Кто открыл антибиотики. История открытия антибиотиков и их роль в современной фармакологии

До начала 20-го века лечение инфекций основывалось главным образом на фольклоре, стереотипах и суевериях. История открытия антибиотиков в этом плане очень любопытно. Смеси с антимикробными свойствами, которые использовались при лечении инфекций, были описаны более 2000 лет назад. Многие древние культуры, включая древних египтян и древних греков, использовали специально отобранные плесень, растительные материалы и экстракты для лечения инфекций.

Использование их в современной медицине началось с открытия синтетических антибиотиков, полученных из красителей. Обычно с упоминания этого факта и начинается любая история открытия антибиотиков.

Первые исследования

Синтетическая антибактериальная химиотерапия как наука и разработка антибактериальных препаратов началась в Германии с исследований, проведенных Полом Эрлихом в конце 1880-х годов. Эрлих отметил, что некоторые красители будут окрашивать человеческие, животные или бактериальные клетки, тогда как другие - нет. Затем он предложил идею создания химических веществ, которые будут действовать как селективный препарат, который будет связывать и убивать бактерии, не нанося вреда человеческому организму. После скрининга сотен красителей против различных организмов в 1907 году он обнаружил лекарственно полезное вещество, первый синтетический антибактериальный препарат, который теперь называется арсфенамином. Другую информацию об истории открытия антибиотиков вы получите далее в статье.

Союз немца и японца

Эпоха антибактериального лечения началась с открытия синтетических антибиотиков, полученных из мышьяка, Альфредом Бертхаймом и Эрлихом в 1907 году. Эрлих и Бертхайм экспериментировали с различными химическими веществами, полученными из красителей, для лечения трипаносомоза у мышей и инфекции спирохеты у кроликов. В то время как их ранние соединения были слишком токсичными, Эрлих и Сахачиро Хата, японский бактериолог, работающий с первым в поисках лекарства для лечения сифилиса, достигли успеха в своей 606-й попытке из целой серии сложных экспериментов.

Признание и коммерческий успех

В 1910 году Эрлих и Хата объявили о своем открытии, которое они назвали лекарством «606», на Конгрессе по внутренней медицине в Висбадене. Компания Hoechst начала продавать этот комплекс к концу 1910 года под названием салварсан. Этот препарат теперь известен как арсфенамин. Препарат использовался для лечения сифилиса в первой половине 20-го века. В 1908 году Эрлих получил Нобелевскую премию по физиологии и медицине за свой вклад в иммунологию. Хата был номинирован на Нобелевскую премию по химии в 1911 году и на Нобелевскую премию по физиологии и медицине в 1912 и 1913 годах.

Новая эпоха в истории медицины

Первый сульфонамид и первый системно активный антибактериальный препарат "пронтосил" был разработан исследовательской группой во главе с Герхардом Домагком в 1932 или 1933 году в лабораториях Bayer конгломерата IG Farben в Германии, за что Домагк получил Нобелевскую премию 1939 года по физиологии и медицине. Сульфаниламид (активный компонент "Пронтозила") не был патентоспособным, поскольку он уже использовался в красящей промышленности в течение нескольких лет. "Пронтозил" имел относительно широкий эффект против грамположительных кокков, но не против энтеробактерий. Его успех в лечении обычно был финансово стимулирован организмом человека и его иммунитетом. Открытие и развитие этого препарата сульфонамида ознаменовало эпоху антибактериальных препаратов.

Открытие антибиотика пенициллина

История пенициллина следует за рядом наблюдений и открытий очевидных доказательств антибиотической активности в плесени, предшествовавших синтезу химического пенициллина в 1928 году. В древних обществах есть примеры использования древесных форм плесени для лечения инфекций. Однако неизвестно, были ли эти формы плесени видами пенициллина. Шотландский врач Александр Флеминг был первым, кто предположил, что плесень Penicillium должна выделять антибактериальное вещество, которое он назвал пенициллином в 1928 году. Пенициллин был первым современным антибиотиком.

Дальнейшее изучение плесени

Но информация об истории открытия антибиотиков не ограничивается 20-ми годами прошлого века. В течение следующих двенадцати лет Флеминг выращивал, распределялся и изучал интересную плесень, которая была признана редким видом Penicillium notatum (теперь Penicillium chrysogenum). Многие более поздние ученые были вовлечены в стабилизацию и массовое производство пенициллина и в поисках более продуктивных штаммов Penicillium. Список этих ученых включает Эрнста Чейна, Говарда Флори, Нормана Хитли и Эдварда Абрахама. Вскоре после открытия пенициллина ученые обнаружили, что некоторые болезнетворные патогены проявляют антибиотическую резистентность к пенициллину. Исследования, направленные на развитие более эффективных штаммов и изучение причин и механизмов устойчивости к антибиотикам, продолжаются и сегодня.

Мудрость древних

Многие древние культуры, в том числе в Египте, Греции и Индии, самостоятельно обнаружили полезные свойства грибов и растений при лечении инфекции. Эти процедуры часто срабатывали, потому что многие организмы, включая многие виды плесени, естественно продуцируют антибиотические вещества. Однако древние знахари не могли точно идентифицировать или изолировать активные компоненты этих организмов. В Шри-Ланке во втором веке до н. э. солдаты в армии царя Дутугемуну (161-137 до н. э.) проверяли, чтобы на протяжении долгого времени в их очагах хранились масляные пирожные (традиционная ланкийская сладость), прежде чем приступать к военным кампаниям, чтобы приготовить прикорм из заплесневелых лепешек для лечения ран.

В Польше 17-го века влажный хлеб смешивали с паутиной (которая часто содержала споры грибов) для лечения ран. Техника была упомянута Генриком Сиенкевичем в его книге 1884 года «С огнем и мечом». В Англии в 1640 году идея использования плесени в качестве формы лечения была зафиксирована аптекарями, такими как Джон Паркинсон, герцог короля, который выступал за использование плесени в своей книге по фармакологии. Открытие антибиотиков, созданных на основе плесени, перевернет мир.

Новое время

Современная история исследований пенициллина начинается всерьез в 1870-х годах в Соединенном Королевстве. Сэр Джон Скотт Бурдон-Сандерсон, который отправился в больницу Св. Марии (1852-1858), а затем работал там в качестве лектора (1854-1862), заметил, что культуральная жидкость, покрытая плесенью, препятствует росту и размножению бактерий. Обнаружение Бурдона-Сандерсона побудило Джозефа Листера, английского хирурга и отца современной антисептики, обнаружить в 1871 году, что образцы мочи, зараженные плесенью, производят тот же эффект. Листер также описал антибактериальное действие на ткань человека вида плесени, который он назвал Penicillium glaucum. Строго говоря, 1871 год можно назвать датой открытия антибиотиков. Но только формально. Настоящие пригодные для постоянного использования и производства антибиотики будут произведены значительно позже.

В 1874 году валлийский врач Уильям Робертс, который позже придумал термин «фермент», заметил, что бактериальное загрязнение обычно отсутствует в лабораторных культурах Penicillium glaucum. Джон Тиндалл продолжил работу Бурдона-Сандерсона и продемонстрировал Королевскому обществу в 1875 году антибактериальное действие гриба Penicillium. К этому времени было показано, что Bacillus anthracis вызывает сибирскую язву, что было первой демонстрацией того, что конкретная бактерия вызвала специфическое заболевание. В 1877 году французские биологи Луис Пастер и Жюль Франсуа Жуберт отметили, что культуры бацилл сибирской язвы, когда они загрязнены плесенью, могут быть успешно уничтожены. Некоторые ссылки говорят о том, что Пастер идентифицировал штамм используемой им плесени как пенициллиум нотатум. Тем не менее книга «Охотники за микробами» 1926 года Пола де Крюифа описывает этот инцидент как загрязнение другими бактериями, а не плесенью. В 1887 году Гарре получил аналогичные результаты. В 1895 году Винченцо Тиберио, итальянский врач из Неаполитанского университета, опубликовал исследование о плесени в водохранилище в Арцано, которая проявляла антибактериальные свойства. Все это нужно знать, поскольку в любом учебнике фармакологии история открытия антибиотиков занимает особое место.

Два года спустя Эрнест Дюшенн в «Школе дю Сант Милитейер» в Лионе самостоятельно открыл целебные свойства плексигласовой плесени Penicillium, успешно вылечив зараженных морских свинок от брюшного тифа. Он опубликовал диссертацию в 1897 году, но она была проигнорирована Институтом Пастера. Дюшенн сам использовал открытие, сделанное ранее арабскими кочевниками, которые использовали споры плесени для лечения язв у лошадей. Дюшенн не утверждал, что плесень содержит какое-либо антибактериальное вещество, только то, что плесень каким-то образом защищает животных. Пенициллин, выделенный Флемингом, не излечивает брюшного тифа, и поэтому остается неизвестным, какое вещество может быть ответственным за излечение морских свинок Дюшенна.

Другие наблюдения за плесенью

История открытия антибиотиков этим не ограничивается. В Бельгии в 1920 году Андре Грация и Сара Дат наблюдали грибковое заражение в одной из своих культур Staphylococcus aureus, которая препятствовала росту бактерий. Они идентифицировали гриб как вид пенициллиума и представили свои наблюдения в виде лабораторного протокола, которому было уделено мало внимания. Костариканский ученый-исследователь Пикадо Твайт также отметил антибиотический эффект Penicillium в 1923 году. В истории фармакологии открытие антибиотиков сыграло огромную роль.

Великий прорыв

В 1928 году шотландский биолог Александр Флеминг заметил ореол ингибирования роста бактерий на культуре палочек Staphylococcus. Он пришел к выводу, что плесень выпускает вещество, которое ингибирует рост бактерий. Он выращивал чистую культуру плесени и впоследствии синтезировал то, что позже назвал «пенициллин». В течение следующих двенадцати лет Флеминг выращивал и селекционировал оригинальный штамм плесени, которая в конечном итоге была идентифицирована как пенициллийный нотаум (сегодня - как Penicillium chrysogenum). Ему не удалось создать стабильную форму для массового производства. Тем не менее открытие антибиотиков Флемингом положило начало новой эпохи в истории медицины.

Продолжение великого дела

Сесил Джордж Пейн, патологоанатом в Королевском лазарете в Шеффилде, попытался лечить сикоз (извержения в фолликуле) пенициллином, но его эксперимент не увенчался успехом, вероятно, потому, что препарат не проникал достаточно глубоко. Перейдя к лечению офтальмии новорожденных, гонококковой инфекции у младенцев, он добился первого удачного исцеления 25 ноября 1930 года. Он вылечил четырех пациентов (одного взрослого и трех младенцев) от глазных инфекций, хотя пятому пациенту не повезло.

В Оксфорде Говард Уолтер Флори организовал большую и очень опытную группу по биохимическим исследованиям, среди которых были Эрнст Борис Цейн и Норман Хитли, чтобы провести клинические испытания и произвести стабильный пенициллин в необходимом количестве. В 1940 году Цейн и Эдвард Абрахам сообщили о первом признаке устойчивости антибиотиков к пенициллину, штамму E.coli, который продуцировал фермент пенициллиназы, способный разрушать пенициллин и полностью отрицать его антибактериальное действие.

Промышленное производство

Между 1941 и 1943 годами Мойер, Когхилл и Рапер в Северной региональной исследовательской лаборатории Министерства сельского хозяйства США (ПМР) в Пеории, штат Иллинойс, США, разработали методы промышленного производства пенициллина и выделенных высокоурожайных штаммов В декабре 1942 года жертвы пожара в Кокоанутовой роще в Бостоне стали первыми пациентами с ожогами, которые успешно лечились пенициллином. Одновременное исследование Яспера Х. Кейна и других ученых Pfizer в Бруклине разработало практический метод глубокой ферментации для производства больших количеств пенициллина фармацевтического класса.

Открытие антибиотиков в России произошло как раз после завоза пенициллина в СССР в конце 1930-х годов, когда их исследованием занималась Ермольева. Роль России в этой истории хоть и несколько вторична, но также важна. Не зря ведь, когда говорят про открытие антибиотиков, Флеминг, Чейн, Флори, Ермольева - главные фамилии, упоминаемые историками медицины.

В дело включились химики

Дороти Ходжкин определила правильную химическую структуру пенициллина с использованием рентгеновской кристаллографии в Оксфорде в 1945 году. В 1952 году в Кундле, Тироль, Австрия, Ханс Маргрейтер и Эрнст Брандл из Университета Биохимии (теперь Сандоз) разработали первый кислотостойкий пенициллин для перорального введения, пенициллин В. Американский химик Джон С. Шихан из Массачусетского технологического института (Массачусетский технологический институт) впоследствии завершил первый химический синтез пенициллина в 1957 году. Читатель, должно быть, уже понял, что период открытия антибиотиков в микробиологии длился едва ли не половину прошлого века. В 1959 году в Соединенном Королевстве был введен полусинтетический β-лактамный метициллин второго поколения, предназначенный для борьбы с резистентными к первому поколению пенициллиназами, в 1959 году. Вероятно, в настоящее время существуют устойчивые к метициллину формы стафилококов. Стоит отметить, что среди открытий 20 века антибиотики занимают очень почетное место.

Бактерии-антибиотики

Наблюдения за ростом некоторых микроорганизмов, ингибирующих рост других бактерий, отмечались с конца 19 века. Эти наблюдения за синтезом антибиотиков между микроорганизмами привели к открытию природных антибактериальных средств. Луи Пастер заметил: «Если бы мы могли вмешаться в антагонизм, наблюдаемый между некоторыми бактериями, это принесло бы, возможно, самые большие надежды на терапию». Это был своего рода поворотный момент в истории открытия антибиотиков.

Еще немного о 19 веке

В 1874 году врач сэр Уильям Робертс отметил, что культуры плесени Penicillium glaucum, которые используются при изготовлении некоторых видов голубого сыра, не проявляют бактериального загрязнения. В 1876 году физик Джон Тиндаль также внес свой вклад в эту область. Пастер провел исследование, в котором показано, что Bacillus anthracis не будет расти в присутствии связанной плесени Penicillium notatum.

В 1895 году итальянский врач Винченцо Тиберио опубликовал статью о антибактериальной силе некоторых экстрактов плесени.

В 1897 году докторант Эрнест Дюшен написал работу «Вклад в выведение микроорганизмов: антагонизм, антагонистическое мышление и патогены». Это была первая известная научная работа по рассмотрению терапевтических возможностей плесени в результате их антимикробной активности. В своем труде Дюшен предложил, чтобы бактерии и плесени участвовали в вечной битве за выживание. Дюшесен заметил, что E. coli была удалена с помощью Penicillium glaucum, когда они оба выросли в одной и той же культуре. Он также заметил, что, когда он инокулировал лабораторных животных смертельными дозами тифозных бацилл вместе с Penicillium glaucum, животные не умерли от брюшного тифа. К сожалению, военная служба Дюшенна после получения степени не позволила ему провести дальнейшие исследования. Дюшен умер от туберкулеза - болезни, которую теперь лечат антибиотиками.

И только Флеминг спустя более чем 30 лет предположил, что плесень должна выделять антибактериальное вещество, которое он назвал пенициллином в 1928 году. Дуэт, определивший историю открытия антибиотиков - Флеминг/Ваксман. Флеминг считал, что его антибактериальные свойства можно использовать для химиотерапии. Первоначально он характеризовал некоторые из его биологических свойств и пытался использовать сырой препарат для лечения некоторых инфекций, но не смог продолжить свое развитие без помощи подготовленных химиков. Никто не играл во всей этой эпопее такой решающей роли, как научный дуэт Флеминг/Ваксман, история открытия антибиотиков их не забудет.

Но в этой эпопее были и другие важные имена. Как уже упоминалось ранее, химикам удалось очистить пенициллин только в 1942 году, но до 1945 года он не стал широко доступным за пределами союзных военных. Позже Норман Хитли разработал технику обратной экстракции для эффективной очистки пенициллина навалом. Химическая структура пенициллина была впервые предложена Абрахамом в 1942 году, а затем позже подтверждена Дороти Кроуфут Ходжкин в 1945. Очищенный пенициллин проявлял сильную антибактериальную активность против широкого спектра бактерий и имел низкую токсичность у людей. Кроме того, его активность не ингибировалась биологическими компонентами, такими как гной, в отличие от синтетических сульфонамидов. Развитие потенциала пенициллина привело к возобновлению интереса к поиску антибиотических соединений с аналогичной эффективностью и безопасностью. Цейн и Флори разделили Нобелевскую премию 1945 года в области медицины с Флемингом, открывшим эту чудо-плесень. Открытие антибиотиков Ермольевой было ожидаемо проигнорировано западным научным сообществом.

Другие антибиотики на основе плесени

Флори приписывал Рене Дюбо новаторский подход к преднамеренному и систематическому поиску антибактериальных соединений, что привело к открытию грамицидина и возродило исследования Флори в области свойств пенициллина. В 1939 году, с началом Второй мировой войны, Дюбо сообщил об открытии первого естественно полученного антибиотика, тиротрицина. Это был один из первых коммерческих антибиотиков, который был очень эффективным при лечении ран и язв во время Второй мировой войны. Однако грамицидин не мог использоваться системно из-за токсичности. Тироцидин также оказался слишком токсичным для системного использования. Результаты исследований, полученные в этот период, не были разделены между осью и союзными державами во время Второй мировой войны и пользовались ограниченным спросом в мире во время «холодной войны». Презентация открытия антибиотиков происходила в основном в развитых странах Запада.

История названия

Термин «антибиотик», означающий «против жизни», был введен французским бактериологом Жаном Полем Вилькемином как описательное название свойства, проявляемого этими ранними антибактериальными препаратами. Антибиотик был впервые описан в 1877 году, когда Луи Пастер и Роберт Кох наблюдали, как бактерия-палочка умирает под действием Bacillus anthracis. Эти препараты позднее были переименованы в антибиотики Сельманом Ваксманом, американским микробиологом, в 1942 году. Эту дату стоит включить в список годов открытия антибиотиков.

Термин «антибиотик» впервые был использован в 1942 году Сельманом Ваксманом и его сотрудниками в журнальных статьях для описания любого вещества, продуцируемого микроорганизмом, который является антагонистическим для роста других микроорганизмов. Это определение исключало вещества, которые убивают бактерии, но которые не продуцируются микроорганизмами (такие как желудочные соки и перекись водорода). Он также исключил синтетические антибактериальные соединения, такие как сульфонамиды. При использовании в настоящее время термин «антибиотик» применяется к любому лекарству, которое убивает бактерии или ингибирует их рост, независимо от того, производится ли этот препарат микроорганизмом или нет.

Этимология

Термин «антибиотик» происходит от приставки «анти» и греческого слова βιωτικός (biōtikos), «пригодный для жизни, живой», который исходит из βίωσις (biōsis), «образ жизни», а также корня βίος (bios) «жизнь». Термин «антибактериальный» происходит от греческого ἀντί (анти), «против» + βακτήριον (baktērion), уменьшительного от βακτηρία (baktēria), «тростник», поскольку первые обнаруженные бактерии были стержнеобразными по своей форме.

Альтернативы антибиотикам

Увеличение числа бактериальных штаммов, которые устойчивы к традиционным антибактериальным терапиям вместе с уменьшением количества новых антибиотиков, которые в настоящее время разрабатываются в в качестве лекарств, побудило развитие стратегий лечения бактериальных заболеваний, являющихся альтернативой традиционным антибактериальным препаратам. Для борьбы с этой проблемой также исследуются неспецифические подходы (то есть продукты, отличные от классических антибактериальных средств), которые нацелены на бактерии или подходы, которые нацелены на хозяина, включая фаговую терапию и вакцины.

Вакцины

Вакцины полагаются на иммунную модуляцию или аугментацию. Вакцинация либо возбуждает, либо усиливает иммунитет человека для предотвращения инфекции, приводя к активации макрофагов, производству антител, воспалению и другим классическим иммунным реакциям. Антибактериальные вакцины ответственны за резкое сокращение глобальных бактериальных заболеваний. Вакцины, полученные из аттенюированных целых клеток или лизатов, были заменены в основном менее реакционноспособными, бесклеточными вакцинами, состоящими из очищенных компонентов, включая капсульные полисахариды и их конъюгаты, белковыми носителями, а также инактивированными токсинами (токсоидами) и белками.

Фаготерапия

Фаготерапия - еще один метод лечения устойчивых к антибиотикам штаммов бактерий. Фаготерапия заражает патогенные бактерии собственными вирусами. Бактериофаги чрезвычайно специфичны для определенных бактерий, поэтому они не вредят организму-хозяину и микрофлоре кишечника в отличие от антибиотиков. Бактериофаги, также известные как фаги, заражают и могут убивать бактерии и влиять на рост бактерий прежде всего в течение литических циклов. Фаги вставляют свою ДНК в бактерию, где ее транскрибируют и используют для создания новых фагов, после чего клетка будет лизироваться, высвобождая новый фаг, способный заражать и уничтожать другие бактерии одного и того же штамма. Высокая специфичность фага защищает «хорошие» бактерии от разрушения.

Однако существуют и некоторые недостатки в использовании бактериофагов. Бактериофаги могут содержать факторы вирулентности или токсичные гены в своих геномах. Кроме того, пероральное и внутривенное введение фагов для уничтожения бактериальных инфекций представляет собой гораздо более высокий риск безопасности, чем местное применение, и есть дополнительная проблема неопределенного иммунного ответа на эти крупные антигенные коктейли. Существуют значительные регуляторные препятствия, которые необходимо преодолеть для таких рискованных методов лечения. Использование бактериофагов в качестве замены противомикробных препаратов остается привлекательным вариантом, несмотря на многочисленные проблемы.

Роль растений

Растения являются важным источником противомикробных соединений, а традиционные целители уже давно используют их для профилактики или лечения инфекционных заболеваний. Недавно появился новый интерес к использованию натуральных продуктов для идентификации новых антибиотиков (определяемых как натуральные продукты с антибиотической активностью) и их применения при открытии антибактериальных препаратов в эпоху геномики. Фитохимические вещества являются активным биологическим компонентом растений, а некоторые фитохимические вещества, включая дубильные вещества, алкалоиды, терпеноиды и флавоноиды, обладают противомикробной активностью. Некоторые антиоксидантные пищевые добавки также содержат фитохимические вещества (полифенолы), такие как экстракт виноградных косточек, и демонстрируют антибактериальные свойства in vitro.

Фитохимические вещества способны ингибировать синтез пептидогликана, повреждать структуры микробных мембран, изменять гидрофобность поверхности бактериальных мембран, а также модулировать чувствительность кворума. С ростом резистентности к антибиотикам в последние годы изучается потенциал новых антимикробных препаратов, полученных из растений. Тем не менее можно сказать, что долгий период открытия антибиотиков подошел к концу.

Антибиотики – огромная группа бактерицидных препаратов, каждый из которой характеризуется своим спектром действия, показаниями к применению и наличием тех или иных последствий

Антибиотики – вещества, способные подавлять рост микроорганизмов или уничтожать их. Согласно определению ГОСТа, к антибиотикам относятся вещества растительного, животного или же микробного происхождения. В настоящее время это определение несколько устарело, так как создано огромное количество синтетических препаратов, однако прообразом для их создания послужили именно природные антибиотики.

История антимикробных препаратов начинается с 1928 года, когда А. Флемингом был впервые открыт пенициллин . Это вещество было именно открыто, а не создано, так как оно всегда существовало в природе. В живой природе его вырабатывают микроскопические грибы рода Penicillium, защищая себя от других микроорганизмов.

Менее чем за 100 лет создано более сотни различных антибактериальных препаратов. Некоторые из них уже устарели и не используются в лечении, а некоторые только вводятся в клиническую практику.

Как действуют антибиотики

Рекомендуем прочитать:

Все антибактериальные препараты по эффекту воздействия на микроорганизмы можно разделить на две большие группы:

  • бактерицидные – непосредственно вызывают гибель микробов;
  • бактериостатические – препятствуют размножению микроорганизмов. Не способные расти и размножаться, бактерии уничтожаются иммунной системой больного человека.

Свои эффекты антибиотики реализуют множеством способов: некоторые из них препятствуют синтезу нуклеиновых кислот микробов; другие препятствуют синтезу клеточной стенки бактерий, третьи нарушают синтез белков, а четвертые блокируют функции дыхательных ферментов.

Группы антибиотиков

Несмотря на многообразие этой группы препаратов, все их можно отнести к нескольким основным видам. В основе этой классификации лежит химическая структура – лекарства из одной группы имеют схожую химическую формулу, отличаясь друг от друга наличием или отсутствием определенных фрагментов молекул.

Классификация антибиотиков подразумевает наличие групп:

  1. Производные пенициллина . Сюда относятся все препараты, созданные на основе самого первого антибиотика. В этой группе выделяют следующие подгруппы или поколения пенициллиновых препаратов:
  • Природный бензилпенициллин, который синтезируется грибами, и полусинтетические препараты: метициллин, нафциллин.
  • Синтетические препараты: карбпенициллин и тикарциллин, обладающие более широким спектром воздействия.
  • Мециллам и азлоциллин, имеющие еще более широкий спектр действия.
  1. Цефалоспорины – ближайшие родственники пенициллинов. Самый первый антибиотик этой группы – цефазолин С, вырабатывается грибами рода Cephalosporium. Препараты этой группы в большинстве своем обладают бактерицидным действием, то есть убивают микроорганизмы. Выделяют несколько поколений цефалоспоринов:
  • I поколение: цефазолин, цефалексин, цефрадин и др.
  • II поколение: цефсулодин, цефамандол, цефуроксим.
  • III поколение: цефотаксим, цефтазидим, цефодизим.
  • IV поколение: цефпиром.
  • V поколение: цефтолозан, цефтопиброл.

Отличия между разными группами состоят в основном в их эффективности – более поздние поколения имеют больший спектр действия и более эффективны. Цефалоспорины 1 и 2 поколений в клинической практике сейчас используются крайне редко, большинство из них даже не производится.

  1. – препараты со сложной химической структурой, оказывающие бактериостатическое действие на широкий спектр микробов. Представители: азитромицин, ровамицин, джозамицин, лейкомицин и ряд других. Макролиды считаются одними из самых безопасных антибактериальных препаратов – их можно применять даже беременным. Азалиды и кетолиды – разновидности макорлидов, имеющие отличия в структуре активных молекул.

Еще одно достоинство этой группы препаратов – они способны проникать в клетки человеческого организма, что делает их эффективными при лечении внутриклеточных инфекций: , .

  1. Аминогликозиды . Представители: гентамицин, амикацин, канамицин. Эффективны в отношении большого числа аэробных грамотрицательных микроорганизмов. Эти препараты считаются наиболее токсичными, могут привести к достаточно серьезным осложнениям. Применяются для лечения инфекций мочеполового тракта, .
  2. Тетрациклины . В основном этой полусинтетические и синтетические препараты, к которым относятся: тетрациклин, доксициклин, миноциклин. Эффективны в отношении многих бактерий. Недостатком этих лекарственных средств является перекрестная устойчивость, то есть микроорганизмы, выработавшие устойчивость к одному препарату, будут малочувствительны и к другим из этой группы.
  3. Фторхинолоны . Это полностью синтетические препараты, которые не имеют своего природного аналога. Все препараты этой группы делятся на первое поколение (пефлоксацин, ципрофлоксацин, норфлоксацин) и второе (левофлоксацин, моксифлоксацин). Используются чаще всего для лечения инфекций ЛОР-органов ( , ) и дыхательных путей ( , ).
  4. Линкозамиды. К этой группе относятся природный антибиотик линкомицин и его производное клиндамицин. Оказывают и бактериостатическое, и бактерицидное действия, эффект зависит от концентрации.
  5. Карбапенемы . Это одни из самых современных антибиотиков, действующих на большое количество микроорганизмов. Препараты этой группы относятся к антибиотикам резерва, то есть применяются в самых сложных случаях, когда другие лекарства неэффективны. Представители: имипенем, меропенем, эртапенем.
  6. Полимиксины . Это узкоспециализированные препараты, используемые для лечения инфекций, вызванных . К полимиксинам относятся полимиксин М и В. Недостаток этих лекарств – токсическое воздействие на нервную систему и почки.
  7. Противотуберкулезные средства . Это отдельная группа препаратов, обладающих выраженным действием на . К ним относятся рифампицин, изониазид и ПАСК. Другие антибиотики тоже используют для лечения туберкулеза, но только в том случае, если к упомянутым препаратам выработалась устойчивость.
  8. Противогрибковые средства . В эту группы отнесены препараты, используемые для лечения микозов – грибковых поражений: амфотирецин В, нистатин, флюконазол.

Способы применения антибиотиков

Антибактериальные препараты выпускаются в разных формах: таблетках, порошке, из которого готовят раствор для инъекций, мазях, каплях, спрее, сиропе, свечах. Основные способы применения антибиотиков:

  1. Пероральный – прием через рот. Принять лекарство можно в виде таблетки, капсулы, сиропа или порошка. Кратность приема зависит от вида антибиотиков, к примеру, азитромицин принимают один раз в день, а тетрациклин – 4 раза в день. Для каждого вида антибиотика есть рекомендации, в которых указано, когда его нужно принимать – до еды, во время или после. От этого зависит эффективность лечения и выраженность побочных эффектов. Маленьким детям антибиотики назначают иногда в виде сиропа – детям проще выпить жидкость, чем проглотить таблетку или капсулу. К тому же, сироп может быть подслащен, чтобы избавиться от неприятного или горького вкуса самого лекарства.
  2. Инъекционный – в виде внутримышечных или внутривенных инъекций. При этом способе препарат быстрее попадает в очаг инфекции и активнее действует. Недостатком этого способа введения является болезненность при уколе. Применяют инъекции при среднетяжелом и тяжелом течении заболеваний.

Важно: делать уколы должна исключительно медицинская сестра в условиях поликлиники или стационара! На дому антибиотики колоть категорически не рекомендуется.

  1. Местный – нанесение мазей или кремов непосредственно на очаг инфекции. Этот способ доставки препарата в основном применяется при инфекциях кожи – рожистом воспалении, а также в офтальмологии – при инфекционном поражении глаза, например, тетрациклиновая мазь при конъюнктивите.

Путь введения определяет только врач. При этом учитывается множество факторов: всасываемость препарата в ЖКТ, состояние пищеварительной системы в целом (при некоторых заболеваниях скорость всасывания снижается, а эффективность лечения уменьшается). Некоторые препараты можно вводить только одним способом.

При инъекционном введении необходимо знать, чем можно растворить порошок. К примеру, Абактал можно разводить только глюкозой, так как при использовании натрия хлорида он разрушается, а значит, и лечение будет неэффективным.

Чувствительность к антибиотикам

Любой организм рано или поздно привыкает к самым суровым условиям. Справедливо это утверждение и по отношению к микроорганизмам – в ответ на длительное воздействие антибиотиков микробы вырабатывают устойчивость к ним. Во врачебную практику было введено понятие чувствительности к антибиотикам – с какой эффективностью воздействует тот или иной препарат на возбудителя.

Любое назначение антибиотиков должно опираться на знание о чувствительности возбудителя. В идеале, перед назначением препарата врач должен провести анализ на чувствительность, и назначить самый действенный препарат. Но время проведения такого анализа в самом лучшем случае – несколько дней, а за это время инфекция может привести к самому печальному результату.

Поэтому при инфекции с невыясненным возбудителем врачи назначают препараты эмпирическим путем – с учетом наиболее вероятного возбудителя, со знанием эпидемиологической обстановки в конкретном регионе и лечебном учреждении. Для этого используют антибиотики широкого спектра действия.

После выполнения анализа на чувствительность врач имеет возможность сменить препарат на более эффективный. Замена препарата может быть произведена и при отсутствии эффекта от лечения на 3-5 сутки.

Более эффективно этиотропное (целевое) назначение антибиотиков. При этом выясняется, чем вызвано заболевание – с помощью бактериологического исследования устанавливается вид возбудителя. Затем врач подбирает конкретный препарат, к которому у микроба отсутствует резистентность (устойчивость).

Всегда ли эффективны антибиотики

Антибиотики действуют только на бактерии и грибы! Бактериями считаются одноклеточные микроорганизмы. Насчитывается несколько тысяч видов бактерий, некоторые из которых вполне нормально сосуществуют с человеком – в толстом кишечнике обитает более 20 видов бактерий. Часть бактерий является условно-патогенными – они становятся причиной болезни только при определенных условиях, например, при попадании в нетипичное для них место обитания. Например, очень часто простатит вызывает кишечная палочка, попадающая восходящим путем в из прямой кишки.

Обратите внимание: абсолютно неэффективны антибиотики при вирусных заболеваниях. Вирусы во много раз меньше бактерий, и у антибиотиков попросту нет точки приложения своей способности. Поэтому же антибиотики при простуде не оказывают эффекта, так как простуда в 99% случаев вызвана вирусами.

Антибиотики при кашле и бронхите могут быть эффективны, если эти явления вызваны бактериями. Разобраться в том, чем вызвано заболевание может только врач – для этого он назначает анализы крови, при необходимости – исследование мокроты, если она отходит.

Важно: назначать самому себе антибиотики недопустимо! Это приведет лишь к тому, что часть возбудителей выработает резистентность, и в следующий раз болезнь будет вылечить гораздо сложнее.

Безусловно, эффективны антибиотики при – это заболевание имеет исключительно бактериальную природу, вызывают ее стрептококки или стафилококки. Для лечения ангины используют самые простые антибиотики – пенициллин, эритромицин. Самое важное в лечение ангины- это соблюдение кратности приема препаратов и продолжительность лечения – не менее 7 дней. Нельзя прекращать прием лекарства сразу после наступления состояния, что обычно отмечается на 3-4 день. Не следует путать истинную ангину с тонзиллитом, который может быть вирусного происхождения.

Обратите внимание: недолеченная ангина может стать причиной острой ревматической лихорадки или !

Воспаление легких () может иметь как бактериальное, так и вирусное происхождение. Бактерии вызывают пневмонию в 80% случаев, поэтому даже при эмпирическом назначении антибиотики при пневмонии оказывают хороший эффект. При вирусных же пневмониях антибиотики не обладают лечебным действием, хотя и препятствуют присоединению бактериальной флоры к воспалительному процессу.

Антибиотики и алкоголь

Одновременный прием алкоголя и антибиотиков за короткий промежуток времени ни к чему хорошему не приводит. Некоторые препараты разрушаются в печени, как и алкоголь. Наличие в крови антибиотика и алкоголя дает сильную нагрузку на печень – она попросту не успевает обезвредить этиловый спирт. В результате этого повышается вероятность развития неприятных симптомов: тошноты, рвоты, кишечных расстройств.

Важно: ряд препаратов взаимодействует с алкоголем на химическом уровне, в результате чего напрямую снижается лечебное действие. К таким препаратам относятся метронидазол, левомицетин, цефоперазон и ряд других. Одновременный прием алкоголя и этих препаратов может не только снизить лечебный эффект, но и привести к одышке, судорогам и смерти.

Конечно, некоторые антибиотики можно принимать на фоне употребления алкоголя, но зачем рисковать здоровьем? Лучше ненадолго воздержаться от спиртных напитков – курс антибактериальной терапии редко превышает 1,5-2 недели.

Антибиотики при беременности

Беременные женщины болеют инфекционными болезнями ничуть ни реже, чем все остальные. А вот лечение беременных антибиотиками весьма затруднительно. В организме беременной растет и развивается плод – будущий ребенок, весьма чувствительный ко многим химическим веществами. Попадание в формирующийся организм антибиотиков может спровоцировать развитие пороков развития плода, токсическое повреждение центральной нервной системе плода.

В первый триместр желательно избегать применения антибиотиков вообще. Во второй и третий триместры их назначение более безопасно, но тоже, по возможности, должно быть ограничено.

Отказаться от назначения антибиотиков беременной женщине нельзя при следующих болезнях:

  • Пневмония;
  • ангина;
  • инфицированные раны;
  • специфические инфекции: бруцеллез, бореллиоз;
  • половые инфекции: , .

Какие же антибиотики можно назначить беременной?

Не оказывают почти никакого влияния на плод пенициллин, препараты цефалоспоринового ряда, эритромицин, джозамицин. Пенициллин, хотя и проходит через плаценту, не оказывает негативного воздействия на плод. Цефалоспорин и другие названные препараты проникают через плаценту в крайне низкой концентрации и не способны навредить будущему ребенку.

К условно безопасным препаратам относят метронидазол, гентамицин и азитромицин. Их назначают только по жизненным показаниям, когда польза для женщины перевешивает риск для ребенка. К таким ситуациям относят тяжелые пневмонии, сепсис, другие тяжелые инфекции, при которых без антибиотиков женщина может попросту погибнуть.

Какие из препаратов нельзя назначать при беременности

Нельзя применять у беременных следующие препараты:

  • аминогликозиды – способны привести к врожденной глухоте (исключение - гентамицин);
  • кларитромицин, рокситромицин – в экспериментах оказывали токсичное действие на зародыши животных;
  • фторхинолоны ;
  • тетрациклин – нарушает формирование костной системы и зубов;
  • левомицетин – опасен на поздних сроках беременности за счет угнетения функций костного мозга у ребенка.

По некоторым антибактериальным препаратам нет данных о негативном воздействии на плод. Объясняется это просто – на беременных женщинах не проводят экспериментов, позволяющих выяснить токсичность препаратов. Эксперименты же на животных не позволяют со 100% уверенностью исключить все негативные эффекты, так как метаболизм препаратов у человека и животных может значительно отличаться.

Следует учесть, что перед следует также отказаться от приема антибиотиков или изменить планы по зачатию. Некоторые препараты обладают кумулятивным эффектом – способны накапливаться в организме женщины, и еще некоторое время после окончания курса лечения постепенно метаболизируются и выводятся. Беременеть рекомендуется не ранее чем через 2-3 недели после окончания приема антибиотиков.

Последствия приема антибиотиков

Попадание антибиотиков в организм человека ведет не только к уничтожению болезнетворных бактерий. Как и все инородные химические препараты, антибиотики оказывают системное действие – в той или иной мере воздействуют на все системы организма.

Можно выделить несколько групп побочных эффектов антибиотиков:

Аллергические реакции

Практически любой антибиотик может стать причиной аллергии. Выраженность реакции бывает разной: сыпь на теле, отек Квинке (ангионевротический отек), анафилактический шок. Если аллергическая сыпь практически не опасна, то анафилактический шок может привести к смертельному исходу. Риск шока гораздо выше при уколах антибиотиков, именно поэтому инъекции должны делаться только в медицинских учреждениях – там может быть оказана неотложная помощь.

Антибиотики и другие антимикробные ЛС, вызывающие перекрестные аллергические реакции:

Токсические реакции

Антибиотики могут повреждать многие органы, но больше всего подвержена их воздействию печень – на фоне антибактериальной терапии может возникнуть токсический гепатит. Отдельные препараты оказывают избирательное токсическое воздействие на другие органы: аминогликозиды – на слуховой аппарат (вызывают глухоту); тетрациклины угнетают рост костной ткани у детей.

Обратите внимание : токсичность препарата обычно зависит от его дозы, но при индивидуальной непереносимости иногда достаточно и меньших доз, чтобы проявился эффект.

Воздействие на желудочно-кишечный тракт

При приеме некоторых антибиотиков пациенты часто жалуются на боли в желудке, тошноту, рвоту, расстройства стула (диарея). Обусловлены эти реакции чаще всего местнораздражающим действием препаратов. Специфическое воздействие антибиотиков на флору кишечника ведет к функциональным расстройствам его деятельности, что сопровождается чаще всего диареей. Состояние это так и называется – антибиотикассоциированной диареей, которая в народе больше известна под термином дисбактериоз после антибиотиков.

Другие побочные эффекты

К прочим побочным последствиям относят:

  • угнетение иммунитета;
  • появление антибиотикорезистентных штаммов микроорганизмов;
  • суперинфекция – состояние, при котором активизируются устойчивые к данному антибиотику микробы, приводя к возникновению нового заболевания;
  • нарушение обмена витаминов – обусловлено угнетением естественной флоры толстой кишки, которая синтезирует некоторые витамины группы В;
  • бактериолиз Яриша-Герксгеймера – реакция.ю возникающая при применении бактерицидных препаратов, когда в результате одномоментной гибели большого числа бактерий в кровь выбрасывается большое количество токсинов. Реакция схожа по клинике с шоком.

Можно ли использовать антибиотики с профилактической целью

Самообразование в сфере лечения привела к тому, что многие пациенты, особенно это касается молодых мам, стараются назначить самому себе (или своему ребенку) антибиотик при малейших признаках простуды. Антибиотики не обладают профилактическим действием – они лечат причину заболевания, то есть устраняют микроорганизмы, а при отсутствии проявляются лишь побочные эффекты препаратов.

Существует ограниченное количество ситуаций, когда антибиотики вводят до клинических проявлений инфекции, с целью ее предупредить:

  • хирургическая операция – в этом случае антибиотик, находящийся в крови и тканях, препятствует развитию инфекции. Как правило, достаточно однократной дозы препарата, введенной за 30-40 минут до вмешательства. Иногда даже после аппендэктомии в послеоперационном периоде не колют антибиотики. После «чистых» хирургических операций антибиотики вообще не назначают.
  • крупные травмы или раны (открытые переломы, загрязнение раны землей). В этом случае абсолютно очевидно, что в рану попала инфекция и следует «задавить» ее до того, как она проявится;
  • экстренная профилактика сифилиса проводится при незащищенном сексуальном контакте с потенциально больным человеком, а также у медработников, которым кровь инфицированного человека или другая биологическая жидкость попала на слизистую оболочку;
  • пенициллин может быть назначен детям для профилактики ревматической лихорадки, являющейся осложнением ангины.

Антибиотики для детей

Применение антибиотиков у детей в целом не отличается от применения их у других групп людей. Детям маленького возраста педиатры чаще всего назначают антибиотики в сиропе. Эта лекарственная форма удобнее для приема, в отличие от уколов совершенно безболезненная. Детям более старшего возраста могут назначаться антибиотики в таблетках и капсулах. При тяжелом течении инфекции переходят на парентеральный путь введения – уколы.

Важно : главная особенность в использовании антибиотиков в педиатрии заключается в дозировках – детям назначают меньшие дозы, так как расчет препарата ведется в пересчете на килограмм массы тела.

Антибиотики – это очень эффективные препараты, имеющие в то же время большое количество побочных эффектов. Чтобы вылечиться с их помощью и не нанести вреда своему организму, принимать их следует только по назначению врача.

Какие бывают антибиотики? В каких случаях прием антибиотиков необходим, а в каких опасен? Главные правила лечения антибиотиками рассказывает педиатр, доктор Комаровский:

Гудков Роман, врач-реаниматолог

Введение

Тот факт, что одни микробы могут каким - либо образом задерживать рост других, был хорошо известен издавна. В 1928 - 1929 гг. А. Флеминг открыл штамм плесневого гриба пенициллина (Penicillium notatum), выделяющего химическое вещество, которое задерживает рост стафилококка. Вещество было названо «пенициллин», однако лишь в 1940 г. Х. Флори и Э. Чейн были удостоены Нобелевской премии. В нашей стране большой вклад в учение об антибиотиках внесли З.В. Ермольева и Г.Ф. Гаузе.

Сам термин «антибиотик» (от греч. anti, bios - против жизни) был предложен С. Ваксманом в 1842 г. Для обозначения природных веществ, продуцируемых микроорганизмами и в низких концентрациях антагонистичных к росту других бактерий.

Антибиотики - это химиотерапевтические препараты из химических соединений биологического происхождения (природные), а также их полусинтетические производные и синтетические аналоги, которые в низких концентрациях оказывают избирательное повреждающее или губительное действие на микроорганизмы и опухоли.

История открытия антибиотиков

В народной медицине для обработки ран и лечения туберкулеза издавна применяли экстракты лишайников. Позднее в состав мазей для обработки поверхностных ран стали включать экстракты бактерий Pseudomonas aeruginosa, хотя почему они помогают, никто не знал, и феномен антибиоза был неизвестен.

Однако некоторые из первых ученых-микробиологов сумели обнаружить и описать антибиоз (угнетение одними организмами роста других). Дело в том, что антагонистические отношения между разными микроорганизмами проявляются при их росте в смешанной культуре. До разработки методов чистого культивирования разные бактерии и плесени выращивались вместе, т.е. в оптимальных для проявления антибиоза условиях. Луи Пастер еще в 1877 описал антибиоз между бактериями почвы и патогенными бактериями - возбудителями сибирской язвы. Он даже предположил, что антибиоз может стать основой методов лечения.

Первые антибиотики были выделены еще до того, как стала известной их способность угнетать рост микроорганизмов. Так, в 1860 был получен в кристаллической форме синий пигмент пиоцианин, вырабатываемый небольшими подвижными палочковидными бактериями рода Pseudomonas, но его антибиотические свойства были обнаружены лишь через много лет. В 1896 из культуры плесени удалось кристаллизовать еще одно химическое вещество такого рода, получившее название микофеноловая кислота.

Постепенно выяснилось, что антибиоз имеет химическую природу и обусловлен выработкой специфических химических соединений.

Появление термина «антибиотики» было связано с получением и внедрением в лечебную практику нового химиотерапевтического препарата пенициллина, активность которого в отношении патогенных кокков и других бактерий значительно превосходило действие сульфаниламида.

Первооткрывателем пенициллина является английский микробиолог А. Флеминг, который, начиная с 1920 г., изучал антибактериальные свойства зелёной плесени - гриба рода Penicillium. А. Флеминг более 10 лет пытался получить и выделить пенициллин из культуральной жидкости в химически чистом виде, пригодном для клинического применения. Однако это удалось сделать лишь в 1940 году после начала второй мировой войны, когда потребовалось новые, более эффективные, чем сульфаниламиды, лекарственные средства для лечения гнойных осложнений ран и сепсиса. Английскому патологу Г. Флори и биохимику Э. Чейну удалось выделить нестойкую пенициллиновую кислоту и получить её соль, стабильно сохраняющую свою антибактериальную активность. В 1943 г. Производство пенициллина было развёрнуто в США. З. В. Ермольева явилась одним из организаторов производства пенициллина в нашей стране во время Великой Отечественной войны.

Успех клинического применения пенициллина послужил сигналом к проведению широких исследований в разных странах мира, направленных на поиск новых антибиотиков. С этой целью бала изучена способность многочисленных штаммов грибов, актиномицетов и бактерий, хранящихся в микробных музеях разных институтов и вновь выделенных из окружающей среды, главным образом почвы, продуцировать антибиотические вещества. В результате этих исследований, З. Ваксманом и др. в 1943 г. Был открыт стрептомицин, а затем и многие другие антибиотики.

Александра Флеминга считают изобретателем первого из антибиотиков - пенициллина. При этом ни он сам, ни другие люди, так или иначе участвовавшие в создании антибиотиков, не претендуют на авторство, искренне считая, что открытие, спасающее жизни, не может быть источником дохода.

Мы привыкли ко многим вещам, изобретение которых когда-то потрясло мир и перевернуло быт. Мы не удивляемся стиральным машинам, компьютерам, настольным лампам. Нам даже трудно представить, как жили люди без электричества, освещая дома керосиновыми лампами или лучинами. Предметы окружают нас, и мы привыкли не замечать их ценности.

Наш сегодняшний рассказ посвящен не предметам быта. Это рассказ о средствах, к которым мы тоже привыкли и уже не ценим того, что они спасают самое ценное — жизнь. Нам кажется, что антибиотики существовали всегда, но это не так: еще во время Первой мировой войны солдаты умирали тысячами, потому что мир не знал пенициллина, и врачи не могли сделать спасительные уколы.

Воспаление легких, сепсис, дизентерия, туберкулез, тиф — все эти болезни считались либо неизлечимыми, либо почти неизлечимыми. В 30-ых годах ХХ (двадцатого!) века больные очень часто умирали от послеоперационных осложнений, главными из которых было воспаление ран и дальнейшее заражение крови. И это при том, что мысль об антибиотиках была высказана еще в XIX веке Луи Пастером (1822-1895).

Этот французский микробиолог открыл, что бактерии сибирской язвы погибают под действием некоторых других микробов. Однако его открытие не дало готового ответа или рецепта, скорее, поставило перед учеными множество новых вопросов: какие микробы «воюют», чем один побеждает другого... Конечно, чтобы выяснить это, пришлось бы проделать огромную работу. Видимо, такой пласт работы был неподъемным для ученых того времени. Однако ответ был совсем близко, с самого начала жизни на Земле...

Плесень. Такая знакомая и привычная плесень, тысячи лет живущая рядом с человеком, оказалась его защитником. Этот грибок, витающий в воздухе в виде спор, стал предметом спора между двумя русскими врачами в 1860-ых годах.

Незамеченное открытие

Алексей Полотебнов и Вячеслав Манассеин не сошлись во взглядах на природу плесени. Полотебнов считал, что от плесени пошли все микробы, то есть плесень есть прародитель микроорганизмов. Манассеин возражал ему. С целью доказать свою правоту последний начал исследование зеленой плесени (по-латыни penicillium glaucum). Спустя какое-то время врач имел счастье наблюдать интересный эффект: там, где был плесневой грибок, не было бактерий. Вывод следовал только один: каким-то образом плесень не позволяет развиваться микроорганизмам. Оппонент Манассеина Полотебнов тоже пришел к такому выводу: по его наблюдениям, жидкость, в которой образовывалась плесень, оставалась чистой, прозрачной, что свидетельствовало только об одном — бактерий в ней нет.

К чести проигравшего в научном споре Полотебнова, он продолжил свое исследование уже в новом русле, использовав плесень в качестве бактерицидного средства. Он создал эмульсию с плесневым грибком и спрыскивал ею язвы больных кожными заболеваниями. Результат: обработанные язвы заживали раньше, чем если бы остались без лечения. Конечно, как врач Полотебнов не мог оставить открытие втайне и рекомендовал такой способ лечения в 1872 году в одной из своих статей. К сожалению, его наблюдения наука обошла вниманием, и врачи всего мира продолжали лечить больных средствами времен мракобесия: кровопусканием, порошками из высушенных животных и насекомых и прочей бессмыслицей. Эти «средства» считались лечебными и использовались даже в начале прогрессивного ХХ века, когда братья Райт испытывали свои первые самолеты, а Эйнштейн работал над теорией относительности.

Убрать на столе - похоронить открытие

Статья Полотебнова осталась без внимания, и целых полвека никто из ученых не предпринимал новых попыток изучения плесневого грибка. Исследования Полотебнова и их результаты «воскресли» уже в начале ХХ века благодаря счастливой случайности и микробиологу, который не любил убирать на своем столе…

Шотландец Александр Флеминг, которого считают создателем пенициллина, с самой юности мечтал найти средство, уничтожающее болезнетворные бактерии. Он упорно занимался микробиологией (в частности - изучал стафилококки) в своей лаборатории, которая располагалась в одном из госпиталей Лондона и представляла собой тесную комнатушку. Помимо упорства и самоотверженности в работе, не раз отмеченные его коллегами, Флеминг обладал еще одним качеством: он не любил наводить порядок на своем столе. Склянки с препаратами иногда стояли на столе микробиолога неделями. Благодаря этой своей привычке Флемингу и удалось буквально наткнуться на великое открытие.

Однажды ученый оставил колонию стафилококков без внимания на несколько дней. А когда решил их убрать, то обнаружил, что препараты покрылись плесенью, споры которой, по-видимому, проникли в лабораторию через открытое окно. Флеминг не только не выбросил испортившийся материал, но и изучил его под микроскопом. Ученый был поражен: от болезнетворных бактерий не осталось и следа - только плесень и капли прозрачной жидкости. Флеминг решил проверить, действительно ли плесень способна убивать опасные микроорганизмы.

Микробиолог вырастил грибок в питательной среде, «подселил» к нему другие бактерии и поместил чашку с препаратами в термостат. Результат был поразительным: между плесенью и бактериями образовались пятна, светлые и прозрачные. Плесень «огораживала» себя от «соседей» и не давала им размножаться.

Что же это за жидкость, которая образуется возле плесени? Этот вопрос не давал покоя Флемингу. Ученый приступил к новому эксперименту: вырастил плесень в большой колбе и стал наблюдать за ее развитием. Цвет плесени менялся 3 раза: из белого в зеленый, а затем она стала черной. Питательный бульон тоже менялся - из прозрачного он стал желтым. Вывод напрашивался сам собой: плесень выделяет в окружающую среду какие-то вещества. Осталось проверить, обладают ли они столь же «убийственной» силой.

Эврика!

Жидкость, в которой жила плесень, оказалась еще более мощным средством массового поражения бактерий. Даже разведенная водой в 20 раз, она не оставляла бактериям никакого шанса. Флеминг забросил свои прошлые исследования, посвятив все мысли только этому открытию. Он выяснял, на какой день роста, на какой питательной среде, при какой температуре грибок проявляет наибольшее антибактериальное воздействие. Он выяснил, что жидкость, выделенная грибком, воздействует только на бактерии и безвредна для животных. Он назвал эту жидкость пенициллином.

В 1929 году Флеминг рассказал о найденном лекарстве в Лондонском медицинском научно-исследовательском клубе. Его сообщение осталось без внимания - так же, как когда-то статья Полотебнова. Однако шотландец оказался более упрямым, чем русский врач. На всех конференциях, выступлениях, собраниях врачей Флеминг так или иначе упоминал открытое им средство для борьбы с бактериями. Однако была еще одна проблема - нужно было как-то выделить чистый пенициллин из бульона, при этом не разрушив его.

Труды и награды

Выделить пенициллин - эта задача решалась не один год. Флеминг со товарищи предприняли не один десяток попыток, однако в чужой среде пенициллин разрушался. Врачи-микробиологи не могли решить эту задачу, здесь требовалась помощь химиков.

Информация от новом лекарстве постепенно достигла Америки. Спустя 10 лет после первого заявления Флеминга о пенициллине, этим открытием заинтересовались двое английских ученых, которых судьба и война забросила в Америку. В 1939 году Говард Флери, профессор патологии одного из оксфордских институтов, и Эрнст Чейн, биохимик, бежавший из Германии, искали тему для совместной работы. Их заинтересовал пенициллин, точнее, задача его выделения. Она и стала темой их работы.

В Оксфорде оказался штамм (культура микробов), который когда-то прислал Флеминг, поэтому у ученых был материал для работы. В результате долгих, трудных исследований и опытов Чейну удалось получить кристаллы калийной соли пенициллина, которые он затем превратил в слизистую массу, а потом - в коричневый порошок. Гранулы пенициллина были очень мощными: разведенные в пропорции один на миллион, они убивали бактерии через несколько минут, однако были безвредны для мышей. Опыты проводились на мышах: их заражали убойными дозами стрептококков и стафилококков, а затем спасали жизнь половине из них, вводя пенициллин. Опыты Чейна привлекли еще нескольких ученых. Было установлено, что пенициллин также убивает и возбудителей гангрены.

На человеке пенициллин был опробован в 1942 году и спас жизнь умирающему от менингита. Этот случай произвел большое впечатление на общество и врачей. В Англии наладить производство пенициллина не удалось из-за войны, поэтому в 1943 году производство открылось в Америке. В том же году американское правительство сделало заказ на 120 млн. единиц препарата. В 1945 году Флери и Чейн получили Нобелевскую премию за выдающееся открытие. Сам же Флеминг удостаивался различных званий и наград десятки раз: был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. На могиле ученого - скромная надпись: «Александр Флеминг - изобретатель пенициллина».

Изобретение, принадлежащее человечеству

Поисками средства для борьбы с бактериями ученые всего мира искали с тех самых пор, как узнали об их существовании и смогли разглядеть в микроскоп. С началом Второй мировой войны необходимость в этом средстве назрела как никогда. Неудивительно, что в Советском Союзе тоже работали над этим вопросом.

В 1942 году профессор Зинаида Ермольева получила пенициллин из плесени пенициллиум крустозум, взятой со стены одного из бомбоубежищ Москвы. В 1944 году Ермольева, после долгих наблюдений и исследований, решила испытать свой препарат на раненых. Ее пенициллин стал чудом для полевых врачей и спасительным шансом для многих раненых бойцов. В том же году в СССР было налажено производство пенициллина.

Антибиотики - это большая «семья» средств, а не только пенициллин. Некоторые из его «сородичей» были открыты в военные годы. Так, в 1942 году Гаузе получил грамицидин, а в 1944-ом - американец украинского происхождения Ваксман выделил стрептомицин.

Полотебнов, Флеминг, Чейн, Флери, Ермольева, Гаузе, Ваксман - эти люди своими трудами подарили человечеству эпоху антибиотиков. Эпоху, когда менингит или воспаление легких не становятся приговором. Пенициллин так и остался незапатентованным: никто из его создателей не претендовал на авторство средства, спасающего жизни.

История открытия антибиотиков

Открытие антибиотиков, без преувеличения, можно назвать одним из величайших достижений медицины прошлого века. Первооткрывателем антибиотиков является английский ученый Флеминг, который в 1929 году описал бактерицидное действие колоний грибка Пенициллина на колонии бактерий, разраставшихся по соседству с грибком. Как и многие другие великие открытия в медицине, открытие антибиотиков было сделано случайно. Оказывается, ученый Флеминг не очень любил чистоту, и потому нередко пробирки на полках в его лаборатории зарастали плесенью. Однажды после недолгого отсутствия Флеминг заметил, что разросшаяся колония плесневого грибка пенициллина полностью подавила рост соседней колонии бактерий (обе колонии росли в одной пробирке). Здесь нужно отдать должное гениальности великого ученого сумевшего заметить этот замечательный факт, который послужил основой предположения того, что грибы победили бактерий при помощи специального вещества безвредного для них самих и смертоносного для бактерий. Это вещество и есть природный антибиотик - химическое оружие микромира. Действительно, выработка антибиотиков является одним из наиболее совершенных методов соперничества между микроорганизмами в природе. В чистом виде вещество, о существовании, которого догадался Флеминг, было получено во время второй мировой войны. Это вещество получило название пенициллин (от названия вида грибка, из колоний которого был получен этот антибиотик). Во время войны это чудесное лекарство спасло тысячи больных обреченных на смерть от гнойных осложнений. Но это было лишь начало эры антибиотиков. После войны исследования в этой области продолжились, и последователи Флеминга открыли множество веществ со свойствами пенициллина. Оказалось, что кроме грибков вещества и подобными свойствами вырабатываются и некоторыми бактериями, растениями, животными. Параллельные исследования в области микробиологии, биохимии и фармакологии, наконец, привели к изобретению целого ряда антибиотиков пригодных для лечения самых разнообразных инфекций вызванных бактериями. При этом оказалось, что некоторые антибиотики могут быть использованы для лечения грибковых инфекций или для разрушения злокачественных опухолей. Термин «антибиотик» происходит от греческих слов anti, что означает против и bios - жизнь, и буквально переводится, как «лекарство против жизни». Несмотря на это антибиотики спасают, и будут спасать миллионы жизней людей.

Основные группы известных на сегодняшний день антибиотиков

Бета-лактамные антибиотики.Группа бета-лактамных антибиотиков включает две большие подгруппы известнейших антибиотиков: пенициллины и цефалоспорины, имеющих схожую химическую структуру.Группа пенициллинов. Пенициллины получаются из колоний плесневого грибка Penicillium, откуда и происходит название этой группы антибиотиков. Основное действие пенициллинов, связано с их способностью угнетать образование клеточной стенки бактерий и тем самым подавлять их рост и размножение. В период активного размножения многие виды бактерий очень чувствительны по отношению к пенициллину и потому действие пенициллинов бактерицидное.

Важным и полезным свойством пенициллинов является их способность проникать внутрь клеток нашего организма. Это свойство пенициллинов позволяет лечить инфекционные болезни, возбудитель которых «прячется» внутри клеток нашего организма (например, гонорея). Антибиотики из группы пенициллина обладают повышенной избирательностью и потому практически не влияют на организм человека, принимающего лечение. К недостаткам пенициллинов можно отнести их быстрое выведение из организма и развитие резистентности бактерий по отношению к этому классу антибиотиков. Биосинтетические пенициллины получают напрямую из колоний плесневых грибков. Наиболее известными биосинтетическими пенициллинами являются бензилпенициллин и феноксиметилпенициллин. Эти антибиотики используют для лечения ангины, скарлатины, пневмонии, раневых инфекций, гонореи, сифилиса.

Полусинтетические пенициллины получаются на основе биосинтетических пенициллинов путей присоединения различных химических групп. На данный момент существует большое количество полусинтетический пенициллинов: амоксициллин, ампициллин, карбенициллин, азлоциллин. Важным преимуществом некоторых антибиотиков из группы полусинтетических пенициллинов является их активность по отношению к пенициллинустойстойчивым бактериям (бактерии, разрушающие биосинтетические пенициллины). Благодаря этому полусинтетические пенициллины обладают более широким спектром действия и потому могут использоваться в лечении самых разнообразных бактериальных инфекций. Основные побочные реакции, связанные с применением пенициллинов носят аллергический характер и иногда являются причиной отказа от использования этих препаратов.

Группа цефалоспоринов. Цефалоспорины также относятся к группе бета-лактамных антибиотиков и обладают структурой, схожей со структурой пенициллинов. По этой причине некоторые побочные эффекты их двух групп антибиотиков совпадают.

Цефалоспорины обладают высокой активностью по отношению к широкому спектру различных микробов и потому используются в лечении многих инфекционных болезней. Важным преимуществом антибиотиков из группы цефалоспоринов является их активность по отношению к микробам устойчивым к действию пенициллинов (пенициллиноустойчивые бактерий). Существует несколько поколений цефалоспоринов.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло