, на них нанесено множество каналов, образующих сложную, но довольно правильную геометрическую сеть.

Для объяснения наблюдаемых на Марсе явлений Лоуелл развил теорию, которая получила широкое распространение, главным образом, среди любителей астрономии. Теория эта сводится к следующему.

Оранжевую поверхность планеты Лоуелл, как и большинство других наблюдателей, принимает за песчаную пустошью. Темные пятна «морей» он считает за области, покрытые растительностью - полями и лесами. Каналы он считает за сеть орошения, проведенную разумными существами, обитающими на поверхности планеты. Однако самые каналы нам с Земли не видны, так как их ширина для этого далеко не достаточна. Чтобы быть видимыми с Земли, каналы должны иметь ширину не меньше десятка километров. Поэтому Лоуелл считает, что мы видим лишь широкую полосу растительности, которая распускает свои зеленые листья, когда собственно канал, пролегающий в середине этой полосы, наполняется весною водой, притекающей от полюсов, где она образуется от таяния полярных снегов.

Однако мало-помалу начали возникать сомнения в реальности таких прямолинейных каналов. Наиболее показательным было то обстоятельство, что наблюдатели, вооруженные наиболее мощными современными телескопами, никаких каналов не видели, а наблюдали лишь необыкновенно богатую картину разных деталей и оттенков на поверхности Марса, лишённых, однако, правильных геометрических очертаний. Лишь наблюдатели, пользовавшиеся инструментами средней силы, видели и зарисовывали каналы. Отсюда возникло сильное подозрение, что каналы представляют лишь оптическую иллюзию (обман зрения), возникающую при крайнем напряжении глаза. Много работ и разных опытов было проведено для выяснения этого обстоятельства.

Наиболее убедительными являются результаты, полученные немецким физиком и физиологом Кюлем. Им была устроена специальная модель, изображающая Марс. На темном фоне Кюль наклеил вырезанный им из обыкновенной газеты кружок, на котором было размещено несколько серых пятен, напоминающих по своим очертаниям «моря» на Марсе. Если рассматривать такую модель вблизи, то ясно видно, что она собою представляет,- можно прочитать газетный текст и никакой иллюзии не создается. Но если отойти подальше, то при правильном освещении начинают появляться прямые тонкие полоски, идущие от одного темного пятна к другому и притом не совпадающие со строчками печатного текста.

Кюль подробно исследовал это явление.

Он показал, что три наличии многих мелких деталей и оттенков, постепенно переходящих один в другой, когда глаз не может уловить их «о всех подробностях, возникает стремление объединить эти детали более простыми геометрическими схемами, в результате чего и появляется иллюзия прямых полосок там, где никаких правильных очертаний не имеется. Современный выдающийся наблюдатель Антониади, который в то же время является хорошим художником, рисует Марс пятнистым, с массой неправильных деталей, но без всяких прямолинейных каналов.

Можно подумать, что этот вопрос лучше всего решить три помощи фотографии. Фотографическую пластинку обмануть нельзя: она должна, казалось бы, показать, что же на самом деле имеется на Марсе. К сожалению, это не так. Фотография, которая в применении к звездам и туманностям дала так много, в отношении поверхности планет дает меньше, чем видит глаз наблюдателя в тот же самый инструмент. Объясняется это тем, что изображение Марса, полученное даже с помощью самых больших и длиннофокусных инструментов, на пластинке получается очень малых размеров,- диаметром "всего.лишь до 2 мм. Конечно, на таком изображении больших подробностей разобрать нельзя. При сильном же увеличении таких фотографий выступает дефект, от которого так страдают современные любители фотографии, снимающие аппаратами типа «Лейка». Именно, выступает зернистость изображения, которая затушевывает все мелкие детали.

Жизнь на Марсе

Однако фотографии Марса, снятые через разные светофильтры, с полной ясностью доказали существование у Марса атмосферы, хотя и значительно более редкой, чем у Земли. Иногда под вечер в этой атмосфере замечаются светлые точки, которые, вероятно, представляют собою кучевые облака. Но вообще облачность на Марсе ничтожная, что вполне согласуется с малым количеством на нем воды.

В настоящее время почти все наблюдатели Марса согласны в том, что темные пятна «морей» действительно представляют области, покрытые растениями. В этом отношении теория Лоуелла подтверждается. Однако здесь до сравнительно недавнего времени имелось одно препятствие. Вопрос усложнился температурными условиями на поверхности Марса.

Так как Марс находится в полтора раза дальше от Солнца, чем Земля, то он получает в два с четвертью раза меньше тепла. Вопрос о том, до какой температуры может согреть его поверхность такое незначительное количество тепла, зависит от строения атмосферы Марса, представляющей собою «шубу» неизвестной нам толщины и состава.

Недавно удалось непосредственными измерениями определить температуру поверхности Марса. Оказалось, что в экваториальных областях в полдень температура повышается до 15-25° тепла, но под вечер наступает сильное похолодание, а ночь, по-видимому, сопровождается неизменными крепкими морозами.

Условия на Марсе похожи на те, которые наблюдаются у нас на высоких горах: разреженность и прозрачность воздуха, значительное нагревание прямыми солнечными лучами, холод в тени и сильные ночные морозы. Условия, без сомнения, очень суровые, но можно полагать, что растения акклиматизировались, приспособились к ним, а также и к недостатку влаги.

Итак, существование растительной жизни на Марсе можно считать почти доказанным, но относительно животных, а тем более разумных, мы пока ничего определенного сказать не можем.

Что касается других планет солнечной системы - Юпитера, Сатурна, Урана и Нептуна, то на них трудно предполагать возможность жизни по следующим основаниям: во-первых, низкая температура из-за дальности расстояния от Солнца и, во-вторых, ядовитые газы, недавно открытые в их атмосферах,- аммиак и метан. Если эти планеты и имеют твердую поверхность, то она спрятана где-то на большой глубине, мы же видим лишь верхние слои их чрезвычайно мощных атмосфер.

Еще менее вероятна жизнь на самой удаленной от Солнца планете - недавно открытом Плутоне, о физических условиях которого мы пока еще ничего не знаем.

Итак, из всех планет нашей солнечной системы (кроме Земли) можно подозревать существование жизни на Венере и считать почти доказанным наличие жизни на Марсе. Но, конечно, это все относится к настоящему времени. С течением времени, при эволюции планет, условия могут сильно измениться. Об этом из-за недостатка данных мы говорить не будем.

Земля - планета Солнечной системы, расположенная на расстоянии 150 миллионов километров от Солнца. Земля вращается вокруг него со средней скоростью 29,765 км/с. Полный оборот вокруг Солнца она совершает за период, равный 365,24 средних солнечных суток. Спутник Земли - Луна , обращается на расстоянии 384 400 км. Наклон земной оси к плоскости эклиптики 66° 33" 22", период обращения вокруг оси 23 ч 56 мин 4,1 с. Форма - геоид, сфероид. Экваториальный радиус - 6378,16 км, полярный — 6356,777 км. Площадь поверхности — 510,2 млн км 2 . Масса Земли - 6 * 10 24 кг. Объем — 1,083 * 10 12 км 3 . Гравитационное поле Земли обуславливает существование атмосферы и сферическую форму планеты.

Средняя плотность Земли равна 5,5 г/см 3 . Это почти вдвое больше, чем плотность поверхностных пород (около 3 г/см 3). С глубиной плотность возрастает. Внутренняя часть литосферы образует ядро, которое находится в расплавленном состоянии. Исследования показали, что ядро делится на две зоны: внутреннее ядро (радиус около 1300 км), которое, вероятно, является твердым, и жидкое внешнее ядра (радиус около 3400 км). Твердая оболочка тоже неоднородна, в ней имеется резкая поверхность раздела на глубине около 40 км. Эта граница называется поверхностью Мохоровичича. Область выше поверхности Мохоровичича называется корой , ниже - мантией. Мантия, как и кора, находится в твердом состоянии, за исключением отдельных лавовых «карманов». С глубиной плотность мантии нарастает от 3,3 г/см 3 у поверхности Мохоровичича и до 5,2 г/см 3 у границы ядра. На границе ядра она скачком возрастает до 9,4 г/см 3 . Плотность в центре Земли находится в пределах от 14,5 г/см 3 до 18 г/см 3 . У нижней границы мантии давление достигает 1 З00 000 атм. При спуске в шахты температура быстро повышается - примерно на 20 °С на 1 километр. Температура в центре Земли, по-видимому, не превышает 9000°С. Поскольку темп увеличения температуры с глубиной в среднем падает с приближением к центру Земли, источники тепла должны быть сосредоточены во внешних частях литосферы, скорее всего, в мантии. Единственной мыслимой причиной разогрева мантии является радиоактивный распад. 71% земной поверхности занимают океаны, образующие основную часть гидросферы. Земля - единственная планета Солнечной системы, обладающая гидросферой. Гидросфера поставляет водяной пар в атмосферу. Водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40°С. Наличие гидросферы сыграло решающую роль в возникновении жизни на Земле.

Химический состав атмосферы Земли на уровне моря — кислород (около 20%) и азот (около 80%). Современный состав атмосферы Земли, по-видимому, сильно отличается от первичного, который имел место 4,5 * 10 9 лет назад, когда сформировалась кора. Биосфера - растения, животные и микроорганизмы - существенно влияет как на общую характеристику планеты Земля, так и на химический состав ее атмосферы.

Луна

Диаметр Луны меньше земного в 4 раза, а масса меньше в 81 раз. Луна - небесное тело, ближе остальных расположенное к Земле.

Плотность Луны меньше, чем Земли (3,3 г/см 3). У нее отсутствует ядро, но в недрах сохраняется постоянная температура. На поверхности зафиксированы значительные перепады температуры: от +120°С в подсолнечной точке Луны до -170°С с противоположной стороны. Объясняется это, во-первых, отсутствием атмосферы, а во-вторых, продолжительностью лунного дня и лунной ночи, равной двум земным неделям.

Рельеф лунной поверхности включает низменности и гористые участки. Традиционно низменности называют «морями», хотя они и не заполнены водой. С Земли «моря» видны как темные пятна на поверхности Луны. Их названия достаточно экзотичны: море Холода, океан Бурь, море Москвы, море Кризисов и др.

Гористые участки занимают большую часть поверхности Луны и включают горные хребты и кратеры. Названия многих лунных горных хребтов аналогичны земным: Апеннины, Карпаты, Алтай. Наиболее высокие горы достигают высоты 9 км.

Кратеры занимают наибольшую площадь лунной поверхности. Некоторые из них имеют диаметр порядка 200 км (Клавий и Шиккард). некоторые - в несколько раз меньше (Аристарх, Анаксимеи).

Лунная поверхность наиболее удобна для наблюдения с Земли в местах, где граничат день и ночь, т. е. вблизи терминатора. Вообще с Земли можно видеть только одно полушарие Луны, однако возможны исключения. В результате того, что Луна движется по своей орбите неравномерно и ее форма не строго шарообразна, наблюдаются ее периодические маятникообразные колебания относительно своего центра масс. Это приводит к тому, что с Земли можно наблюдать порядка 60% лунной поверхности. Это явление носит название либрации Луны.

На Луне нет атмосферы. Звуки на ней не распространяются, поскольку отсутствует воздух.

Фазы Луны

Луна не обладает собственным свечением. поэтому видна только в той части, куда падают солнечные или отраженные Землей лучи. Этим объясняются фазы Луны. Каждый месяц Луна, двигаясь по орбите, проходит между Землей и Солнцем и обращена к нам темной стороной (новолуние). Через несколько дней на западной части неба появляется узкий серп молодой Луны. Остальная часть лунного диска в это время слабо освещена. Через 7 суток наступает первая четверть, через 14-15 — полнолуние. На 22-е сутки наблюдается последняя четверть, а через 30 суток - снова полнолуние.

Исследования Луны

Первые попытки изучить поверхность Луны состоялись достаточно давно, но непосредственно полеты на Луну начались только во второй половине XX в.

В 1958 г. состоялась первая посадка космического корабля на поверхность Луны, а в 1969 г. на нее высадились первые люди. Это были американские космонавты Н. Армстронг и Э. Олдрнн, доставленные туда космическим кораблем «Аполлон-11».

Основными целями полетов на Луну был отбор проб грунта и изучение рельефа поверхности Луны. Фотографии невидимой стороны Луны были впервые сделаны аппаратами «Луна-З» и «Луна-9». Заборы грунта производились аппаратами «Луна-16», «Луна-20» и др.

Морские приливы и отливы на Земле.

На Земле приливы и отливы чередуются в среднем каждые 12 ч 25 мин. Явление приливов и отливов связано с притяжением Земли к Солнцу и Луне. Но в связи с тем, что расстояние до Солнца слишком велико (150 * 10 6 км), солнечные приливы и отливы значительно слабее, чем лунные.

На участке нашей планеты, который обращен к Луне, сила притяжения больше, а на периферическом направлении меньше. В результате этого водная оболочка Земли растягивается вдоль линии, соединяющей Землю с Луной. Поэтому в части Земли, обращенной к Луне, вода Мирового океана выпучивается (возникает прилив). Вдоль круга, плоскость которого перпендикулярна линии Земля-Луна и проходит через центр Земли, уровень воды в Мировом океане понижается (возникает отлив).

Приливы и отливы тормозят вращение Земли. По расчетам ученых раньше земные сутки составляли не более б часов.

Меркурий

  • Расстояние от Солнца — 58 * 10 6 км
  • Средняя плотность — 54 200 кг/м 3
  • Масса — 0,056 массы Земли
  • Период обращения вокруг Солнца — 88 земных суток
  • Диаметр — 0.4 диаметра Земли
  • Спутники - нет
  • Физические условия:

  • Ближайшая планета к Солнцу
  • Атмосфера отсутствует
  • Поверхность усеяна кратерами
  • Диапазон суточных температур составляет 660°С (от +480°С до -180°С)
  • Магнитное поле в 150 раз слабее земного

Венера

  • Расстояние от Солнца — 108 * 10 6 км
  • Средняя плотность - 5240 кг/м 3
  • Масса — 0,82 массы Земли
  • Период обращения вокруг Солнца - 225 земных суток
  • Период обращения вокруг собственной оси — 243 суток, вращение обратное
  • Диаметр — 12 100 км
  • Спутники - нет

Физические условия

Атмосфера плотнее земной. Состав атмосферы: углекислый газ - 96%, азот и инертные газы > 4%, кислород - 0,002%, водяные пары - 0,02%. Давление 95-97 атм., температура у поверхности — 470-480°С, что обусловлено наличием парникового эффекта. Планета окружена слоем облаков, состоящих из капель серной кислоты с примесями хлора и серы. Поверхность в основном гладкая, с небольшим количеством хребтов (10% поверхности) и кратеров (17% поверхности). Грунт базальтовый. Магнитного поля нет.

Марс

  • Расстояние от Солнца — 228 * 10 6 км
  • Средняя плотность — 3950 кг/м 3
  • Масса — 0.107 массы Земли
  • Период обращения вокруг Солнца — 687 земных суток
  • Период обращения вокруг собственной оси — 24 ч 37 мин 23 с
  • Диаметр — 6800 км
  • Спутники - 2 спутника: Фобос, Деймос

Физические условия

Атмосфера разреженная, давление в 100 раз меньше земного. Состав атмосферы: углекислый газ — 95%, азот - более 2%. кислород - 0,3%, водяные пары — 1%. Диапазон суточных температур составляет 115°С (от +25°С днем до -90°С ночью). В атмосфере наблюдаются редкие облака и туман, что свидетельствует о выделениях влаги из резервуаров грунтовых вод. Поверхность усеяна кратерами. Грунт включает фосфор, кальций, кремний, а также оксиды железа, придающие планете красный цвет. Магнитное поле слабее земного в 500 раз.

Юпитер

  • Расстояние от Солнца - 778 * 10 6 км
  • Средняя плотность - 1330 кг/м 3
  • Масса - 318 масс Земли
  • Период обращения вокруг Солнца - 11,86 лет
  • Период обращения вокруг своей оси - 9 ч 55 мин 29 с
  • Диаметр — 142 000 км
  • Спутники - 16 спутников. Ио, Ганнмед, Каллисто, Европа — самые крупные
  • 12 спутников вращаются в одну сторону а 4 - в противоположную

Физические условия

Атмосфера содержит 90% водорода, 9% гелия и 1% других газов (в основном аммиак). Облака состоят из аммиака. Излучение Юпитера в 2,9 раза превосходит энергию, получаемую от Солнца. Планета сильно расплющена у полюсов. Полярный радиус на 4400 км меньше экваториального. На планете формируются крупные циклоны со временем жизни до 100 тысяч лет. Большое Красное Пятно, наблюдаемое на Юпитере, — пример такого циклона. В центре планеты, возможно, есть твердое ядро, хотя основная масса планеты в жидком состоянии. Магнитное поле в 12 раз сильнее земного.

Сатурн

  • Расстояние от Солнца — 1426 * 10 6 км
  • Средняя плотность — 690 кг/м 3
  • Масса - 95 масс Земли
  • Период обращения вокруг Солнца - 29,46 лет
  • Период обращения вокруг своей оси - 10 ч 14 мин
  • Диаметр — 50 000 км
  • Спутники - порядка 30 спутников. Большинство ледяные.
  • Некоторые: Пандора, Прометей, Янус, Эпиметея, Диона, Елена, Мимас, Энцелау, Тефня, Рея, Титан, Янет, Феба.

Физические условия

Атмосфера содержит водород, гелий, метан, аммиак. Получает от Солнца в 92 раза меньше тепла, чем Земля, 45% этой энергии отражает. Выделяет тепла в 2 раза больше, чем получает. У Сатурна имеются кольца. Кольца разделены на сотни отдельных колечек. Открыты X. Гюйгенсом. Кольца не сплошные. Имеют метеоритную структуру, т. е. состоят из твердых частиц различных размеров. Магнитное поле сравнимо с земным.

Уран

  • Расстояние от Солнца - 2869 * 10 6 км
  • Средняя плотность - 1300 кг/м 3
  • Масса - 14,5 массы Земли
  • Период обращения вокруг Солнца - 84,01 года
  • Период обращения вокруг собственной оси -16 ч 48 мин
  • Экваториальный диаметр - 52 300 км
  • Спутники - 15 спутников. Некоторые из них: Оберон (самый далекий и второй по величине), Миранда, Корделия (самый близкий к планете), Ариэль, Умбриэль, Титания
  • 5 спутников движутся в направлении вращения планеты вблизи плоскости ее экватора по почти круговым орбитам, 10 обращаются вокруг Урана внутри орбиты Миранды

Физические условия

Состав атмосферы: водород, гелий, метан. Температура атмосферы -150°С по радиоизлучению. В атмосфере обнаружены метановые облака. Недра планеты горячие. Ось вращения наклонена под углом 98°. Обнаружено 10 темных колец, отделенных промежутками. Магнитное поле в 1,2 раза слабее земного н простирается на 18 радиусов. Имеется радиационный пояс.

Нептун

  • Расстояние от Солнца - 4496 * 10 6 км
  • Средняя плотность - 1600 кг/м 3
  • Масса - 17,3 массы Земли
  • Период обращения вокруг Солнца - 164,8 лет
  • Спутники - 2 спутника: Тритон, Нереида

Физические условия

Атмосфера протяженная и состоит из водорода (50%), гелия (15%), метана (20%), аммиака (5%). Температура атмосферы около -230°С по расчетам, а по радиоизлучению -170°С. Это свидетельствует о горячих недрах планеты. Открыл Нептун 23 сентября 1846 г. И. Г. Галлев из Берлинской обсерватории при помощи расчетов астронома Ж. Ж. Леверье.

Плутон

  • Расстояние от Солнца — 5900 * 10 6
  • Средняя плотность — 1000—1200 кг/м 3
  • Масса — 0,02 массы Земли
  • Период обращения вокруг Солнца - 248 лет
  • Диаметр — 3200 км
  • Период обращения вокруг своей оси - 6,4 суток
  • Спутники - 1 спутник - Харон, был открыт в 1978 г. Дж. У. Крнсти из Морской лаборатории в Вашингтоне.

Физические условия

Не обнаружено видимых признаков атмосферы. Над поверхностью планеты максимальная температура -212°С, а минимальная -273°С. Поверхность Плутона предположительно покрыта слоем метанового льда, также возможен водный лед. Ускорение свободного падения на поверхности составляет 0,49 м/с 2 . Скорость движения Плутона по орбите 16.8 км/ч.

Плутон был открыт в 1930 г. Клайдом Томбо и назван по имени древнегреческого бога подземного царства, поскольку скудно освещен Солнцем. Харон по представлению древних греков - перевозчик умерших в царство мертвых через реку Стикс.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло