Кто изобрёл электричество? Как получается электричество.

Содержание:

Совершенно невозможно представить жизнь современных людей без электричества. Однако так было далеко не всегда. Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Поэтому вопрос, когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны. Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих , которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой. Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление , и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

Этот термин в основном используется для описания электрической энергии, электрической силы и электричества самого по себе. Электрическая – это наиболее разносторонне применяемый тип энергий из всех используемых человечеством. Она используется для освещения, обогрева, охлаждения, передвижения, связи и других повседневных целей.

Электричество наиболее просто описать с помощью теории атомного строения материи. Согласно ей, наименьшей структурной единицей вещества является . В центре атома находится ядро, которое в свою очередь состоит из протонов и нейтронов. Протоны обладают энергией, которую принято называть положительной. Нейтрона не обладают зарядом и остаются нейтрально заряженными. Вокруг ядра вращаются , которые имеют отрицательный заряд. Количество электронов равно количеству протонов, поэтому атом в сумме имеет нейтральный заряд. Однако в некоторых ситуациях атом может получать дополнительные электроны или терять их. В этом случае он становится положительно или отрицательно заряженным и тогда он будет называться .

Электрический заряд (ион) помещенный рядом с одним или несколькими другими будет испытывать электрические силы. Один из основных законов электричества состоит в притяжении разно заряженных зарядов и отталкивании одноименно заряженных зарядов. Область пространства, в котором заряды взаимодействуют друг с другом называют . Обычно электрическое поле изображается в виде линий, которые носят название силовых . Эта линия показывает направление, по которому следовал бы положительный заряд к отрицательному.

Когда , которые образуют какой-либо материальный объект теряют свои электроны, объект становится отрицательно заряженным. В этом случае он будет отталкиваться от отрицательно заряженных объектов и притягиваться к положительно заряженным.
Существует термин «статическое электричество», которое возникает, когда объект имеет положительный или отрицательный заряд, но не втекают и не вытекают из него. Если такой объект прикоснется к другому объекту, который нейтрально заряжен, либо положительно заряжен, то он потеряет часть или весь свой заряд.
Электрический ток возникает, когда есть поток электрически заряженных . В качестве таких частиц чаще всего выступают электроны. Некоторые электрические токи состоят из отрицательных и положительных ионов. По всеобщему соглашению направлением электрического тока называется направление, противоположное движению электронов. обладает энергией, которая может быть преобразована в тепловую, световую или другой вид энергии.
Электрический ток в металлическом проводнике представляет собой движение от отрицательного полюса к положительному. В повседневно используемых электрических устройствах протекают миллиарды и миллиарды электронов каждую секунду. Однако отдельные электроны преодолевают расстояние со скоростью лишь около 14 см в час. Основная их сила в их числе!
Существую два основных вида тока: постоянный и переменный. Постоянный ток течет в одном постоянном направлении. Переменный ток течет попеременно в каждую сторону. В бытовой электрической сети течет переменный ток и направление его движения меняется 50 раз в секунду.
Переменный ток обладает рядом преимуществ: его параметры могут быть легко изменены, т.е. его легко трансформировать. Кроме того, устройства для переменного тока сделать и спроектировать гораздо проще, чем для постоянного. В тоже время постоянный проще хранить, поэтому те устройства которые питаются от батареек и аккумуляторов работают преимущественно на постоянном токе.
по некоторым материалам течет более легко, чем по другим. Другими словами разные материалы обладают разным электрическим сопротивлением. Материалы с небольшим сопротивлением называются проводниками. Практически все металлы являются проводниками, так как их легко теряют и принимают . , которые также обладают низким сопротивлением, называют электролитами.
Наряду с проводниками существуют диэлектрики, которые имеют высокое электрическое сопротивление. К ним относятся резина, бумага, древесина и мн. др. Несмотря на то что диэлектрики плохо проводят ток, они также широко используются в электрической технике. Например диэлектрики используются для изоляции проводов.
Материалы с сопротивлением между проводниками и диэлектриками называются полупроводниками. Они широко используются при построении электронных схем.

Электричество – это чрезвычайно полезная форма энергии. Оно легко превращается в другие формы, например в свет или тепло. Его можно без труда передавать по проводам. Слово «электричество» происходит от греческого слова «электрон» — «янтарь». При трении янтарь приобретает электрический заряд и начинает притягивать кусочки бумаги. Статическое электричество известно с древнейших времен, но лишь 200 лет назад люди научились создавать электрический ток. Электричество приносит нам тепло и свет, на нем работают разнообразные машины, в том числе ЭВМ и калькуляторы.

Что такое электричество

Электричество существует благодаря частицам, имеющим электрические заряды. Заряды есть во всяком веществе - ведь атомные ядра имеют положительный заряд, а вокруг них обращаются отрицательно заряженные электроны (см. статью « «). Обычно атом электрически нейтрален, но когда он отдает свои электроны другим атомам, он обретает положительный заряд, а атом, получивший дополнительные электроны, заряжен отрицательно. можно сообщить некоторым предметам электрический заряд, называемый статическим электричеством . Если потереть воздушный шар о шерстяной джемпер, часть электронов перейдет с джемпера на шар, и тот приобретет положительный заряд. Джемпер теперь заряжен положительно, и шарик прилипает к нему, так как противоположные заряды притягиваются друг к другу. Между заряженными телами действуют электрические силы, и тела с противоположными (положительными и отрицательными) зарядами притягивают друг друга. Предметы с одинаковыми зарядами, напротив, отталкиваются. В генераторе Ван-де-Граафа при трении резиновой ленты о валик возникает значительный статический заряд. Если человек дотронется до купола, его волосы встанут дыбом.

В некоторых веществах, например в , электроны могут свободно передвигаться. Когда что-то приводит их в движение, возникает поток электрических зарядов, называемый током . Проводники - это вещества, способные проводить, электрический ток. Если вещество не проводит ток, его называют изолятором . Дерево и пластмасса - изоляторы. В целях изоляции электрический выключатель помещают в пластмассовый корпус. Провода, как правило, делают из меди и покрывают пластиком для изоляции.

Впервые статическое электричество обнаружили древние греки более 2000 лет назад. Сейчас статическое электричество используется для получения фотокопий, факсов, распечаток на лазерных принтерах. Отраженный зеркалом лазерный луч создает на барабане лазерного принтера точечные статические заряды. Тонер притягивается к этим точкам и прижимается к бумаге.

Молния

Молнию вызывает статическое электричество, накапливающееся в грозовой туче в результате трения капелек воды и кристалликов льда, друг о друга. При трении друг о друга и о воздух капли и кристаллики льда приобретают заряд. Положительно заряженные капли собираются в верхней части тучи, а внизу накапливается отрицательный заряд. Большая искра, называемая лидером молнии, устремляется к земле, к точке, имеющей противоположный заряд. Перед возникновением лидера разность потенциалов в верхней и нижней областях тучи может составить до 100 млн. вольт. Лидер вызывает ответный разряд, устремляющийся тем же путем от к туче. внутри этого разряда в пять раз горячее поверхности Солнца - он нагревается до 33 000 °С. Разогретый разрядами молнии воздух быстро расширяется, создавая воздушную волну. Мы воспринимаем ее как гром.

Электрический ток

Электрический ток - это поток заряженных частиц, перемещающихся из области высокого электрического потенциала в область низкого потенциала. Частицы приводит в разность потенциалов, которая измеряется в вольтах . Для протекания тока между двумя точками необходима непрерывная «дорога» - цепь. Между двумя полюсами батарейки существует разность потенциалов. Если соединить их в цепь, возникнет ток. Сила тока зависит от разности потенциалов и сопротивления элементов цепи. Все вещества, даже проводники, оказывают току некоторое сопротивление и ослабляют его. Единица силы тока названа ампером (А) в честь французского ученого Андре-Мари Ампера (1775 - 1836).

Для разных устройств нужен ток разной . Электроприборы, например лампочки, превращают электрическую тока в другие формы энергии, в тепло и свет. Эти устройства могут быть включены в цепь двумя способами: последовательно и параллельно. В последовательной цепи ток проходит по всем компонентам по очереди. Если один из компонентов перегорает, цепь размыкается и ток пропадает. В параллельной цепи ток идет по нескольким путям. Если один компонент цепи выходит из строя, по другой ветви ток идет по-прежнему.

Батареи

Батарея - это хранилище химической энергии, которую можно превратить в электричество. Наиболее типичная батарея, используемая в обиходе, называется сухим элементом . В ней находится электролит (вещество, содержащее способные двигаться заряженные частицы). В результате противоположные заряды разделяются и двигаются к противоположным полюсам батарейки. Ученые обнаружили, что жидкость в теле мертвой лягушки действует как электролит и проводит электрический ток.

Алессандро Вольта (1745-1827) создал первую в мире батарею из стопки картонных дисков, пропитанных кислотой, и пропитанных кислотой, и проложенных между ними цинковых и медных дисков. В его честь единица напряжение названа вольтом . Батарейка в 1,5 В называется элементом. Большие батареи состоят из нескольких элементов. Батарея в 9 В содержит 6 элементов. Сухие называют первичными элементами . Когда компоненты электролита израсходуются, срок службы батарейки заканчивается. Вторичные элементы - это батареи, которые можно перезаряжать. Автомобильный аккумулятор - вторичный элемент. Он подзаряжается током, произведенным внутри машины. Солнечная батарея превращает энергию Солнца в электрическую. При освещении солнечным светом слоев кремния электроны в них начинают двигаться, создавая разность потенциалов между слоями.

Электричество у нас дома

Напряжение в электросети в одних странах составляет 240 В, в других 110 В. Это высокое напряжение, и удар током может быть смертельным. Параллельные цепи подводят электричество в различные части дома. Все электронные приборы снабжены предохранителями. Внутри них находятся очень тонкие проволочки, которые плавятся и разрывают цепь, если сила тока чересчур велика. Каждая параллельная цепь обычно имеет три провода: под напряжением и заземляющий. По первым двум идет ток, а заземляющий провод нужен для безопасности. Он отведет электрический ток в землю в случае пробоя изоляции. Когда вилку включают в розетку, разъёмы соединяются с проводом под напряжением и нейтральным проводом, замыкая цепь. В некоторых странах используют вилки с двумя разъёмами, без заземления (см. рис.).

Трудно найти человека, который не был бы знаком с электричеством. А вот найти того, кто знает историю его открытия, гораздо сложнее. Кто открыл электричество? Что представляет собой это явление?

Немного об электричестве

Понятие «электричество» обозначает форму движения материи, охватывает явление существования и взаимодействия заряженных частиц. Термин появился в 1600 году от слова «электрон», что с греческого переводится как «янтарь». Автор этого понятия - Уильям Гилберт - человек открывший электричество Европе.

Это понятие, прежде всего не искусственное изобретение, а явление, связанное со свойством некоторых тел. Поэтому на вопрос: "Кто открыл электричество?" - ответить не так легко. В природе оно проявляется в что обусловлено различными зарядами верхних и нижних слоев атмосферы планеты.

Оно является важной частью жизни человека и животных, ведь работа нервной системы осуществляется благодаря электрическим импульсам. Некоторые рыбы, например, скаты и угри, генерируют электричество для поражения добычи или врага. Многие растения, такие как венерина мухоловка, мимоза стыдливая, также способны вырабатывать электрические разряды.

Кто открыл электричество?

Существует предположение, что люди изучали электричество ещё в Древнем Китае и Индии. Однако подтверждения этому нет. Более достоверно считать, что открыл древнегреческий ученый Фалес.

Он был известным математиком и философом, проживал в городе Милет, примерно в VI-V веках до нашей эры. Считается, что Фалес обнаружил свойство янтаря притягивать мелкие предметы, например перо или волос, если натереть его шерстяной тканью. Никакого практического применения такому явлению не нашлось, и его оставили без внимания.

В англичанин Уильям Гилберт публикует труд о магнитных телах, где приводятся факты о родственной и электричества, а также приводятся доказательства, что наэлектризовываться, кроме янтаря, могут и другие минералы, например, опал, аметист, алмаз, сапфир. Тела, способные наэлектризовываться ученый окрестил электриками, а само свойство - электричеством. Именно он впервые предположил, что молния связана с электричеством.

Электрические опыты

После Гилберта исследованиями в этой области занялся немецкий бургомистр Отто фон Герике. Он, хоть и не был тем, кто первый открыл электричество, все же сумел повлиять на ход научной истории. Отто стал автором электростатической машины, которая выглядела как серный шар, вращающийся на металлическом стержне. Благодаря этому изобретению удалось узнать, что наэлектризованные тела могут не только притягиваться, но и отталкиваться. Исследования бургомистра легли в основу электростатики.

Далее последовала череда исследований, в том числе с использованием электростатической машины. Стивен Грей в 1729 году изменил устройство Герике, заменив серный шар стеклянным, и, продолжив опыты, открыл явление электропроводности. Чуть позже Шарль Дюфе обнаруживает наличие двух видов заряда - от стекла и от смол.

В 1745 году Питер ван Мушенбрук и Юрген фон Клейст, считая, что вода накапливает заряд, создают «лейденскую банку» - первый в мире конденсатор. Бенджамин Франклин утверждает, что накапливает заряд не вода, а стекло. Он также вводит термины «плюс» и «минус» для электрических зарядов, "конденсатор", "заряд" и "проводник".

Великие открытия

В конце XVIII века электричество становится серьезным объектом исследований. Теперь особое внимание уделяется изучению динамических процессов и взаимодействию частиц. На сцену выходит электрический ток.

В 1791 году Гальвани говорит о существовании физиологического электричества, которое присутствует в мышцах животных. Вслед за ним Алессандро Вольта изобретает гальванический элемент - вольтов столб. Это был первый источник постоянного тока. Таким образом, Вольта - ученый, открывший электричество заново, ведь его изобретение послужило началом для практического и многофункционального применения электричества.

В 1802 году происходит открытие Василием Петровым. Антуан Нолле создает электроскоп и исследует эффект электричества на живые организмы. А уже в 1809 году Физик Деларю изобретает лампу накаливания.

Далее изучается связь магнетизма и электричества. Над исследованиями работают Ом, Ленц, Гаусс, Ампер, Джоуль, Фарадей. Последний создает первый генератор энергии и электродвигатель, открывает закон электролиза и электромагнитную индукцию.

В XX веке исследованиями электричества занимается также электромагнитных явлений), Кюри (открыл пьезоэлектричество), Томсон (открыл электрон) и многие другие.

Заключение

Конечно, нельзя с уверенностью сказать, кто открыл электричество на самом деле. Явление это существует в природе, и вполне возможно, что открыли его ещё до Фалеса. Однако многие ученые, такие как Уильям Гилберт, Отто фон Герике, Вольта и Гальвани, Ом, Ампер, определенно внесли свой вклад в нашу сегодняшнюю жизнь.

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент - источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ - двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый - американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие - было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло