Ферменты гормоны витамины различия. Вопросы для закрепления

Это зачетная работа! Очень много вопросов... Помогите, прошу! Сюда кинула только половину. Ответьте, пожалуйста! Прокариоты, в отличии от эукариот, имеют

Выберите один ответ: a. митохондрии и пластиды b. плазматическую мембрану c. ядерное вещество без оболочки d. множество крупных лизосом В поступлении и передвижении веществ в клетке участвуют Выберите один или несколько ответов: a. эндоплазматическая сеть b. рибосомы c. жидкая часть цитоплазмы d. плазматическая мембрана e. центриоли клеточного центра Рибосомы представляют собой Выберите один ответ: a. два мембранных цилиндра b. округлые мембранные тельца c. комплекс микротрубочек d. две немембранные субъединицы Растительная клетка в отличии от животной имеет Выберите один ответ: a. митохондрии b. пластиды c. плазматическую мембрану d. аппарат Гольджи Крупные молекулы биополимеров поступают в клетку через мембрану Выберите один ответ: a. путем пиноцитоза b. за счет осмоса c. путем фагоцитоза d. путем диффузии При нарушении третичной и четвертичной структуры молекул белка в клетке перестают функционировать Выберите один ответ: a. ферменты b. углеводы c. АТФ d. липиды Текст вопроса

В чем проявляется взаимосвязь пластического и энергетического обмена

Выберите один ответ: a. энергетический обмен поставляет кислород для пластического b. пластический обмен поставляет органические вещества для энергетического c. пластический обмен поставляет молекулы АТФ для энергетического d. пластический обмен поставляет минеральные вещества для энергетического

Сколько молекул АТФ запасается в процессе гликолиза?

Выберите один ответ: a. 38 b. 36 c. 4 d. 2

В реакциях темновой фазы фотосинтеза участвуют

Выберите один ответ: a. молекулярный кислород, хлорофилл и ДНК b. углекислый газ, АТФ и НАДФН2 c. вода, водород и тРНК d. оксид углерода, атомарный кислород и НАДФ+

Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах

Выберите один ответ: a. на образование органических веществ используется солнечная энергия b. на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ c. органические вещества образуются из неорганических d. образуются одни и те же продукты обмена

Информация о последовательности расположения аминокислот в молекуле белка переписывается в ядре с молекулы ДНК на молекулу

Выберите один ответ: a. рРНК b. иРНК c. АТФ d. тРНК Какая последовательность правильно отражает путь реализации генетической информации Выберите один ответ: a. признак --> белок --> иРНК --> ген --> ДНК b. ген --> ДНК --> признак --> белок c. ген --> иРНК --> белок --> признак d. иРНК --> ген --> белок --> признак

Всю совокупность химических реакций в клетке называют

Выберите один ответ: a. брожением b. метаболизмом c. хемосинтезом d. фотосинтезом

Биологический смысл гетеротрофного питания заключается в

Выберите один ответ: a. потреблении неорганических соединений b. синтезе АДФ и АТФ c. получении строительных материалов и энергии для клеток d. синтезе органических соединений из неорганических

Все живые организмы в процессе жизнедеятельности используют энергию, которая запасается в органических веществах, созданных из неорганических

Выберите один ответ: a. растениями b. животными c. грибами d. вирусами

В процессе пластического обмена

Выберите один ответ: a. более сложные углеводы синтезируются из менее сложных b. жиры превращаются в глицерин и жирные кислоты c. белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ d. происходит освобождение энергии и синтез АТФ

Принцип комплементарности лежит в основе взаимодействия

Выберите один ответ: a. нуклеотидов и образования двуцепочечной молекулы ДНК b. аминокислот и образования первичной структуры белка c. глюкозы и образования молекулы полисахарида клетчатки d. глицерина и жирных кислот и образования молекулы жира

Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает реакции синтеза

Выберите один ответ: a. нуклеиновыми кислотами b. витаминами c. ферментами d. молекулами АТФ

Ферментативное расщепление глюкозы без участия кислорода - это

Выберите один ответ: a. пластический обмен b. гликолиз c. подготовительный этап обмена d. биологическое окисление

Расщепление липидов до глицерина и жирных кислот происходит в

Выберите один ответ: a. кислородную стадию энергетического обмена b. процессе гликолиза c. ходе пластического обмена d. подготовительную стадию энергетического обмена

1. Каковы особенности строения и функций рибосом? Выберите 3 верных ответа:

а)состоят из двух субъединиц
б)ограничены от цитоплазмы мембраной
в)участвуют в синтезе белка
г)участвуют в реакциях окисления
д)состоят из молекул РНК и молекул белков
е)размещаются в аппарате Гольджи.

2. Какие слова пропущены в тексте? На место цифр вставить слова.
Внутренняя полужидкая среда клетки - это (1). Внутренняя зона этой среды пронизана (2) в виде многочисленных мелких каналов, полостей, окруженных мембранами. В растительных клетках, в отличие от животных клеток, расположены (3). Маленькие округлые тельца, отвечающие за внутриклеточные пищеварение, называются (4). Они содержат (5), расщепляющие органические вещества.
а)ферменты;
б)гормоны;
в)цитоплазма;
г)лизосомы;
д)эндоплазматическая сеть;
е)клеточный сок;
ж)пластиды;
з)аппарат Гольджи.

1.При половом размножении растений образуются

1) споры 2) семена 3) цисты 4) почки
2.Организм, гомологичные хромосомы которого содержат гены тёмного и светлого цвета волос, является
1) гомозиготным
2) гетерозиготным
3) гаплоидным
4) полиплоидным

3.К железам внутренней секреции относят
1) слюнные железы и железы желудка
2) гипофиз и щитовидную железу
3) потовые железы и железы кишечника
4) слёзные железы и печень
4.Какое из нижеприведённых значений кровяного давления у человека можно считать признаком гипертонии?
1) 170/100 мм рт. ст.
2) 120/70 мм рт. ст.
3) 110/60 мм рт. ст.
4) 90/50 мм рт. ст.
5.Примером географического видообразования может служить формирование видов
1) вьюрков, обитающих на Галапагосских островах
2) синиц, питающихся разными кормами на общей территории
3) воробьев, обитающих в разных районах города
4) окуней, обитающих на разной глубине водоёма

6.Естественный отбор, в отличие от искусственного,
1) проводится человеком исходя из своих потребностей
2) ведёт к созданию новых сортов
3) происходит на протяжении миллионов лет
4) ведёт к созданию новых пород
7.Появление тёмноокрашенных бабочек в популяции светлоокрашенных особей берёзовой пяденицы в результате наследственной изменчивости называют
1) индустриальным меланизмом
2) подражательным сходством
3) мимикрией
4) предупредительной окраской

Пример идиоадаптации - это
1) возникновение полового процесса у растений
2) образование плодов у покрытосеменных растений
3) появление пятипалых конечностей у позвоночных
4) формирование разнообразной формы тела у рыб
9.Какое приспособление способствует охлаждению растений при повышении температуры воздуха?
1) уменьшение скорости обмена веществ
2) увеличение интенсивности фотосинтеза
3) усиление испарения воды
4) уменьшение интенсивности дыхания
10.Грибы в экосистеме леса относят к редуцентам, так как они
1) потребляют готовые органические вещества
2) синтезируют органические вещества из минеральных
3) разлагают органические вещества до минеральных
4) осуществляют круговорот веществ
11.Одним из положений учения В.И. Вернадского о биосфере служит следующее утверждение:
1) живым организмам присущи рост и развитие
2) все живые организмы образуют виды
3) живые организмы связаны со средой обитания
4) живое вещество - совокупность живых организмов на Земле
12.В молекуле ДНК количество нуклеотидов с гуанином составляет 15% от общего числа. Доля нуклеотидов с тимином в этой молекуле составит
1) 15% 2) 35% 3) 45% 4) 85%
13.Обеспечение организма человека молекулами АТФ происходит в процессе
1) кислородного этапа энергетического обмена
2) подготовительного этапа энергетического обмена
3) синтеза иРНК на ДНК
4) синтеза белков на иРНК

В процессе эмбрионального развития позвоночного животного первичная полость у зародыша образуется
1) при формировании тканей
2) в начале дробления
3) на стадии нейрулы
4) на стадии бластулы
15.У жены с большими глазами и прямым носом и мужа с маленькими глазами и римским носом родились дети, некоторые из которых имели маленькие глаза и прямой нос. Определите генотипы родителей, если большие глаза (А) и римский нос (В) - доминантные признаки.
1) ?ААВЬх^ааВВ
2) ?Aabbx^aaBb
3) ?Aabbx^aaBB
4) ?AaBbx^aaBb
16.Повышение продуктивности плесневых грибов, вырабатывающих антибиотики, достигается путём
1) полиплоидизации
2) внутривидовой гибридизации
3) массового отбора
4) искусственного мутагенеза
17.Чем покрытосеменные растения отличаются от голосеменных?
1) семена расположены внутри плода
2) оплодотворение происходит в семязачатках
3) семена образуются в результате оплодотворения
4) зародыш будущего растения находится внутри семени
18.В печени избыток глюкозы преобразуется в
1) гликоген 2) ферменты 3) адреналин 4) гормоны
19.Железы внутренней секреции выделяют гормоны в
1) лимфу 2) полости тела 3) кровь 4) клетки органов

Б. Возникновение класса Насекомые, сопровождавшееся повышением
общего уровня их организации, - пример ароморфоза.
1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

Доминированием называется… А) совместное наследование признаков; Б) зависимость проявления признака от пола; В) наличие

у гибридов признака одного из родителей;

Г) степень выраженности признака.

Аллельными называются…

А) гены, локализованные в одной хромосоме;

Б) гены, локализованные в разных хромосомах;

В) гены, локализованные в одних и тех же локусах гомологичных хромосом;

Г) гены, локализованные в разных локусах гомологичных хромосом.

Аллель – это…

А) место гена в хромосоме;

Б) число генов в хромосоме;

В) форма существования гена;

Г) одна из хромосом гомологичной пары.

Какое количество аллелей одного гена в норме содержится в соматической клетке?

А) 1; Б) 2; В) 4; Г) 12.

Гомозиготной называется особь, …

А) имеющая две одинаковых аллели одного гена;

Б) имеющая две разные аллели одного гена;

В) имеющая большое количество аллелей одного гена;

Г) любая особь.

Аа х Аа является гетерозиготной?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной по рецессивному признаку?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Какая часть гибридов от скрещивания Аа х Аа является гомозиготной по доминантному признаку?

А) ½; Б) 1/3; В) ¼; Г) ¾.

Каким будет расщепление по генотипу гибридов от скрещивания двух гетерозиготных растений? Каким будет расщепление по генотипу гибридов от скрещивания двух гомозиготных растений?

А) 1:1; Б) 1:2:1; В) 1:3; Г) нет расщепления.

Ген, отвечающий за свертываемость крови, и ген, отвечающий за наличие веснушек. Являются ли эти гены аллельными?

А) да; Б) нет.

Сколько типов гамет образует гомозиготная особь?

А) 1; Б) 2; В) 3; Г) 4.

Сколько типов гамет образует гетерозиготная особь?

А) 1; Б) 2; В) 3; Г) 4.

Какое количество аллелей одного гена в норме содержится в гамете человека?

А) 1; Б) 2; В) 3; Г) 6.

Каким будет расщепление по фенотипу гибридов от скрещивания двух гетерозиготных растений?

А) 1:1; Б) 1:2:1; В) 1:3; Г) нет расщепления.

22. Аллелизм – это:

А) явление парности генов

Б) явление расщепления признаков у гибридов

В) преобладание у гибридов признака одного из родителей

23. Рецессивным называется признак…

А) любой признак организма

Б) признак, проявляющийся у гетерозиготных особей

В) признак, не проявляющийся у гетерозиготных особей

Г) признак, которым одна особь отличается от другой

24. Каким будет расщепление по фенотипу гибридов от скрещивания двух гомозиготных особей?

А) 1:1; Б) 1:2:1; В) 1:3; Г) расщепления нет

25. Какая часть гибридов от скрещивания

аа х аа является гетерозиготной?

А) 0 %; Б) 25 %; В) 5 %; Г) 100 %.

Сегодня мы поговорим об особых биохимических соединениях, без которых невозможно существование нашего организма.

Гормоны.

Гормоны - это специальные химические посредники, регулирующие работу организма. Они выделяются железами внутренней секреции и перемещаются по кровотоку, стимулируя определенные клетки.

Сам термин «гормон» происходит от греческого слова «возбуждать» .

Это название точно отражает функции гормонов как катализаторов для химических процессов на клеточном уровне.

Как открыли гормоны?

Первым открытым гормоном был секретин - вещество, которое производится в тонком кишечнике, когда его достигает пища из желудка.

Секретин нашли английские физиологи Уильям Бэйлисс и Эрнест Старлинг в 1905 году. Они же выяснили, что секретин способен через кровь «путешествовать» по всему организму и достигать поджелудочной железы, стимулируя ее работу.

А в 1920 году канадцы Фредерик Бантинг и Чарльз Бест выделили из поджелудочной железы животных один из самых известных гормонов - инсулин.

Где производятся гормоны?

Основная часть гормонов производится в железах внутренней секреции: щитовидной и паращитовидных железах, гипофизе, надпочечничках, поджелудочной железе, яичниках у женщин и яичках у мужчин.

Есть также производящие гормоны клетки в почках, печени, желудочно-кишечном тракте, плаценте, тимусе в районе шеи и шишковидной железе в мозге.

Что делают гормоны?

Гормоны вызывают изменения в функциях различных органов в соответствии с требованиями организма.

Так, они поддерживают стабильность организма, обеспечивают его ответы на внешние и внутренние раздражители, а также контролируют развитие и рост тканей и репродуктивные функции.

Центр управления для общей координации производства гормонов находится в гипоталамусе, который примыкает к гипофизу у основания мозга.

Гипофиз и гипоталамус - главные регуляторы эндокринной системы.

Гормоны щитовидной железы определяют скорость протекания химических процессов в теле.

Гормоны надпочечников подготавливают организм к стрессу - состоянию «борьбы или бегства».

Половые гормоны - эстроген и тестостерон - регулируют репродуктивные функции.

Как работают гормоны?

Гормоны выделяются эндокринными железами и свободно циркулируют в крови, ожидая, когда их определят так называемые клетки-мишени.

У каждой такой клетки есть рецептор, который активируется только определенным типом гормонов, как замок - ключом. После получения такого «ключа» в клетке запускается определенный процесс: например, активация генов или производство энергии.

Какие гормоны бывают?

Гормонов бывают двух типов: стероиды и пептиды.

Стероиды производятся надпочечниками и половыми железами из холестерина. Типичный гормон надпочечников - гормон стресса кортизол, который активизирует все системы организма в ответ на потенциальную угрозу.

Другие стероиды определяют физическое развитие организма от половой зрелости до старости, а также циклы размножения.

Пептидные гормоны регулируют в основном обмен веществ. Они состоят из длинных цепочек аминокислот и для их секреции организму нужно поступление белка.

Типичный пример пептидных гормонов - гормон роста, который помогает организму сжигать жир и наращивать мышечную массу.

Другой пептидный гормон - инсулин - запускает процесс преобразования сахара в энергию.

Что такое эндокринная система?

Система желез внутренней секреции работает вместе с нервной системой, образуя нейроэндокринную систему.

Это означает, что химические сообщения могут быть переданы в соответствующие части организма либо с помощью нервных импульсов, либо через кровоток при помощи гормонов, либо обоими способами сразу.

На действие гормонов организм реагирует медленнее, чем на сигналы нервных клеток, но их воздействие продолжается более длительное время.

Самое важное

Гомоны - это своеобразные «ключи», которые запускают определенные процессы в «клетках-замках». Эти вещества производятся в железах внутренней секреции и регулируют практически все процессы в организме - от сжигания жира до размножения.

http://www.takzdorovo.ru/

Ферменты.

Название фермент произошло от латинского слова "fermentum" -закваска. Синонимом этого слова является энзим от греческого слова "еп zyme" - в дрожжах. Характерно, что оба корня связаны с дрожжевым брожением, которое невозможно без участия биологических субстанций, которые играют ключевую роль в бродильных процессах, представляющих собой химические реакции, связанные с перевариванием и расщеплением сахаров.

Первым термин "фермент" предложил голландский естествоиспытатель Ван-Гельмонт, обозначивший им неизвестный агент, способствующий спиртовому брожению. Луи Пастер, наблюдая процессы брожения, считал, что ферменты являются компонентами живых клеток. В 1871 году немецкий химик Бюхнер подтвердил возможность работы ферментов вне живых клеток, а другой немецкий ученый Кюне в 1878 году предложил обозначать внеклеточные ферменты термином "энзим".

В 1920-х годах XX века после подтверждения белковой природы ферментов были получены их кристаллические формы: уреаза (1926) - фермент, расщепляющий мочевину, и фермент желудка пепсин (1930).

По своей природе ферменты являются биологическими катализаторами (ускорителями) химических (биохимических) реакций, которые протекают не только в живых системах - внутри клеток. Часть ферментов находится на поверхности плазматической мембраны клетки, другие ферменты могут секретироваться за пределы клетки или попадают туда при гибели и разрушении клеток.

Химические реакции могут протекать и без участия ферментов, но часто для этого требуются определенные условия: высокая температура или давление, присутствие в среде некоторых металлов, например, железа, цинка, меди, платины, которые также могут выступать в качестве катализаторов -ускорителей химических реакций. Скорость химических реакций без участия катализаторов ничтожно мала.

Ферменты не только снимают большинство этих ограничений, но и существенно увеличивают скорость химических реакций. Другое важное свойство ферментов заключается в том, что они упорядочивают и регулируют течение биохимических реакций в живой клетке или за ее пределами - в кровеносной системе и тканях организма. Последнее становится возможным благодаря тому, что на ферменты можно оказывать влияние (активно или пассивно), регулируя их работу.

В живой природе известно более 4 ООО различного рода ферментов, которые можно разделить на 6 основных групп. Подавляющее большинство ферментов (более 90%) являются гидролазами (разрушителями различных молекул), раскалывающими их пополам или отщепляющими от них мелкие фрагменты. Но есть ферменты, которые восстанавливают разрушенное или собирают разные молекулы или атомы вместе. Эти ферменты называются синтетазы.

Другие ферменты могут перемещать (транспортировать) фрагменты от одних молекул к другим. Их называют трансферазы.

Окислительно-восстановительные реакции в клетке поддерживают ферменты-оксиредуктазы.

Изомеразы способны изменить пространственную конфигурацию или геометрию молекул, а лиазы способны формировать в молекуле двойную связь.

Многие ферменты могут работать в обоих направлениях, в зависимости от обстоятельств, расщепляя биомолекулу на фрагменты или вновь соединяя вместе продукты распада.

Например, известный фермент алкогольдегидрогеназа обладает способностью не только расщеплять этиловый спирт на ацетальдегид и воду, но и превращать ацетальдегид в этиловый спирт, инактивируя избыток ацетальдегида, который образуется в организме в результате других биохимических реакций и является крайне токсичным.

Все ферменты являются белками - линейными полимерами, собранными из аминокислот. В состав многих ферментов также могут входить простые или разветвленные цепочки различных моносахаров. Полимерная белковая или гликопротеиновая цепочка обычно закручена и образует сложную трехмерную конфигурацию, которая устойчива в небольшом диапазоне температур, при которых существуют живые клетки.

Все ферменты имеют разную длину полимерной цепочки, и, стало быть, разную молекулярную массу. Чем больше молекулярная масса фермента, тем продолжительнее и сложнее его биосинтез, тем больше вероятность в возникновении различного рода нарушений в его структуре при биосинтезе, тем меньшей устойчивостью он обладает в работе.

Среди кишечных ферментов, таких, как сахараза, малътаза, лактаза, щелочная фосфатаза, дипептидаза, самым крупным ферментом является лактаза, которая расщепляет молочный сахар - лактозу.

Этот фермент и страдает в первую очередь при различных воспалительных или деструктивных поражениях тонкой кишки, вызывая лактазную недостаточность, которая приводит к непереносимости молока.

Все биохимические реакции с участием ферментов происходят в водной среде, в которой, как в коконе, находится наш организм. Часть ферментов входит в состав плазматической мембраны клеток, другие находятся и работают внутри клеток, третьи секретируются клетками и выходят в межклеточное пространство органов и тканей, попадают в кровеносную и лимфатическую систему или в просвет желудка, тонкой и толстой кишки, работая за пределами клеток.

Для работы большинства ферментов необходимы так называемые кофакторы или коферменты, которые входят в состав активного центра фермента и обеспечивают его работу. К числу коферментов относятся почти все витамины, а также некоторые другие органические молекулы, например, известный "коэнзим Q10", который является важнейшим коферментом.

В состав активных центров ферментов могут входить некоторые микроэлементы (медь, железо, цинк, никель, селен, кобальт, марганец и др.). Важную роль в процессах биологического катализа играют металлы с переменной валентностью (медь, железо, хром и др.), которые обладают способностью быстро отдавать или забирать электрон. Поэтому, например, железо входит в состав важных окислительных ферментов - каталазы, пероксидазы, цитохромов.

Участие различных микроэлементов в качестве катализаторов химических реакций, строго специфично и основано на определенных и неповторимых химических свойствах каждого из них.

Например, цинк способен не только разрывать химические связи между атомами углерода и азота, но и соединить между собой эти атомы, благодаря чему из аминокислот образуются белковые молекулы. В то же время цинк способен соединять между собой атомы кислорода и азота, а также атомы серы.

Медь обладает способностью разрывать или образовывать связи между атомами углерода и серы.

Однако только кобальт способен разрушить и образовать химическую связь между атомами углерода.

Молибден в живой природе входит в состав азотфиксирующих ферментов и способен переводить в связанное состояние атмосферный азот, который является достаточно инертным веществом и в таком виде с большим трудом вступает в биохимические реакции. В организме человека молибден также участвует в окислении альдегидов.

Коферменты разрушаются при разрушении ферментов.

Поэтому для успешной работы ферментов необходимо постоянное и непрерывное поступление в организм витаминов и минералов в составе пищи.

Только в этом случае ферменты и ферментные системы организма будут работать нормально

Следует подчеркнуть, что ферменты - это продукты одноразового действия и работают они очень короткий промежуток времени - от нескольких минут до нескольких часов, иногда они могут сохранять активность в течение нескольких суток, после чего инактивируются или разрушаются и теряют свою активность. Поэтому в организме происходит непрерывное обновление и наработка новых порций ферментов. Поэтому работа ферментов зависит не только от них самих, но и от того, как быстро и в каком количестве они будут выработаны - то есть будет зависеть от состояния белоксинтезирующих систем клетки.

А, поскольку все ферменты являются белками, то для их биосинтеза требуется постоянный приток определенных аминокислот. Дефицит белка в питании и нехватка незаменимых аминокислот всегда будет отражаться на работе ферментов. Поэтому в составе нашего правильного питания, должно быть достаточное количество сбалансированного по аминокислотному составу белка.

В организме человека насчитывают около 3 ООО различных ферментов, структура которых закодирована в нашем геноме. Для того чтобы синтезировать какой-либо фермент необходимо считать информацию с генетической матрицы ДНК (этот процесс называется транскриптцией) и перенести эту информацию на информационную РНК. С ее помощью в клетке с участием особых субклеточных структур - рибосом может быть начат биосинтез белка-фермента. По окончанию биосинтеза фермента, как правило, образуется неактивный профермент, часто лишенный и кофермента. В процессе транспорта профермента в клетке, в состав клеточной мембраны или за пределы клетки происходит достройка (встраивание углеводной составляющей) и активация фермента. Только после этого получается активный фермент, который может начать работать.

Работа любого фермента складывается из простой последовательности операций. Она начинается со связывания фермента с веществом, которое он должен преобразовать. Это вещество называется субстратом. Все ферменты высокоспецифичны по отношению к субстратам. Некоторые из ферментов катализируют превращение единственного субстрата.

Например, лактаза может расщеплять только один молочный сахар (лактозу), но не способна расщеплять сахарозу или мальтозу.

Другие ферменты как, например, папаин обладают более широкой субстратной специфичность и могут расщеплять разные связи в молекулах разных белков.

Когда субстрат связывается с активным центром фермента, происходит его химическое преобразование, в результате которого образуется продукт реакции (или метаболит). В процессе работы фермента на него могут оказывать влияние активаторы или ингибиторы. Первые ускоряют его работу, а последние - тормозят.

Избыток продукта ферментативной реакции также может остановить работу фермента или повернуть его работу вспять. Фермент может закончить свое существование после того, как подвергнется атаке со стороны протеолитических ферментов, которые могут вызвать его инактивацию или полное разрушение (переваривание до аминокислот)

Основной функциональной характеристикой фермента является активность - скорость, с которой он работает, разрушая, трансформируя или синтезируя те или иные вещества. Активность ферментов зависит от очень многих внешних факторов: температуры, кислотности среды (рН), количества субстратов реакции или ее продуктов.

При понижении температуры и приближении ее к 0° С скорость химических реакций уменьшается и останавливается при замерзании воды.

При повышении температуры скорость химических реакций сначала увеличивается, но затем начинает уменьшаться, поскольку при высоких температурах (50-100° С) происходит денатурация (разрушение) белковых молекул фермента.

Все ферменты работают с разной скоростью. Например, фермент лизоцим осуществляет 30 операций в минуту, а мембранный фермент карбоангидраза - 36 миллионов операций в минуту!

Скорость работы фермента величина переменная. При изучении работы различных ферментов мы сталкиваемся с очень большим разбросом параметров, которые отражают очень разную скорость их работы (ферментативную активность). Причина различий в ферментативной активности заключается не только в том, что работает неодинаковое количество ферментов.

Активность фермента во многом зависит от его структуры. Часто небольшие изменения в составе аминокислот, которые, как правило, являются результатом генетических мутаций или вызваны сбоями при биосинтезе, могут существенным образом изменить свойства фермента или привести к полной потере активности. По этой и другим причинам у разных людей активность ферментов может существенным образом различаться. На активность ферментов влияют и регуляторные факторы, а также условия, в которых работает тот или иной фермент.

Мы знаем о мутациях в геноме человека. Эти мутации, число которых исключительно велико в геноме всех живых организмов, в том числе и у человека, приводят к изменению последовательности нуклеотидов в цепочкеДНК. В конечном итоге эти изменения лежат в основе различий в аминокислотной последовательности белковых макромолекул, что и отражается на свойствах ферментов.

Крайним вариантом негативных мутаций в геноме может быть очень низкая или полная потеря активности фермента, что может привести к летальным последствиям или тяжелым заболеваниям. В этом случае говорят об энзимо - или ферментопатии, которая, носит характер наследственного заболевания.

Но, как правило, подавляющее большинство мутаций вызывает те или иные изменения свойств ферментов, которые отражаются на его активности или регуляторных свойствах. Но есть случаи, когда активность ферментов может значительно возрастать, что также нельзя считать нормальным явлением.

Активностью любого фермента можно управлять, что и происходит в живых системах. Существует несколько ступеней управления ферментами.

Первая ступень управления работает на уровне генома, который выдает информацию, необходимую для биосинтеза ферментов, и регулирует выдачу этой информации.

Вторая ступень управления работает на уровне биосинтеза ферментов в клетке, регулируя выработку ферментов, перенос ферментов туда, где они будут работать, или, регулируя численность клеток, которые производят тот или иной фермент.

И, наконец, третья ступень управления работает на уровне регуляции активности ферментов в процессе его работы, ускоряя (активируя), замедляя (ингибируя) или разрушая (инактивируя) ферменты.

Но управлять ферментами можно и извне, например, с помощью правильного питания, регулируя поступление в организм: белка или необходимых для его биосинтеза аминокислот, витаминов-коферментов, микроэлементов, пищевых субстратов.

Или, напротив, тормозить работу ферментов с помощью пищевых ингибиторов ферментов. Можно также доставлять в организм, например, вместе с пищей готовые ферменты, которые будут работать в желудочно-кишечном тракте(ЖКТ) или во внутренней среде организма, как системные ферменты. Можно вводить в организм бактерии-сапрофиты (пробиотики), которые будут вырабатывать дополнительное количество необходимых ферментов, а можно вводить в организм пищевые вещества (пребиотики), которые являются источниками питания для кишечных микроорганизмов и будут увеличивать численность этих бактерий-симбионтов (полезных бактерий) и их ферментов.

http://on-line-wellness.com/

Нейромедиаторы.

Для передачи информации от нейрона к нейрону существуют особые биологически активные химические вещества -нейромедиаторы.

Нейромедиатор (или нейротрансмиттер) - своего рода «посредник» химического происхождения, который участвует в передаче, усилении и модуляции сигналов между нейронами и другими клетками (например, мышечной ткани) в организме. В большинстве случаев нейромедиатор высвобождается из терминальных ветвей аксонов после того, как потенциал действия достигает синапса. Затем нейромедиатор пересекает синаптическую щель и достигает рецептора других клеток или нейронов. А потом в процессе, который называется обратным захватом, он связывается с рецептором и поглощается нейроном.

Передача возбуждения в синапсе происходит при помощи нейромедиатора.

Нейромедиаторы играют важную роль в нашей повседневной жизни. Ученые пока не смогли узнать точное количество нейромедиаторов, но им удалось идентифицировать уже более 100 химических веществ. Воздействие болезни или, например, наркотиков на нейротрансмиттеры приводит к разного рода неблагоприятным последствиям для организма. Такие заболевания, как болезнь Альцгеймера и Паркинсона, обусловлены дефицитом некоторых нейротрансмиттеров.

Классификация нейромедиаторов

В зависимости от их функции нейромедиаторы можно разделить на два типа:

  • возбуждающие: этот тип нейромедиаторов оказывает возбуждающее воздействие на нейрон. Они увеличивают вероятность того, что нейрон будет генерировать потенциал действия. К основным возбуждающим нейротрансмиттерам причисляют адреналин и норадреналин.
  • ингибирующие: эти нейротрансмиттеры оказывают ингибирующее действие на нейрон; они уменьшают вероятность того, что будет выработан потенциал действия. Основными нейромедиаторами ингибирующего типа считаются серотонин и гамма-аминомасляная кислота (или ГАМК).

Некоторые нейротрансмиттеры, такие как ацетилхолин и дофамин, могут оказывать возбуждающий и подавляющий эффект в зависимости от типа рецепторов, которыми обладает постсинаптический нейрон.

Также любой из нейромедиаторов можно отнести к одному из шести типов:

1. Ацетилхолин

2. Аминокислоты: ГАМК, глицин, глутамат, аспартат.

3. Нейропептиды: окситоцин, эндорфины, вазопрессин и др.

4. Моноамины: адреналин, норадреналин, гистамин, дофамин и серотонина.

5. Пурины: аденозин, аденозинтрифосфат (АТФ).

6. Липиды и газы: оксид азота, каннабиноиды.

Выявляя нейромедиаторы

Выявить нейротрансмиттеры может быть довольно сложно. Хотя ученые и обнаружили, что нейромедиаторы содержатся в везикулах (мембранных пузырьках), на самом деле выяснить, что за химические вещества хранятся в этих пузырьках, не так-то просто. Поэтому нейробиологи сформулировали целый ряд характеристик, по которым можно определить, является ли вещество в везикуле нейромедиатором:

  • оно должно быть произведено внутри нейрона;
  • в нейроне должны присутствовать проферменты;
  • также в нём должно быть достаточное количество этого вещества для того, чтобы оказать воздействие на постсинаптический нейрон (тот, которому передаётся импульс);
  • это вещество должно быть выработано пресинаптическим нейроном, а постсинаптический должен обладать рецепторами, с которыми оно могло бы связаться;
  • должен существовать механизм обратного захвата или фермент, который прекращает действие вещества.

Организм человека – уникальный механизм, в котором каждую секунду происходит огромное количество разных химических процессов. Все процессы взаимосвязаны между собой и обеспечивают непрерывную нормальную работу человеческого организма. Обмен веществ, синтез, регенерация клеток, самовосстановление и множество других реакций осуществляются благодаря поступлению жизненно необходимых веществ – минералов, ферментов, фосфолипидов, витаминов, углеводов, нуклеиновым кислотам. Все вещества принимают участие в биохимических реакциях и нормализируют работу внутренних органов и систем.

Для ускорения химических реакций необходимы . Ферменты представляют собой белковые молекулы, которые ускоряют протекание всех химических реакций. Это катализаторы, которые способствуют перевариванию и распаду жиров, белков, сокращению мышц и проведению нервных импульсов. Также они принимают участие в обменных процессах и синтезе. Ферменты выполняют колоссальную роль для человеческого организма. Данные вещества выполняют функцию контроля во всех биохимических процессах. Без них совершенно невозможно существование любого живого организма.

Ферменты и гормоны

Вместе с ферментами в кровь поступают гормоны. Они также играют важную роль во всех процессах, которые происходят в человеческом организме. Основная роль гормонов – правильная настройка функционирования организма. Они необходимы для поддерживания гомеостаза и регулируют такие функции, как обмен веществ, рост, развитие, реакцию на изменение окружающей среды. Гормоны, как и ферменты, принимают участие в химических реакциях. Благодаря гормонам в организме происходит регулирование клеточной активности и укрепление костей.

Большинство действуют через ферментные системы, являясь при этом их активаторами. Они могут быть группами ферментов. Тесная функциональная связь между гормонами и ферментами проявляется практически во всех химических процессах. Несмотря на общность биологических регуляторов, есть отличительные черты данных веществ. Свою активность ферменты проявляют в клетках, где они синтезируются. Гормоны, в свою очередь, переносятся током крови к клеткам и тканям, которые ими стимулируются. Биохимическая функция гормонов значительно слабее, нежели функциональность ферментов. Но результат действия гормонов более заметен, нежели биоэффект ферментов.

Дефицит гормонов и ферментов в организме

Нехватка жизненно необходимых веществ сказываются негативно на работоспособности всего организма. При нехватке ферментов нарушаются обменные процессы в организме и все химические реакции. При недостаче гормонов также происходят значительные сбои в работе человеческого организма. В обоих случаях дефицит важных веществ провоцирует серьезные заболевания – сахарный диабет, грибковые болезни, болезни крови, аллергические заболевания, нарушения работы щитовидной железы и т.д.

Нехватка и может быть как врожденной, так и приобретенной. Врождённая форма передаётся внутриутробно по наследственности, заболеваниях матери, внутриутробных последствий (патологий, травм). Приобретенная форма может развиваться в любом возрасте. На нехватку жизненно необходимых веществ может повлиять различные заболевания, неправильное питание, вредные привычки.

Каждый человек, независимо от возраста должен следить за своим здоровье. Если не получается восполнить организм необходимыми вещества природным путем (употребляя продукты с их содержанием), на помощь придут . БАДы широко используются в медицинской практике. Это универсальные добавки к пище, которые применяют в лечебных и профилактических целях.

Витамины – сложные органические вещества, содержащиеся в продуктах питания в очень малых количествах. Они не служат источником энергии, но абсолютно необходимы для нормальной жизнедеятельности организма. Недостаточность того или иного витамина приводит к нарушению обмена веществ; данное состояние называется авитаминозом . Его можно прекратить, добавляя нужный витамин в рацион.

Наиболее важными для человека являются витамины A, B, C, D, K и другие.

Гормоны – биологически активные вещества, вырабатываемые эндокринными железами и выделяемые ими непосредственно в кровь. Гормоны влияют на жизнедеятельность органов, для которых они предназначены, изменяя биохимические реакции путем активации или торможения ферментативных процессов. Известно около 30 гормонов, производимых организмами человека и млекопитающих.

Ферменты – глобулярные белки, синтезируемые живыми клетками. В каждой клетке имеются сотни ферментов. Они помогают осуществлять биохимические реакции, действуя как катализаторы. Без них реакции в клетке протекали бы слишком медленно и не могли бы поддерживать жизнь. Ферменты делятся на анаболические (реакции синтеза) и катаболические (реакции распада). Нередко в процессе превращения одного вещества в другое участвуют несколько ферментов; такая последовательность реакций называется метаболический путь .

Основные свойства ферментов:

Увеличивают скорость реакции;

Не расходуются в реакции;

Их присутствие не влияет на свойства продуктов реакции;

Активность ферментов зависит от pH, температуры, давления и концентрации;

Ферменты изменяют энергию активации, при которой может произойти реакция;

Ферменты не изменяют сколько-нибудь значительно температуру, при которой происходит реакция.

Высокая специфичность фермента объясняется особой формой его молекулы, точно соответствующей молекуле субстрата (вещества, атакуемого ферментом). Эту гипотезу называют гипотезой «ключа и замка». В середине XX века исследования показали, что субстрат может вызывать изменения в структуре фермента; фермент изменяет свою форму, что даёт ему возможность наиболее эффективно выполнять свою функцию.

Многим ферментам для эффективной работы требуются небелковые компоненты, называемые кофакторами . Такими веществами могут быть неорганические ионы, заставляющие ферменты принять форму, способствующую ферментативной реакции, простетические группы (флавинадениндинуклеотид (ФАД), гем), занимающие такое положение, при котором они могут эффективно содействовать реакции, и коферменты (НАД, НАДФ, АТФ).

Некоторые вещества могут вызывать замедление ферментативных реакций, действуя как ингибиторы. При этом они соединяются с субстратом сами, занимая место фермента и сводя на нет ферментативный эффект ( конкурентное ингибирование ), или вызывают денатурацию ферментативного белка ( неконкурентное ингибирование ).

В организме каждую секунду протекают миллиарды химических реакций. Причем, чем температура выше, тем реакция идет быстрее. Но при температуре выше 40ºС белки начинают денатурировать. А ведь для биохимических реакций это низкие температуры. Поэтому необходимы белки, которые способны ускорять реакции. Они называются ферментами.

Ферменты – белки, которые ускоряют ход химических реакций в клетке.

Например, реакция, которую катализирует белок оротат-карбоксилаза, идет в 10 17 раз быстрее с ферментом, чем без него: 78 млн. лет без фермента, 18 тысячных долей секунды ‒ с его участием.

В организме человека имеются тысячи ферментов. Известны около 4 000 реакций, которые протекают в их присутствии.

Каждый фермент предназначен только для одной-единственной реакции. В молекуле фермента, свернутого в клубок, имеется отверстие, которое по форме и размерам в точности соответствует молекулам тех веществ, которые фермент должен соединить. Эти молекулы подходят к ферменту, как ключ к замку. Но и сам «замок» способен подстраиваться под «ключ. Аналогично, одежда соответствует телу человека, но когда он одевается, ее форма может изменяться.

Скорость работы ферментов поразительна. За одну минуту фермент способен катализировать от нескольких сотен до нескольких миллионов взаимодействующих молекул.

Без ферментов жизнь невозможна. Когда организм перегревается, первыми из белков разрушаются именно ферменты. Они денатурируют, и организм умирает.

3. Витамины и гормоны Витамины

В 1881 году русский ученый Николай Иванович Лунин (1854 ‒ 1937) произвел опыт. Он приготовил смесь всех белков, жиров, углеводов и солей, которые содержатся в молоке, и стал ею кормить мышей. Через некоторое время эти мыши погибли. Стало понятно, что в природной пище содержатся определенные вещества, необходимые организму, которые он создать не в состоянии. Через тридцать лет их стали называть «витаминами». Их известно несколько десятков. В организме витамины выполняют важнейшую функцию – регулируют обмен веществ.

У каждого живого существа своя совокупность витаминов.

Гормоны

Все гормоны являются белками. Они играют важнейшую роль в организме ‒ передают сигналы между клетками, тканями и органами. Гормоны переносятся кровью. Организм вырабатывает гормоны в ничтожном количестве. Некоторые гормоны все человечество ежедневно вырабатывает в количестве всего лишь нескольких граммов. Но трудно назвать такой процесс в организме, в котором бы гормоны не участвовали. У животных и человека их вырабатывают железы внутренней секреции, или эндокринные железы.

4. Молекула днк Роль молекулы днк в организме

Вообразим ситуацию. Нам надо напечатать книгу с некоторой матрицы. Но есть проблема. Матрица находится в одной комнате, а печатный станок – в другой. Причем, матрица такая большая, что в дверь не проходит. Как быть? Из этой ситуации есть выход. Мы можем с большой матрицы скопировать маленькую, которая свободно пройдет в дверь. Потом эту копию отнести в комнату, где находится печатный станок, и там напечатать страницы книги.

Нечто подобное происходит и в процессе синтеза белка. Белки быстро изнашиваются, и поэтому их необходимо постоянно возобновлять. Белки – очень сложные молекулы. Каждый белок представляет собой определенную последовательность аминокислот. Аминокислот ‒ двадцать, а вариантов их последовательного расположения практически бесконечное множество. И от этой последовательности зависит свойство белка. Любое нарушение в этой последовательности приведет к тому, что свойства белка изменяться настолько, что он будет бесполезным. Поэтому очень важно, чтобы белок собирался в правильной последовательности аминокислот. А для этого важно, чтобы информация о последовательности аминокислот в каждом белке организма где-то хранилась. Она хранится в ДНК, причем, в закодированном виде. Эти молекулы находятся в ядре клетки. Но они очень большие и через поры ядра пройти не могут. Однако в клетке существует еще один вид молекул, несущих наследственную информацию. Это РНК. Они замечательны тем, что, во-первых, способны копировать информацию с ДНК, и, во-вторых, могут свободно проходить через поры ядра и поэтому переносить информацию от ДНК в цитоплазму, в ту органеллу, где белок собирается из отдельных аминокислот.

Итак, чтобы понять, как происходит синтез, т.е. строительство всех белков организма, надо рассмотреть:

    как устроены молекулы ДНК и РНК, т.е. рассмотреть их структуру;

    как информация о структуре белка кодируется, иными словами, что такое генетический код;

    как закодированная информация о структуре белка переносится с ДНК на РНК, этот процесс называется транскрипцией;

    как строится белок, этот процесс называется трансляцией.

Ответив на эти вопросы, мы рассмотрим, как происходит синтез белков организма. Однако с молекулой ДНК связан еще один важнейший процесс: информацию о структуре каждого белка организма надо передать последующему поколению. Этот процесс называется репликацией.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло