Методы создания лекарственных средств. Основы разработки новых лекарственных средств

Введение

Несмотря на достижения современной анестезии, продолжаются поиски менее опасных средств для наркоза, разработка различных вариантов многокомпонентного избирательного наркоза, позволяющего значительно уменьшить их токсичность и побочные отрицательные влияния.

Создание новых лекарственных веществ включает 6 стадий:

    Создание лекарственного вещества с помощью компьютерного моделирования.

    Лабораторный синтез.

    Биоскрининг и доклинические испытания.

    Клинические испытания.

    Промышленное производство.

В последнее время компьютерное моделирование все более уверенно входит в практику технологии создания новых синтетических лекарственных веществ . Предварительно проведенный компьютерный скрининг экономит время, материалы и силы при аналоговом поиске лекарственных препаратов. В качестве объекта исследования выбран местноанестезирующий препарат дикаин, который имеет более высокий уровень токсичности в ряду своих аналогов, но при этом не заменим в глазной и оториноларингологической практике. Для снижения и сохранения или усиления местноанестезирующего эффекта разрабатываются композиционные составы, дополнительно содержащие противогистаминные средства, содержащих аминоблокаторы, адреналин.

Дикаин относится к классу сложных эфиров п -аминобензойной кислоты (β-диметиламиноэтиловый эфир п -бутиламинобензойной кислоты гидрохлорид) . Расстояние C -N в 2-аминоэтанольной группе определяет двухточечный контакт молекулы дикаина с рецептором через диполь-дипольное и ионное взаимодействие.

В основу модифицирования молекулы дикаина для создания новых анестетиков нами положен принцип введения химических группировок и фрагментов в существующий анестезиофор, которые усиливают взаимодействие вещества с биорецептором, снижают токсичность и дают метаболиты с положительным фармакодействием.

Исходя из этого нами предложены следующие варианты новых молекулярных структур:

    В бензельное кольцо введена “облагораживающая” карбоксильная группа, диметиламиногруппа замещена на более фармакоактивную диэтиламиногруппу.

    Алифатический н -бутильный радикал замещен на адреналиновый фрагмент.

    Ароматическая основа п -аминобензойной кислоты замещена на никотиновую кислоту.

    Бензольное кольцо замещено на пиперидиновое, характерное для эффективного анестетика промедол.

В работе выполнено компьютерное моделирование всех указанных структур с применением программы HyperChem . На последующих этапах компьютерного конструирования исследована биологическая активность новых анестетиков с применением программы PASS .

1. Обзор литературы

1.1 Лекарственные средства

Несмотря на огромный арсенал имеющихся лекарств, проблема изыскания новых высокоэффективных лекарственных средств остается актуальной. Это обусловлено отсутствием или недостаточной эффективностью лекарств для лечения некоторых заболеваний; наличие побочного действия некоторых лекарственных препаратов; ограничениями срока годности лекарственных препаратов; огромными сроками годности лекарственных препаратов или их лекарственных форм.

Создание каждого нового оригинального лекарственного вещества является результатом развития фундаментальных знаний и достижений медицинских, биологических, химических и других наук, проведения напряженных экспериментальных исследований, вложения крупных материальных затрат. Успехи современной фармакотерапии явились следствием глубоких теоретических исследований первичных механизмов гомеостаза, молекулярных основ патологических процессов, открытия и изучения физиологически активных соединений (гормоны, медиаторы, простагландины и др.) . Получению новых химиотерапевтических средств способствовали достижения в изучении первичных механизмов инфекционных процессов и биохимии микроорганизмов.

Лекарственное средство – однокомпонентный или комплексный состав, обладающий профилактической и лечебной эффективностью. Лекарственное вещество – индивидуальное химическое соединение, используемое в качестве лекарственного средства .

Лекарственная форма – физическое состояние лекарственного средства, удобное для применения .

Лекарственный препарат – дозированное лекарственное средство в адекватной для индивидуального применения лекарственной форме и оптимальным оформлением с приложением аннотации о его свойствах и использовании .

В настоящее время каждое потенциальное лекарственное вещество проходит 3 стадии изучения: фармацевтическую, фармакокинетическую и фармакодинамическую.

На фармацевтической стадии устанавливают наличие полезного действия лекарственного вещества, после чего оно подвергается доклиническому изучению других показателей. Прежде всего определяется острая токсичность, т.е. смертельная доза для 50% опытных животных. Затем выясняется субхроническая токсичность в условиях длительного (несколько месяцев) введения лекарственного вещества в терапевтических дозах. При этом наблюдают возможные побочные эффекты и патологические изменения всех систем организма: тератогенность, влияние на репродуктивность и иммунную систему, эмбриотоксичность, мутагенность, канцерогенность, аллергенность и другие вредные побочные действия. После этого этапа лекарственное средство может быть допущено к клиническим испытаниям.

На второй стадии - фармакокинетической - изучают судьбу лекарственного вещества в организме: пути его введения и всасывания, распределение в биожидкостях, проникновение через защитные барьеры, доступ к органу-мишени, пути и скорость биотрансформации пути выведения из организма (с мочой, калом, потом и дыханием).

На третьей - фармакодинамической - стадии изучаются проблемы распознавания лекарственного вещества (или его метаболитов) мишенями и их последующего взаимодействия. Мишенями могут служить органы, ткани, клетки, клеточные мембраны, ферменты, нуклеиновые кислоты, регуляторные молекулы (гормоны, витамины, нейромедиаторы и т.д.), а также биорецепторы. Рассматриваются вопросы структурной и стереоспецифичной комплементарности взаимодействующих структур, функционального и химического соответствия лекарственного вещества или метаболита его рецептору. Взаимодействие между лекарственным веществом и рецептором или акцептором, приводящее к активации (стимулированию) или дезактивации (ингибированию) биомишени и сопровождающееся ответом организма в целом, в основном обеспечивается за счет слабых связей – водородных, электростатических, ван-дер-ваальсовых, гидрофобных .

1.2 Создание и исследование новых лекарственных средств. Основное направление поиска

Создание новых лекарственных веществ оказалось возможным на основе достижений в области органической и фармацевтической химии, использования физико-химических методов, проведения технологических, биотехнологических и других исследований синтетических и природных соединений.

Общепринятым фундаментом создания теории целенаправленных поисков тех или иных групп лекарственных препаратов является установление связей между фармакологическим действием и физическими особенностями .

В настоящее время поиск новых лекарственных средств ведется по следующим основным направлениям.

1. Эмпирическое изучение того или иного вида фармакологической активности различных веществ, полученных химическим путем. В основе этого изучения лежит метод «проб и ошибок», при котором фармакологи берут существующие вещества и определяют с помощью набора фармакологических методик их принадлежность к той или иной фармакологической группе. Затем среди них отбирают наиболее активные вещества и устанавливают степень их фармакологической активности и токсичности по сравнению с существующими лекарственными средствами, которые используются в качестве стандарта.

2. Второе направление состоит в отборе соединений с одним определенным видом фармакологической активности. Это направление получило название направленного изыскания лекарственных средств.

Преимущество этой системы состоит в более быстром отборе фармакологически активных веществ, а недостатком является отсутствие выявления других, может быть весьма ценных видов фармакологической активности.

3. Следующее направление поиска – модификация структур существующих лекарственных средств. Этот путь поиска новых лекарственных средств является теперь весьма распространенным. Химики-синтетики заменяют в существующем соединении один радикал другим, вводят в состав исходной молекулы другие химические элементы или производят иные модификации. Этот путь позволяет увеличить активность лекарственного препарата, сделать его действие более избирательным, а также уменьшить нежелательные стороны действия и его токсичность .

Целенаправленный синтез лекарственных веществ означает поиск веществ с заранее заданными фармакологическими свойствами. Синтез новых структур с предполагаемой активностью чаще всего проводится в том классе химических соединений, где уже найдены вещества, обладающие определенной направленностью действия на данный орган или ткань.

Для основного скелета искомого вещества могут быть выбраны также те классы химических соединений, к которым относятся естественные вещества, участвующие в осуществлении функций организма. Целенаправленный синтез фармакологических веществ труднее вести в новых химических классах соединений ввиду отсутствия необходимых первоначальных сведений о связи фармакологической активности со структурой вещества. В этом случае необходимы данные о пользе вещества или элемента.

Далее к избранному основному скелету вещества добавляют различные радикалы, которые будут способствовать растворению вещества в липидах и воде. Синтезируемую структуру целесообразно сделать растворимой одновременно и в воде, и в жирах с той целью, чтобы она могла всосаться в кровь, перейти из нее через гематотканевые барьеры в ткани и клетки и затем вступить в связь с клеточными мембранами или проникнуть через них внутрь клетки и соединиться с молекулами ядра и цитозоля .

Целенаправленный синтез лекарственных веществ становится удачным, когда удается найти такую структуру, которая по размеру, форме, пространственному положению, электронно-протонным свойствам и ряду других физико-химических показателей будет соответствовать живой структуре, подлежащей регулированию.

Целенаправленный синтез веществ преследует не только практическую цель - получение новых лекарственных веществ с нужными фармакологическими и биологическими свойствами, но и является одним из методов познания общих и частных закономерностей жизненных процессов. Для построения теоретических обобщений необходимо дальнейшее изучение всех физико-химических характеристик молекулы и выяснение решающих изменений в ее структуре, обусловливающих переход одного вида активности в другой.

Составление комбинированных препаратов является одним из наиболее эффективных путей поиска новых лекарственных средств. Принципы, на основе которых восставляются многокомпонентные лекарственные препараты могут быть различными и изменяются вместе с методологией фармакологии . Разработаны основные принципы и правила составления комбинированных средств.

Чаще всего в комбинированные средства включаются лекарственные вещества, которые оказывают действие на этиологию заболевания и основные звенья патогенеза болезни. В комбинированное средство обычно включаются лекарственные вещества в малых или средних дозах, если между ними существуют явления взаимного усиления действия (потенцирование или суммирование).

Комбинированные средства, составленные с учетом указанных рациональных принципов, отличаются тем, что они вызывают значительный лечебный эффект при отсутствии или минимуме отрицательных явлений. Последнее их свойство обусловлено введением малых доз отдельных ингредиентов. Существенное преимущество малых доз состоит и в том что они не нарушают естественных защитных или компенсаторных механизмов организма.

Комбинированные препараты составляются также и по принципу включения в них таких дополнительных ингредиентов, которые устраняют отрицательное действие основного вещества.

Комбинированные препараты составляются с включением различных корригирующих средств, устраняющих нежелательные свойства основных лекарственных веществ (запах, вкус, раздражение) или регулирующих скорость освобождения лекарственного вещества из лекарственной формы или скорость всасывания его в кровь.

Рациональное составление комбинированных средств позволяет целенаправленно увеличить фармакотерапевтический эффект и устранить или уменьшить возможные отрицательные стороны действия лекарственных средств на организм.

При комбинировании лекарственных средств отдельные компоненты должны быть совместимы между собой в физико-химическом, фармакодинамическом и фармакокинетическом отношениях .

Каждое лекарственное средство до того, как начнет применяться в практической медицине должно пройти определенную процедуру изучения и регистрации, которая гарантировала бы, с одной стороны эффективность лекарства при лечении данной патологии, а с другой стороны – его безопасность.

Изучение лекарственного средства делится на два этапа: доклинический и клинический.

На доклиническом этапе происходит создание субстанции лекарственного вещества и испытание лекарственного препарата на животных с целью определения фармакологического профиля лекарства, определения острой и хронической токсичности, тератогенного (ненаследуемые дефекты в потомстве), мутагенного (наследуемые дефекты в потомстве) и канцерогенного действия (опухолевая трансформация клетки). Клинические испытания проводятся на добровольцах и делятся на три фазы. Первая фаза проводится на небольшом количестве здоровых людей и служит для определения безопасности препарата. Вторая фаза проводится на ограниченном числе пациентов (100-300 человек). Определяют переносимость терапевтических доз больным человеком и ожидаемые нежелательные эффекты. Третья фаза выполняется на большом числе пациентов (не менее 1.000-5.000 человек). Определяют степень выраженности терапевтического эффекта, уточняют нежелательные эффекты. При исследовании параллельно с группой принимающей исследуемое лекарство, набирается группа, которая получает стандартный препарат сравнения (позитивный контроль) или неактивный препарат, который внешне имитирует изучаемое лекарство (плацебо контроль). Это необходимо для того, чтобы исключить элемент самовнушения при лечении данным лекарством. При этом принимает ли пациент контрольный препарат или новое лекарство может не знать не только сам пациент, но и врач и даже руководитель исследования. Параллельно с началом продаж нового лекарства фармацевтический концерн организует четвертую фазу клинических испытаний (постмаркетинговые исследования). Цель этой фазы – выявить редко встречающиеся, но потенциально опасные нежелательные эффекты лекарства. Участниками этой фазы являются все практикующие врачи, которые назначают лекарство и пациенту, которые его применяют. При обнаружении серьезных недостатков лекарство может быть отозвано концерном. В целом процесс разработки нового лекарства занимает от 5 до 15 лет.

При проведении клинических испытаний возросли интенсивность общения и кооперация специалистов в области фундаментальной и клинической фармакологии, токсикологии, клинической медицины, генетики, молекулярной биологии, химии и биотехнологии.

Фармакокинетические и фармакодинамические параметры стали определять как на этапе доклинических фармакологических и токсикологических исследований, так и на стадии клинических испытаний. Выбор доз стал базироваться на оценке концентраций лекарственных средств и их метаболитов в организме. В арсенал токсикологии вошли исследования in vitro и эксперименты на трансгенных животных, позволившие приблизить модели заболеваний к реально существующим болезням человека.

В развитие фармакологии большой вклад внесли отечественные ученые. Иван Петрович Павлов (1849 - 1936) руководил экспериментальной лабораторией в клинике С. П. Боткина (1879 - 1890), заведовал кафедрой фармакологии в Военно-медицинской академии Санкт-Петербурга (1890 -1895). До этого, в 1890 г., он был избран заведующим кафедрой фармакологии в Императорском Томском университете. Деятельность И. П. Павлова как фармаколога отличалась широким научным размахом, блестящей постановкой экспериментов и глубоким физиологическим анализом

фармакологических данных. Физиологические методы, созданные И. П. Павловым, позволили исследовать лечебное действие сердечных гликозидов (ландыш, горицвет, морозник) на сердце и кровообращение, установить механизм жаропонижающего эффекта антипирина, изучить влияние алкалоидов (пилокарпин, никотин, атропин, морфин), кислот, щелочей и горечей на пищеварение.

Гениальным завершением научного творчества И. П. Павлова стали работы по физиологии и фармакологии высшей нервной деятельности. С помощью метода условных рефлексов впервые был открыт механизм действия на ЦНС спирта этилового, бромидов, кофеина. В 1904 г. исследования И.П. Павлова были удостоены Нобелевской премии.

Николай Павлович Кравков (1865 - 1924) - общепризнанный основоположник современного этапа развития отечественной фармакологии, создатель большой научной школы, руководитель кафедры в Военно-медицинской академии (1899 - 1924). Он открыл новое экспериментально-патологическое направление в фармакологии, внедрил в экспериментальную практику метод изолированных органов, предложил и совместно с хирургом С. П. Федоровым осуществил в клинике внутривенный наркоз гедоналом. Н. П. Кравков является основателем отечественной промышленной токсикологии, эволюционной и сравнительной фармакологии, впервые изучал действие лекарственных средств на эндокринную систему. Двухтомное руководство Н. П. Кравкова "Основы фармакологии" издавалось 14 раз. В память о выдающемся ученом учреждены премия и медаль за работы, которые внесли значительный вклад в развитие фармакологии.

Ученики Н. П. Кравкова Сергей Викторович Аничков (1892 - 1981) и Василий Васильевич Закусов (1903-1986) провели фундаментальные исследования синаптотропных средств и препаратов, регулирующих функции ЦНС.

Прогрессивные направления в фармакологии создали М. П. Николаев (исследовал действие лекарственных средств при заболеваниях сердечно-сосудистой системы), В. И. Скворцов (изучал фармакологию синаптотропных и снотворных средств), Н. В. Вершинин (предложил для медицинской практики препараты сибирских лекарственных растений и полусинтетическую левовращающую камфору), А. И. Черкес (автор фундаментальных работ по токсикологии и биохимической фармакологии сердечных гликозидов), Н. В. Лазарев (разработал модели заболеваний для оценки действия лекарственных средств, крупный специалист в области промышленной токсикологии), А. В. Вальдман (создатель эффективных психотропных препаратов), М. Д. Машковский (создатель оригинальных антидепрессантов, автор популярного руководства по фармакотерапии для врачей), Е. М. Думенова (создала эффективные средства для лечения эпилепсии), А. С. Саратиков (предложил для клиники препараты камфоры, психостимуляторы-адаптогены, гепатотропные средства, индукторы интерферона).

Основными задачами фармакологии является поиск и изучение механизмов действия новых ЛС для последующего их внедрения в широкую медицинскую практику. Процесс создания ЛС достаточно сложен и включает в себя несколько взаимосвязанных этапов. Необходимо подчеркнуть, что в создании и изучении лекарственных средств, помимо фармакологов, непосредственное участие принимают химики-синтетики, биохимики, биофизики, морфологи, иммунологи, генетики, токсикологи, инженеры-технологи, фармацевты, клинические фармакологи. В случае необходимости к их созданию привлекаются и другие специалисты. На первом этапе создания лекарственных средств к работе приступают химики-синтетики, которые синтезируют новые химические соединения, обладающие потенциальной биологической активностью. Обычно химики-синтетики осуществляют целенаправленный синтез соединений или модифицируют химическую структуру уже известных эндогенных (вырабатываемых в организме) биологически активных веществ или ЛС. Целенаправленный синтез лекарственных веществ подразумевает создание биологически активных веществ с заранее заданными фармакологическими свойствами. Как правило, такой синтез проводят в ряду химических соединений, в котором ранее были выявлены вещества, обладающие специфической активностью. Например, известно, что алифатические производные фенотиазина (промазин, хлорпромазин и др.) относятся к группе ЛС, эффективных в лечении психозов. Синтез близких им по химической структуре алифатических производных фенотиазина позволяет предположить наличие у вновь синтезированных соединений антипсихотической активности. Таким образом, были синтезированы, а затем внедрены в широкую медицинскую практику такие антипсихотические ЛС, как алимемазин, левомепромазин и др. В ряде случаев химики-синтетики модифицируют химическую структуру уже известных лекарственных средств. Например, в 70-х гг. XX в. в России было синтезировано и внедрено в широкую медицинскую практику антиаритмическое ЛС морацизин, которое, по мнению ведущего кардиолога США Б.Лауна (B.Lown), было признано самым перспективным антиаритмическим ЛС того времени. Замена в молекуле морацизина морфолиновой группы на диэтиламин позволила создать новый, оригинальный, высокоэффективный антиаритмический препарат этацизин. Создавать новые высокоэффективные ЛС можно и путем синтеза экзогенных аналогов (полученных искусственно) эндогенных (существующих в организме) биологически активных веществ. Например, хорошо известно, что важную роль в переносе энергии в клетке играет макроэргическое соединение креатинфосфат. В настоящее время в клиническую практику внедрен синтетический аналог креатинфосфата - препарат неотон, который с успехом применяют для лечения нестабильной стенокардии, острого инфаркта миокарда и т.д. В некоторых случаях синтезируют не полный структурный аналог эндогенного биологического вещества, а близкое к нему по структуре химическое соединение. При этом иногда молекулу синтезируемого аналога модифицируют таким образом, чтобы придать ей какие-либо новые свойства. Например, структурный аналог эндогенного биологически активного вещества норадреналина препарат фенилэфрин обладает аналогичным с ним сосудосуживающим действием, однако в отличие от норадреналина фенилэфрин в организме практически не разрушается ферментом катехол-О-метилтрансферазой, поэтому действует более длительно. Возможен и другой путь направленного синтеза ЛС - изменение их растворимости в жирах или воде, т.е. изменение липофильности или гидрофильности препаратов. Например, хорошо известная ацетилсалициловая кислота не растворима в воде. Присоединение к молекуле ацетилсалициловой кислоты лизина (препарат ацетилсалицилат лизин) делает это соединение легкорастворимым. Всасываясь в кровь, этот препарат гидролизуется до ацетилсалициловой кислоты и лизина. Можно привести много примеров направленного синтеза ЛС. Биологически активные соединения могут быть получены и из микроорганизмов, тканей растений и животных, т.е. биотехнологическим путем. Биотехнология - отрасль биологической науки, в которой для производства материалов, в том числе и ЛС, используют различные биологические процессы. Например, производство природных антибиотиков основано на способности ряда грибков и бактерий продуцировать биологически активные вещества, оказывающие бактериолитическое (вызывающее гибель бактерий) или бактериостатическое (вызывающее потерю способности бактериальных клеток к размножению) действие. Также при помощи биотехнологии возможно выращивание культуры клеток лекарственных растений, которые по биологической активности близки к натуральным растениям. Важная роль в создании новых высокоэффективных лекарственных средств принадлежит такому направлению биотехнологии, как генная инженерия. Недавние открытия в этой области, показавшие, что человеческие гены клонируются (клонирование - процесс искусственного получения клеток с заданными свойствами, например, путем переноса гена человека в бактерии, после чего они начинают продуцировать биологически активные вещества с заданными свойствами), позволили приступить к широкому промышленному производству гормонов, вакцин, интерферонов и других высокоэффективных ЛС с заранее заданными свойствами. Например, пересадка гена человека, ответственного в его организме за выработку инсулина, непатогенному микроорганизму - кишечной палочке (Е. coli ), позволило получать в промышленном масштабе человеческий инсулин. В последнее время появилось еще одно направление создания новых высокоэффективных ЛС, базирующееся на изучении особенностей их метаболизма (превращения) в организме. Например, известно, что в основе паркинсонизма лежит дефицит нейромедиатора дофамина в экстрапирамидной системе мозга. Естественно было бы для лечения паркинсонизма использовать экзогенный дофамин, который бы возместил нехватку эндогенного дофамина. Такие попытки были предприняты, однако выяснилось, что экзогенный дофамин в связи с особенностями химического строения не в состоянии проникнуть через гематоэнцефалический барьер (барьер между кровью и тканью мозга). Позже был синтезирован препарат леводопа, который в отличие от дофамина легко проникает через гематоэнцефалический барьер в ткань мозга, где метаболизируется (декарбоксилируется) и превращается в дофамин. Другим примером таких ЛС могут служить некоторые ингибиторы ангиотензинпревращающего фермента (ингибиторы АПФ) - периндоприл, рамиприл, эналаприл и др. Так, биологически неактивный эналаприл, метаболизируясь (гидролизуясь) в печени, образует биологически высокоактивный метаболит эналаприлат обладающий гипотензивным (понижающим артериальное давление) действием. Такие ЛС получили название пролекарств, или биопрекузоров (метаболических прекузоров). Возможен и другой путь создания ЛС на основе изучения их метаболизма - создание комплексов «вещество носитель - биологически активное вещество». Например, известно, что полусинтетический антибиотик из группы пенициллинов - ампициллин - плохо всасывается в желудочно-кишечном тракте (ЖКТ) - не более 30 -40 % принятого количества препарата. Для повышения всасывания (биодоступности) ампициллина был синтезирован полусинтетический пенициллин III поколения - бикампициллин, не обладающий противомикробным действием, но практически полностью всасывающийся в кишечнике (90 - 99 %). Попав в кровь, бикампициллин в течение 30 - 45 мин метаболизируется (гидролизуется) до ампициллина, который и оказывает выраженное противомикробное действие. Лекарственные средства, относящиеся к биопрекузорам и веществам-носителям, получили общее название - пролекарства. Помимо изучения фармакологически активных химических соединений, полученных путем целенаправленного синтеза или модификации структуры известных ЛС, возможен поиск биологически активных веществ среди различных классов химических соединений или продуктов растительного и животного происхождения, ранее в качестве потенциальных ЛС не изучавшихся. В этом случае при помощи различных тестов среди этих соединений отбирают вещества, обладающие максимальной биологической активностью. Такой эмпирический (от греч. empeiria - опыт) подход получил название скрининга фармакологических ЛС. Скрининг (от англ. screening ) - отбор, отсев, сортировка. В том случае, когда при изучении соединений оценивают весь спектр их фармакологической активности, говорят о полномасштабном скрининге, а в случае поиска веществ с какой-либо определенной фармакологической активностью, например противосудорожной, говорят о направленном скрининге лекарственных веществ. После этого в экспериментах на животных (in vivo ) и/или опытах, проводимых вне организма, например на культуре клеток (in vitro ), переходят к систематическому изучению спектра и особенностей фармакологической активности вновь синтезированных или отобранных эмпирическим путем соединений. При этом изучение биологической активности соединений проводят как на здоровых животных, так и в модельных экспериментах. Например, изучение спектра фармакологической активности веществ, обладающих антиаритмической активностью, проводят на моделях нарушений сердечного ритма, а антигипертензивных (понижающих артериальное давление - АД) соединений - в экспериментах на спонтанно гипертензивных крысах (специально выведенной линии крыс, обладающих врожденной гипертензией - высоким давлением). После выявления у изучаемых соединений высокой специфической активности, не уступающей, как минимум, активности уже известных (эталонных) ЛС, переходят к изучению особенностей их механизма действия, т. е. изучению особенностей влияния этих соединений на те или иные биологические процессы в организме, посредством которых реализуется их специфический фармакологический эффект. Например, в основе местноанестезирующего (обезболивающего) действия местных анестетиков лежит их способность понижать проницаемость мембран нервных волокон для ионов Na + и тем самым блокировать проведение по ним эфферентных импульсов, или влияние b-адреноблокаторов на сердечную мышцу обусловлено их способностью блокировать b 1 -адренорецепторы, расположенные на клеточной мембране клеток миокарда. В этих исследованиях, помимо собственно фармакологов, принимают участие биохимики, морфологи, электрофизиологи и т.д. По завершении фармакологических исследований и после определения механизмов действия изучаемых соединений начинается новый этап - оценка токсичности потенциальных ЛС. Токсичность (от греч. toxikon - яд) - действие ЛС, наносящее вред организму, которое может выражаться в расстройстве физиологических функций и/или нарушении морфологии органов и тканей вплоть до их гибели. Токсичность вновь синтезированных соединений изучают в специальных токсикологических лабораториях, где, помимо собственно токсичности, определяют мутагенность, тератогенность и онкогенность этих соединений. Мутагенность (от лат. mutatio - изменение, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества вызывать изменения генетического спектра клетки, приводящие к передаче по наследству его измененных свойств. Тератогенность (от греч. teras - чудовище, урод, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества оказывать повреждающее действие на плод. Онкогенность (от греч. onkoma - опухоль, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества вызывать раковые заболевания. Параллельно с изучением токсичности вещества инженеры-технологи разрабатывают лекарственную форму изучаемого вещества, определяют способы хранения лекарственной формы и совместно с химиками-синтетиками разрабатывают техническую документацию для промышленного производства субстанции. Субстанция (действующее вещество, активное начало) - компонент лекарственного средства, оказывающий собственно терапевтическое, профилактическое или диагностическое действие. В лекарственную форму (придаваемое ЛС удобное для применения в клинической практике состояние, при котором достигается необходимый эффект) входят еще и вспомогательные вещества (сахар, мел, растворители, стабилизаторы и т.д.), которые самостоятельно фармакологической активностью не обладают. В тех случаях, когда после токсикологических исследований доказана безопасность изучаемого вещества для организма, результаты фармакологических и токсикологических исследований обобщают, составляют временную Фармакопейную статью и материалы подают в ФГУ «Научный центр экспертизы средств медицинского применения» (ФГУ «НЦЭСМП») при Министерстве здравоохранения и социального развития РФ для получения разрешения на проведение I фазы клинических испытаний. Фармакопейная статья - государственный стандарт ЛС, содержащий перечень показателей и методов контроля их качества. ФГУ «НЦЭСМП» - экспертный орган Министерства здравоохранения и социального развития РФ, занимающийся рассмотрением вопросов, связанных с практическим применением отечественных и зарубежных лекарственных, профилактических, диагностических и физиотерапевтических средств, а также вспомогательных веществ. Главным вопросом, который решает ФГУ «НЦЭСМП», является подготовка рекомендаций Министерству здравоохранения и социального развития РФ на разрешение медицинского применения новых ЛС. После поступления документов в ФГУ «НЦЭСМП» все материалы доклинического изучения ЛС детально рассматривает специальный экспертный совет, в который входят ведущие специалисты страны (фармакологи, токсикологи, клинические фармакологи, клиницисты), и в случае положительной оценки представленных материалов принимают решение о проведении I фазы клинических испытаний. В случае получения разрешения ФГУ «НЦЭСМП» испытуемое ЛС передают клиническим фармакологам для проведения I фазы клинических испытаний, которые проводят на ограниченном контингенте больных. В некоторых странах I фазу клинических испытаний проводят на здоровых испытуемых - добровольцах (20 - 80 чел.). В этом случае особое внимание уделяют изучению безопасности и переносимости однократной и многократных доз испытуемого ЛС и особенностей его фармакокинетики. II фазу клинических испытаний нового ЛС проводят на пациентах (200 - 600 чел.), страдающих заболеванием, для лечения которого предполагают использовать изучаемый препарат. Главной целью II фазы клинических испытаний является доказательство клинической эффективности изучаемого ЛС. В том случае, если II фаза клинических испытаний показала эффективность препарата, переходят к III фазе исследований, которую проводят на большем числе (более 2 000) пациентов. Основной задачей III фазы клинических испытаний является определение эффективности и безопасности изучаемого ЛС в условиях, максимально приближенных к тем, в которых его будут использовать в случае получения разрешения на широкое медицинское применение препарата. В случае успешного завершения этого этапа клинических испытаний всю имеющуюся документацию обобщают, делают соответствующее заключение, и материалы передают в Министерство здравоохранения и социального развития РФ для получения окончательного разрешения на широкое клиническое использование препарата. Последний этап (IV фаза) клинических испытаний проводят уже после получения разрешения Министерства здравоохранения и социального развития Российской Федерации на клиническое применение нового ЛС; IV фаза клинических испытаний называется постмаркетинговым исследованием (англ. - postmarketing trials ). Целью IV фазы клинических испытаний является:

  • усовершенствование схем дозирования препарата;
  • сравнительный анализ эффективности лечения изучаемым ЛС и эталонными препаратами, применяемыми для фармакотерапии данной патологии;
  • выявление отличий изучаемого препарата от других ЛС данного класса;
  • выявление особенностей взаимодействия изучаемого ЛС с пищей и/или другими лекарствами;
  • выявление особенностей применения изучаемого ЛС у пациентов различных возрастных групп;
  • выявление отдаленных результатов лечения и т.д.
Протокол выполнения клинических испытаний достаточно сложен. Эффективность ЛС в клинике оценивается, в том числе и в сравнении с плацебо (от лат. placebo - понравлюсь, удовлетворю) - лекарственной формой, содержащей фармакологически индифферентное (неактивное) вещество, по внешнему виду и вкусу имитирующей то или иное ЛС, например таблетку, содержащую смесь сахара и мела. В клинической фармакологии плацебо используют при клинических испытаниях нового ЛС: одной группе пациентов назначают исследуемый препарат, а другой - плацебо и сравнивают эффекты от лечения. При этом все пациенты уверены в том, что они получают новое эффективное ЛС, т.е. плацебо используют для того, чтобы выявить истинную фармакологическую активность препарата, а не психотерапевтический эффект от его назначения. При проведении клинических испытаний используют слепой и двойной слепой методы определения активности ЛС. В первом случае только лечащий врач знает, какому из пациентов назначают испытуемое ЛС, какому - плацебо. При двойном слепом методе ни лечащий врач, ни тем более больной не знают, что он получил: истинное ЛС или плацебо. При двойном слепом методе эффективность препарата оценивают, как правило, клинические фармакологи, проводящие исследование препарата. Значение клинических испытаний новых ЛС крайне важно: только в условиях клиники возможно выявление особенностей влияния ЛС на организм человека, в том числе особенности всасывания, распределения, связывания с белками плазмы крови, метаболизма и выведения. Кроме того, только в условиях клиники возможно выявление ряда побочных эффектов, например, влияние ЛС на психическую сферу, интеллектуальную деятельность и т.д. Процесс создания и изучения новых ЛС достаточно долог. В среднем от момента синтеза до получения разрешения на широкое клиническое использование препарата проходит 8-15 лет, а материальные затраты составляют 500 - 800 млн. долл. США. При этом только затраты труда составляют 140 - 200 человеко-лет. Фактически эти затраты гораздо больше, так как даже по самым оптимистическим подсчетам лишь 5 - 7 % вновь синтезированных соединений благополучно проходят все этапы экспериментального и клинического изучения и получают разрешение на широкое клиническое применение. Однако даже после передачи препарата в клиническую практику интерес фармакологов и фармацевтов к нему не ослабевает, поскольку создаются новые, более удобные для применения лекарственные формы, уточняются и оптимизируются, а в некоторых случаях и пересматриваются показания к его применению, разрабатываются новые схемы лечения, определяются особенности его взаимодействия с другими ЛС, создаются комбинированные ЛС и т.д. Например, ацетилсалициловая кислота была внедрена в клиническую практику в 1899 г. как противовоспалительное, жаропонижающее и ненаркотическое обезболивающее средство. По этим показаниям ее использовали более 60 лет. Однако в 1970-е гг. была выявлена способность ацетилсалициловой кислоты подавлять синтез тромбоксана и тем самым понижать агрегационную способность тромбоцитов, т.е. у препарата было выявлено мощное антиагрегационное действие (способность ЛС препятствовать склеиванию, слипанию тромбоцитов в просвете сосудов; отсюда - название этой группы ЛС - «антиагреганты»). В настоящее время ацетилсалициловую кислоту широко применяют в клинической практике для профилактики тромбообразования при различных заболеваниях сердечно-сосудистой системы. Более того, согласно данным некоторых ученых систематический прием ацетилсалициловой кислоты более чем на 50 % понижает риск развития повторного инфаркта миокарда и/или инсульта. Постепенно совершенствовались и лекарственные формы ацетилсалициловой кислоты. В настоящее время создано большое количество водорастворимых лекарственных форм ацетилсалициловой кислоты - ацилпирин растворимый, упсарин, аспирин УПСА и др. Известно, что основным побочным действием ацетилсалициловой кислоты, особенно при длительном применении, является повреждение слизистой оболочки желудка и кишечника, в результате чего развиваются эрозии, изъязвления слизистой оболочки и резко возрастает риск развития желудочно-кишечных кровотечений, а у пациентов, страдающих язвенной болезнью желудка, возможно прободение язвы. Для профилактики этих осложнений разработаны и внедрены в широкую клиническую практику специальные лекарственные формы ацетилсалициловой кислоты, покрытые кишечнорастворимой оболочкой (аспирин кардио, тромбо АСС и др.), использование которых в определенной мере понижает риск развития этих осложнений.

Путь от получения индивидуального химического соединения до внедрения препарата в медицинскую практику занимает большой отрезок времени и включает в себя следующие этапы:

1) тонкий органический, биоорганический или микробиологический

синтез, идентификация и выделение соединений. Скрининг (отбор БАС) in vitro;

2) создание модели лекарственной формы;

3) проверка биологической активности на животных (in vivo);

4) нахождение оптимального метода синтеза, проверка биологической активности;

5) разработка лекарственной формы;

6) исследование острой и хронической токсичности, мутагенности, тератотоксичности, пирогенности;

7) изучение фармакокинетики и фармакодинамики (в т. ч. и синтез препарата меченного изотопами 3 Н и 14 С);

8) разработка лабораторного регламента производства;

9) клинические испытания;

10) разработка опытно-промышленного регламента, производственного регламента, ВФС, утверждение ВФС;

11) разрешение фармкомитета, приказ Минздрава РФ на применение лекарственного средства. Оформление документации на производство.

Общая стоимость разработки нового лекарственного средства достигает 400 млн долларов США.

Для уменьшения стоимости разработки ЛС используются достижения молекулярной биологии – целенаправленный синтез . Примером такого синтеза может служить создание антагонистов метаболитов нуклеинового обмена – 5-фторурацила, 6-меркаптопурина, флударабина. Еще одним примером является противораковый препарат мелфалан (рацемат – сарколизин).

В самом начале пути создания противоопухолевых препаратов использовали эмбихин – N- метил-N- бис(b-хлорэтил)амин.

Лечение этим препаратом ярко описано А.И. Солженицыным в романе «Раковый корпус». Препарат высокотоксичен, процент излеченных больных был мал (А.И. Солженицыну повезло). Академик АМН Л.Ф. Ларионов предложил ввести азотипритную группу в метаболит – фенилаланин. Так был синтезирован сарколизин, дающий хорошие результаты при лечении рака яичка. В настоящее время используют не рацемат, а оптически индивидуальный препарат – мелфалан. Блестящим примером целенаправленного синтеза является ингибитор превращения неактивного агиотензина I в активный агиотензин II – препарат каптоприл. Агиотензин I является декапептидом, а агиотензин II октапептидом. Карбоксипептидаза А отщепляет с карбоксиконца пептида последовательно лейцин и гистидин, но не может работать в том случае, если предыдущей аминокислотой является пролин.

Знание тонкого механизма работы фермента позволило синтезировать его ингибитор. Ангиотензин II обладает выраженной биологической активностью – вызывает сужение артериол, прессорное действие в 40 раз превосходит действие норадреналина. Каптоприл ингибирует карбоксипептидазу, его используют для лечения гипертонии. Тот же самый принцип был использован при синтезе препарата эналаприл. Рассмотренные препараты – метотрексат, азометония бромид, атенолол и фенилэфрин были получены в результате целенаправленного синтеза.

Другим направлением поиска БАВ является массовый скрининг – проверка биологической активности вновь синтезированных соединений. Ферменты и рецепторы имеют в пространственной структуре «карманы», в которые входят метаболиты или медиаторы. Во взаимодействии метаболита с ферментом принимают участие как полярные группировки, так и гидрофобные. Поэтому при отборе новых соединений для изучения биологической активности необходимо в молекуле иметь сочетание полярных и гидрофобных групп. В качестве гидрофобной части – Alk, Alk(F) n , а также циклические соединения. Но гетероциклы кроме гидрофобной части имеют уже и заряд. В качестве полярных групп используют: OH; O-Alk, OAc, NH 2 ; NHAlk, N(Alk) 2 , NHAc, SO 2 NHR, COOH, C=O, COOR, CONR 1 R 2 , NO 2 , SH, полярные гидрофобные – Cl, Br, J, F. Эти группы, введенные в гидрофобную молекулу, часто придают соединению биологическую активность, и их называют фармакофорными группами.

Введение фармакофорных групп не должно быть беспорядочным. Желательно, чтобы гидрофобные участки и полярные группы располагались на определенном расстоянии. Тем самым они могут моделировать либо метаболит, либо природное лекарственное средство. Этот принцип подобия был заложен в синтезе местноанестезирующих препаратов – анестезина и новокаина. Природным продуктом, обладающим мощным анестезирующим действием, является кокаин. Однако использование наркотического средства далеко небезопасно. В данном случае моделирование структуры природного продукта привело к положительным результатам. Структуры соединений приведены на схеме:

Поиск таких лекарственных средств занял около двадцати лет.

Еще в 80-е гг. XX в. отбор БАС проводился на животных, при этом химику-синтетику требовалось для первичных испытаний нарабатывать десятки граммов соединения. Статистика показывает, что одно новое БАС удается найти при «слепом» синтезе среди 100 000 вновь синтезированных веществ. Для уменьшения затрат скрининг стали проводить на изолированных органах, а затем и на клетках. Причем количество нарабатываемого вещества сократилось до сотен миллиграммов. И, естественно, увеличилось количество изучаемых веществ. Противоопухолевая и противовирусная активность новых соединений в настоящее время изучается на клетках. Живые и убитые клетки при окрашивании имеют различную окраску. Чем больше находят мертвых клеток человеческого штамма злокачественной опухоли под действием испытуемого вещества, тем оно более активно.В институте рака Национального института здоровья США, испытания проводятся на 55 штаммах человеческих опухолей, адаптированных для роста в условиях in vitro. При изучении противовирусной активности клетки, зараженные вирусом, прибавляют к раствору препарата. Ведут подсчет живых клеток.

При исследовании активности вновь синтезированных соединений подлинная революция произошла благодаря успехам биотехнологии. Доступность биомакромолекул (ферментов, белков рецепторов, РНК и т. п.), помещенных на твердый носитель, позволяет с помощью измерения биолюминесценции определять их ингибирование или стимуляцию под действием нового вещества. В настоящее время испытывается in vitro в фирме «Байер» 20 000 новых соединений в год. При этом существенно возрастает роль химиков синтетиков, которые должны обеспечить массовую наработку новых соединений и билдинг-блоков. Возникла так называемая комбинаторная химия (принципы комбинаторной химии рассмотрены в отдельном разделе). Основой для выбора такого синтеза является компьютерный анализ баз данных, в т. ч. и по наличию фармакофорных групп в определенных положениях молекул. Для создания «библиотеки» новых соединений с помощью методов комбинаторной химии необходимо знать закономерности протекания химических реакций. Это является одной из задач данного курса.

Еще одним направлением поиска БАВ служит модификация уже известных лекарственных соединений. Целью изменения структуры ЛС является снижение побочного действия препарата, а также повышение его активности – увеличение терапевтического индекса I t . Определенную роль играет изучение количественной взаимосвязи структура – активность. В качестве одного из примеров можно привести использование метода Хэнча, основанного на определении или расчете по аддитивной схеме липофильности соединения. В качестве меры липофильности используют коэффициент распределения (Р) вещества в системе октанол – вода. В общем виде уравнение Хэнча можно представить следующим выражением

lg 1/c = a 0 + a 1 lgP – a 2 (lgP) 2 + a 3 s + a 4 E s

где с – любая экспериментальная величина, характеризующая биологическую активность; a i – постоянные, полученные при обработке экспериментальных данных; Р –коэффициент распределения октанол – вода (Р = С октанол /С вода, С – концентрация вещества в каждой из фаз), параметры s, E s отражают электронные и стерические параметры молекулы.

Анализ уравнения показывает, что lg 1/c = f lgP, т.е. кривая проходит через максимум, соответствующий веществу с наибольшей активностью. Уравнение в грубом приближении описывает две стадии действия ЛС:

1) транспорт к участку действия;

2) взаимодействие с биомакромолекулой.

В качестве примера можно привести уравнение, связывающее Р с противоопухолевой активностью нитрозоалкилмочевин:

lg 1/c = - 0,061(lgP) 2 + 0,038lgP + 1,31

Седативная активность барбитуратов, изученная на мышах, связана с липофильностью следующим уравнением:

lg 1/c = 0,928 + 1,763 lgP - 0,327(lgP) 2

Активность, изученная на кроликах, дает несколько другое соотношение:

lg 1/c = 0,602 + 2,221 lgP - 0,326(lgP) 2

Хотя коэффициенты в этих уравнениях разные, общая тенденция сохраняется. Уравнение Хэнча сыграло свою роль при разработке современных компьютерных программ отбора веществ для изучения их биологической активности. В результате скрининга были найдены рассмотренные препараты циметидин и фентоламин. Изучение их механизма действия привело к открытию a-адренорецепторов и Н 2 -рецепторов.

При планировании синтеза ряда новых веществ целесообразно задаваться определенной молекулярно-биологической гипотезой, т.е. приближаться к целенаправленному синтезу. После нахождения in vitro активности соединения обязательно проверяют действие соединения in vivo. На последующих стадиях к будущему препарату предъявляют требования:

1) высокая эффективность лечебного эффекта;

2) максимальная величина I t , минимальное побочное действие;

3) после оказания лечебного действия препарат должен инактивироваться и выводиться из организма;

4) препарат не должен вызывать неприятных ощущений (вкус, запах, внешний вид);

5) препарат должен быть стабильным, минимальный срок хранения препарата должен быть не менее двух лет.

Обычным требованием к синтетическому препарату, за немногими исключениями, является высокая чистота субстанции. Как правило, содержание основного вещества в субстанции должно быть не менее 98 – 99 %. Наличие примесей регламентируется Фармакопейной статьей. При изменении метода синтеза необходимо проверять препарат на биоэквивалентность с ранее применявшимся ЛС.

1.2.2. Разработка плана синтеза

Каждое лекарственное средство может быть синтезировано несколькими альтернативными методами с использованием различных видов исходных продуктов (сырья). Появление новых видов полупродуктов, реакций и технологических процессов может резко изменить метод получения даже известных препаратов. Поэтому необходимо наработать практику составления плана синтеза БАВ на основе знания теории прохождения химических процессов органического синтеза, его конкретных условий и особенностей технологического оформления.

При разработке плана синтеза имеются два основных подхода – синтетический и ретросинтетический. Первый предполагает обычный подход: исходя из известных видов сырья, наметить последовательность реакций. Вторым методом разработки альтернативных путей получения БАВ является ретросинтетический подход к планированию синтеза. Прежде всего для его освоения необходимо привести терминологию:

1. Этот знак Þ трансформация – мысленная операция расчленения молекулы при ретросинтетическом анализе, противоположная знаку реакции.

2. После расчленения молекулы на части возникают заряженные осколки Х + Y¯ - синтоны.

3. Частицам Х + и Y¯ необходимо подобрать реальное химическое соединение, в котором будут либо те же заряды, либо d + , d¯ - синтетические эквиваленты . Синтетический эквивалент – реальное химическое соединение, позволяющее ввести синтон в молекулу в процессе ее конструирования.

4. БАВ – целевое соединение.

Далее, при трансформации необходимо расставить заряды синтонов так, чтобы отрицательный заряд находился на атоме, имеющем более высокую электроотрицательность, а положительный на менее электроотрицательном. В качестве примера можно рассмотреть ретросинтетический анализ молекулы парацетамола.

При трансформации молекулы разрываем связь С-N. Отрицательный заряд остается на группе NH, а положительный – на ацетильной группе. Соответственно синтетическими эквивалентами будут п -аминофенол и уксусный ангидрид или хлористый ацетил. Синтетический подход к разработке плана синтеза показан на схеме. Технический п -аминофенол не годится для получения парацетамола, т. к. содержит до 5 % продуктов окисления и других примесей, а очистка экономически невыгодна. Для синтеза препарата необходимо использовать свежеприготовленный продукт. Он может быть получен восстановлением п -нитрозофенола или п -нитрофенола. Пока в промышленности используют восстановление п -нитрофенола (причины этого рассмотрены в разделе «Реакции нитрозирования»).

В свою очередь п -нитрофенол может быть синтезирован нитрованием фенола или гидролизом п -нитрохлорбензола. В случае нитрования фенола возникают технологические трудности из-за энергичного протекания реакции нитрования, сопровождающегося некоторым осмолением реакционной массы. Кроме того, велики энергозатраты на разделение о- и п -изомеров. Таким образом, наиболее рационально получать п -нитрофенол гидролизом нитрохлорбензола, который является промышленно производимым продуктом. Даже на этом простейшем примере видно, что для ретросинтетического анализа необходимо уверенное знание органических реакций, их механизма, представления об источниках сырья и его доступности. Возможности разработки технологии производства обусловлены условиями проведения реакций, аппаратурным оформлением процессов, вопросами максимального использования сырья, а также вопросами экономики и экологии.

После составления альтернативных планов получения препарата разрабатывают оптимальный метод промышленного синтеза (ОМПС). Разработка ОМПС требует учета следующих факторов:

1) минимальное количество стадий. Каждая стадия – это затраты времени и сырья, увеличение количества отходов. Синтез должен быть по возможности коротким. Желательно использовать реакции, которые осуществляются в одну стадию или, по крайней мере, не требуют выделения промежуточных продуктов;

2) выход на каждой стадии. В идеале выход должен быть количественным (реально – очень редко), но хотя бы максимально возможным. Желательно, чтобы выделение продукта было простым и доступным;

3) хемоселективность реакции. С практической точки зрения имеет исключительное значение проведение реакции по одному из нескольких реакционных центров исходного соединения (региоселективность) или получение одного из возможных стереоизомеров (стереоселективность). Учет этого требования помогает избежать кропотливой работы по разделению изомеров и уменьшает количество отходов производства;

4) условия реакции. Превращение должно протекать в легкодостижимых условиях и не должно сопровождаться использованием или выделением высокопожаро-, взрывоопасных либо токсичных веществ;

5) процесс не должен ни при каких условиях привести к экологической катастрофе;

6) побочные продукты процесса должны быть легко удаляемыми и в идеале должны быть используемы либо легко подвергаться обезвреживанию.

В реальных условиях производства сложность заключается в том, что учет всех этих факторов приводит к противоречивым результатам, и ОМПС становится неоднозначным. Технолог длжен отдать предпочтение тем методам, которые дают максимальный экономический эффект, но без ущерба экологии.


1.3. сырьевая база

химико-фармацевтической промышленности

Основные продукты, которые получают с помощью тонкого, основного, нефтеоргсинтеза, лесохимии, коксохимического и микробиологического производства.

Для планирования синтеза конкретного лекарственного препарата и технологического оформления процессов необходимо в первую очередь обратиться к литературе и выяснить состояние промышленной разработки в нашей стране и за рубежом. Вторым шагом является оценка имеющихся либо вновь разработанных альтернативных методов получения препарата с точки зрения использования различных видов сырья в каждом методе, его стоимость и доступность. Для примера: в синтезе препарата необходимо использовать п -нитрохлорбензол. Его производят на Березниковском химзаводе, Рубежанском химкомбинате (Украина) и фирме Merk (Германия). Стоимость 1 т продукта одинакова, но транспортные расходы весьма отличаются. К тому же необходимо оценить и надежность поставщика. Безусловно, самым надежным будет его производство на своем заводе, но стоимость крупнотоннажного производства, конечно же ниже, чем своего небольшого.

Основные отрасли промышленности, которые поставляют сырье для промышленного получения синтетических ЛС в химико-фармацевтической промышленности (ХФП):

1) химическая переработка каменного угля, нефти, газа, древесины;

2) выделение продуктов из сырья растительного и животного происхож-дения;

3) микробиологический синтез.

Рассмотрим более подробно каждый из источников.

Создание лекарственных препаратов - длительный процесс, включающий несколько основных этапов - от прогнозирования до реализации в аптеке.

Создание нового лекарственного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определенным положениям и стандартам, утвержденным государственными учреждениями, Фармакопейным Комитетом, Фармакологическим Комитетом, Управлением МЗ РФ по внедрению новых лекарственных средств.

Разработка нового ЛВ включает следующие стадии:

  • 1) Замысел создания нового ЛВ. Возникает обычно в результате совместной работы ученых двух специальностей: фармакологов и химиков-синтетиков. Уже на этой стадии осуществляется предварительный отбор синтезированных соединений, которые, по мнению специалистов, могут быть потенциально биологически активными веществами.
  • 2) Синтез предварительно отобранных структур. На этой стадии так же осуществляется отбор, в результате которого вещества и т.д., не подвергаются дальнейшему исследованию.
  • 3) Фармакологический скрининг и доклинические испытания. Основной этап, во время которого отсеиваются неперспективные вещества, синтезированные на предыдущем этапе.
  • 4) Клиническая проверка. Ее выполняют только для перспективных БАВ, которые прошли все этапы фармакологического скрининга.
  • 5) Разработка технологии производства нового ЛВ и более рациональной ЛФ.
  • 6) Подготовка нормативной документации, включающей способы контроля качества как самого ЛВ, так и его ЛФ.
  • 7) Внедрение ЛВ в промышленное производство и отработка всех стадийного получения в заводских условиях.

Получение новой активной субстанции (действующего вещества или комплекса веществ) идет по трем основным направлениям.

  • - Эмпирический путь: скрининг, случайные находки;
  • - Направленный синтез: воспроизведение структуры эндогенных веществ, химическая модификация известных молекул;
  • - Целенаправленный синтез (рациональный дизайн химического соединения), основанный на понимании зависимости «химическая структура фармакологическое действие».

Эмпирический путь (от греч. empeiria - опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд химических соединений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах; спазмолитической активности - на изолированных гладкомышечных органах (ex vivo); гипогликемической активности по способности понижать уровень сахара в крови испытуемых животных (in vivo). Затем среди исследуемых химических соединений выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, которые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen - отсеивать, сортировать). Ряд препаратов был внедрен в медицинскую практику в результате случайных находок. Так было выявлено противомикробное действие азокрасителя с сульфаниламидной боковой цепью (красного стрептоцида), в результате чего появилась целая группа химиотерапевтических средств сульфаниламиды.

Другой путь создания лекарственных веществ состоит в получении соединений с определенным видом фармакологической активности. Он получил название направленного синтеза лекарственных веществ.

Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины.

Химическая модификация известных молекул позволяет создать лекарственные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием. Так, изменение химической структуры ингибиторов карбоангидразы привело к созданию тиазидных диуретиков, обладающих более сильным диуретическим действием.

Введение дополнительных радикалов и фтора в молекулу налидиксовой кислоты позволило получить новую группу противомикробных средств фторхинолонов с расширенным спектром противомикробного действия.

Целенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами. Синтез новых структур с предполагаемой активностью чаще всего проводится в том классе химических соединений, где уже найдены вещества, обладающие определенной направленностью действия. Примером может служить создание блокаторов Н2 гистаминовых рецепторов. Было известно, что гистамин является мощным стимулятором секреции хлористоводородной кислоты в желудке и что противогистаминные средства (применяемые при аллергических реакциях) не устраняют этот эффект. На этом основании был сделан вывод, что существуют подтипы гистаминовых рецепторов, выполняющих различные функции, и эти подтипы рецепторов блокируются веществами разной химической структуры. Была выдвинута гипотеза, что модификация молекулы гистамина может привести к созданию селективных антагонистов гистаминовых рецепторов желудка. В результате рационального дизайна молекулы гистамина в середине 70х годов XX века появилось противоязвенное средство циметидин - первый блокатор Н2 гистаминовых рецепторов. Выделение лекарственных веществ из тканей и органов животных, растений и минералов

Таким путем выделены лекарственные вещества или комплексы веществ: гормоны; галеновы, новогаленовы препараты, органопрепараты и минеральные вещества. Выделение лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, методами биотехнологии (клеточной и генной инженерии). Выделением лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, занимается биотехнология.

Биотехнология использует в промышленном масштабе биологические системы и биологические процессы. Обычно применяются микроорганизмы, культуры клеток, культуры тканей растений и животных.

Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии. Разработаны биотехнологические методы получения соматостатина, фолликулостимулирующего гормона, тироксина, стероидных гормонов. После получения новой активной субстанции и определения ее основных фармакологических свойств она проходит ряд доклинических исследований.

Различные ЛС имеют разные сроки годности. Срок годности - это период, в течение которого лекарственное средство должно полностью удовлетворять всем требованиям соответствующего Государственного стандарта качества. Стабильность (устойчивость) лекарственного вещества (ЛВ) и его качество тесно связаны между собой. Критерием стабильности служит сохранение качества ЛВ. Снижение количественного содержания фармакологически активного вещества в ЛС подтверждает его нестабильность. Этот процесс характеризуется константой скорости разложения ЛВ. Уменьшение количественного содержания не должно сопровождаться образованием токсичных продуктов или изменением физико-химических свойств ЛВ. Как правило, уменьшение количества ЛВ на 10% не должно происходить в течение 3-4 лет в готовых лекарственных формах и в течение 3 месяцев в ЛС, приготавливаемых в условиях аптеки.

Под сроком годности ЛС понимают период времени, в течение которого они должны полностью сохранять свою терапевтическую активность, безвредность и по уровню качественных и количественных характеристик соответствовать требованиям ГФ или ФС, в соответствии с которыми были выпущены и хранились в условиях, предусмотренных указанными статьями.

По истечении срока годности ЛС не может быть использовано без пере контроля качества и соответствующего изменение установленного срока годности.

Процессы, происходящие при хранении ЛС, могут привести к изменению их химического состава или физических свойств (образованию осадка, изменению окраски или агрегатного состояния). Эти процессы приводят к постепенной потере фармакологической активности или к образованию примесей, изменяющих направленность фармакологического действия.

Срок годности ЛС зависит от протекающих в них физических, химических и биологических процессов. На эти процессы большое влияние оказывает температура, влажность, свет, рН среды, состав воздуха и другие факторы.

К физическим процессам, происходящим во время хранения ЛС, относятся: поглощение и потеря воды; изменение фазового состояния, например плавление, испарение или сублимация, расслаивание, укрупнение частиц дисперсной фазы и др. Так, при хранении легколетучих веществ (раствор аммиака, бромкамфара, йод, йодоформ, эфирные масла) может изменяться содержание ЛВ в лекарственной форме.

Химические процессы протекают в виде реакций гидролиза, окисления-восстановления, рацемизации, образования высокомолекулярных соединений. Биологические процессы вызывают изменения в лекарствах под влиянием жизнедеятельности микроорганизмов, что приводит к снижению стабильности ЛС и инфицированию человека.

Лекарства чаще всего загрязняются сапрофитами, широко распространенными в окружающей среде. Сапрофиты способны разлагать органические вещества: белки, липиды, углеводы. Дрожжевые и нитчатые грибы разрушают алкалоиды, антипирин, гликозиды, глюкозу, различные витамины.

Срок годности ЛС может резко снижаться из-за низкого качества упаковки. Например, при хранении растворов для инъекций во флаконах или ампулах из некачественного стекла происходит переход силиката натрия и калия из стекла в раствор. Это приводит к увеличению значения рН среды и образованию так называемых «блесток» (частичек разрушенного стекла). При повышении рН соли алкалоидов и синтетических азотсодержащих оснований разлагаются со снижением или потерей лечебного действия и образованием токсических продуктов. Щелочные растворы катализируют процессы окисления аскорбиновой кислоты, аминазина, эрготала, викасола, витаминов, антибиотиков, гликозидов. Кроме того, щелочность стекла также способствует развитию микрофлоры.

Срок годности ЛС может быть увеличен стабилизацией.

Используют два метода стабилизации лекарств - физический и химический.

Методы физической стабилизации, как правило, основаны на защите лекарственных веществ от неблагоприятных воздействий внешней среды. В последние годы предложен ряд физических приемов повышения стойкости лекарств в процессе их приготовления и при хранении. Например, используется сублимационная сушка термолабильных веществ. Так, водный раствор бензилпенициллина сохраняет свою активность 1 - 2 сут, в то время как обезвоженный препарат активен в течение 2 - 3 лет. Ампулирование растворов можно осуществлять в токе инертных газов. Возможно нанесение защитных покрытий на твердые гетерогенные системы (таблетки, драже, гранулы), а также микрокапсулирование.

Однако методы физической стабилизации не всегда эффективны. Поэтому чаще используют методы химической стабилизации, основанные на введении в лекарства особых вспомогательных веществ - стабилизаторов. Стабилизаторы обеспечивают стабильность физико-химических, микробиологических свойств, биологической активности ЛС на протяжении определенного срока их хранения. Химическая стабилизация имеет особое значение для лекарств, подвергающихся различным видам стерилизации, особенно термической. Таким образом, стабилизация лекарств - комплексная проблема, включающая изучение устойчивости лекарств в виде истинных растворов или дисперсных систем к химическим превращениям и микробной контаминации.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло