Основные этапы создания лекарственных препаратов затраты на. Этапы разработки лекарственных препаратов Принципы создания новых лекарственных веществ

ЭТАПЫ СОЗДАНИЯ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Разработка новых лекарственных средств осуществляется совместными уси­лиями многих отраслей науки, при этом основная роль принадлежит специа­листам в области химии, фармакологии, фармации.

Создание нового лекарст­венного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определœенным положениям и стандартам, утвержден­ным государственными учреждениями - Фармакопейным Комитетом, Фармако­логическим Комитетом, Управлением МЗ РБ по внедрению новых лекарствен­ных средств.

Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами - GLP (Good Laboratory Practice - Качествен­ная лабораторная практика), GMP (Good Manufacturing Practice - Качественная производственная практика) и GCP (Good Clinical Practice - Качественная кли­ническая практика).

Знаком соответствия разрабатываемого нового лекарственного средства этим стандартам является официальное разрешение процесса их дальнейшего иссле­дования - IND (Investigation New Drug).

ПЕРВЫЙ ЭТАП - получение новой активной субстанции (действующего вещества или комплек­са веществ) идет по трем основным направлениям:

1. ХИМИЧЕСКИЙ СИНТЕЗ

· Эмпирический путь: скрининг, случайные находки;

· Направленный синтез: воспроизведение структуры эндогенных веществ, хи­мическая модификация известных молекул;

· Целœенаправленный синтез (рациональный дизайн химического соединœения), основанный на понимании зависимости «химическая структура - фармакологи­ческое действие».

Эмпирический путь (от греч. empeiria - опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд хими­ческих соединœений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определœенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах. Затем среди исследуемых химических соединœе­ний выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, кото­рые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen - отсеивать, сорти­ровать). Ряд препаратов был внедрен в медицинскую практику в результате слу­чайных находок.

Направленный синтез состоит в получении соединœе­ний с определœенным видом фармакологической активности. Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины. Затем химическая модификация известных молекул позволяет создать лекарствен­ные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием.

Целœенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами.

2. ВЫДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ ИЗ ТКАНЕЙ И ОРГАНОВ ЖИВОТНЫХ, РАСТЕНИЙ И МИНЕРАЛОВ

Таким путем выделœены лекарственные вещества или комплексы веществ: гор­моны; галеновы, новогаленовы препараты, органопрепараты и минœеральные ве­щества.

3. ВЫДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ, ЯВЛЯЮЩИХСЯ ПРОДУКТАМИ ЖИЗНЕДЕЯТЕЛЬ­НОСТИ ГРИБОВ И МИКРООРГАНИЗМОВ, МЕТОДАМИ БИОТЕХНОЛОГИИ (клеточной и генной инженерии)

Выделœением лекарственных веществ, являющихся продуктами жизнедеятель­ности грибов и микроорганизмов, занимается биотехнология.

Биотехнология использует в промышленном масштабе биологические систе­мы и биологические процессы. Обычно применяются микроорганизмы, культу­ры клеток, культуры тканей растений и животных.

Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии.

ВТОРОЙ ЭТАП

После получения новой активной субстанции и определœения ее базовых фар­макологических свойств она проходит ряд доклинических исследований.

В среднем на все исследования и разработки, необходимые для того, чтобы новый лекарственный препарат был доступен для пациентов, уходит более 12 лет и более 1 миллиарда евро.

— это рисковый бизнес. Большинство разрабатываемых соединений (около 98 %) так и не выходят на рынок. Так происходит, потому что при сравнении преимуществ и рисков (негативных побочных эффектов), обнаруживаемых в ходе разработки новых препаратов, сложно обнаружить превосходства в сравнении с уже имеющимися на рынке препаратами.

Процесс разработки нового лекарственного препарата можно представить в 10 шагах. Следующая статья описывает 1-й шаг. Предварительные исследования.

Описание процесса разработки медицинского препарата


Шаг 1: Предварительные исследования

Определение наличия «неудовлетворенной потребности». ». На этапе предварительного исследованиянаучные сотрудники в учебных заведениях (университетах) и участники отрасли (фармацевтические компании) проводят работу по изучению заболевания.

Неудовлетворенная потребность имеется тогда, когда для лечения определенного заболевания либо

  • не имеется подходящих препаратов либо
  • препарат имеется, но он вызывает у некоторых пациентов непереносимые , которые делают прием ими препарата невозможным.

В процессе исследований и разработки используется большое количество ресурсов и денежных средств. Бывает, что компании начинают работать над удовлетворением потребности только тогда, когда для этого есть коммерческое обоснование. Дело в том, что компаниям необходима прибыль от новых препаратов, чтобы покрыть расходы на их разработку и инвестировать средства в проекты, связанные с новыми лекарственными препаратами. Существует множество неудовлетворенных потребностей в новых препаратах, по которым в настоящее время не ведется никаких разработок. Европейскому законодательству это известно, и оно с помощью льгот и стимулов старается поощрять разработку препаратов для лечения более сложных заболеваний, например, редких и детских заболеваний.

Основные этапы разработки препаратов показаны на рисунке. Важным этапом является подача заявки на согласование препарата контрольно-надзорными органами и получение такого согласования. Его необходимо пройти до того, как препарат появляется на рынке (в продаже). Однако успешное согласование зависит не от компании-производителя.

Для каждого этапа разработки лекарственных препаратов требуется некое соглашение относительно финансовых средств (инвестиций) и людских ресурсов — это называется «инвестиционное решение». В дальнейшем необходимо изучить результаты каждого шага, прежде чем перейти к следующему. На протяжении всего процесса разработки повторяется схема «инвестиционное решение — работа — результат — инвестиционное решение» . Если результаты одного из шагов разработки оказываются неудовлетворительными, проект закрывается. В таких случаях финансовые и человеческие ресурсы используются в других проектах.

Справочная литература

  1. Edwards, L., Fox, A., & Stonier, P. (Eds.). (2010). Principles and practice of pharmaceutical medicine (3rd ed.). Oxford: Wiley-Blackwell.

Приложения

  • Информационный бюллетень Поиск новых препаратов
    Size: 1,247,915 bytes, Format: .docx
    Поиск новых препаратов. В этом информационном бюллетене описываются этапы поиска новых препаратов и процесс разработки, которые происходят до момента, когда вещество может испытываться на людях — от предварительного этапа (сбора информации о заболевании) до доклинических исследований на безопасность с использованием животных.

  • 1. Виды действия лекарственных веществ.
  • 2 .Противопаркинсонические лс.
  • Вопрос 1.
  • Противопоказания: повышенная чувствительность к компонентам препарата; язвенная болезнь желудка и двенадцатиперстной кишки; детский возраст (до 12 лет). Вопрос 2.
  • Применение вещества Допамин
  • Противопоказания
  • Применение вещества Натрия хлорид
  • Противопоказания
  • Побочные действия вещества Натрия хлорид
  • Вопрос 3.
  • Вопрос 1.
  • Вопрос 2.
  • Вопрос 3.
  • 3.Иммуномодуляторы, интерфероны, иммунные препараты.
  • Вопрос 1. Слабитаельные средства
  • Вопрос 2. Антигипертензивные препараты, влияющие на раас (Эналаприл, Каптоприл, Лозартан).
  • Вопрос 3. Этиловый спирт. Тетурам.
  • Вопрос 1. Вегетативная нервная система.
  • Вопрос 2 опиоидные лекарства
  • Вопрос 3. Антикоагулянты. Гепарин.
  • 1 Группа макролидов
  • I. Средства, влияющие преимущественно на сократительную активность мио­метрия
  • II. Средства, повышающие преимущественно тонус миометрия
  • III. Средства, понижающие тонус шейки матки
  • I. Средства, применяемые при лечении заболеваний, вызванных патогенными грибами
  • 1.Диуретики, оказывающие прямое влияние на функцию эпителия почечных канальцев
  • 2.Средства, действующие на толстый сегмент восходящей части петли Генле («петлевые» диуретики)
  • 3.Средства, действующие в основном на начальную часть дистальных почечных канальцев
  • 5.Средства, действующие на протяжении всех почечных канальцев (в прокси­мальных канальцах, нисходящей петле Генле, собирательных трубках)
  • 15.9. Средства, способствующие растворению желчных камней (холелитолитические средства)
  • 1. Стимуляция функции периферических желез - применение препаратов:
  • 2. Подавление функции периферических желез:
  • Вопрос 1. Вяжущие средства. Классификация. Понятие о вяжущем, раздражающем, прижигающем действии. Механизм действия, показания к применению. Адсорбирующие, обволакивающие, мягчительные средства.
  • 3. Полярные (водорастворимые-4-5 гидроксильных групп)
  • II. Сг с 6-членным лактоновым кольцом «бафадиенолиды»:
  • 3. Положительный батмотропный эффект - увеличение возбудимости! миокарда
  • 4. Отрицательный дромотропный эффект - прямое угнетающее влияние на проводимость в атриовентрикулярном узле - от синусового узла («водителя ритма») к рабочему миокарду.
  • Вопрос 3. Антисептические и дезинфицирующие средства. Требования, предъявляемые к антисептическим и дезинфицирующим средствам. Классификация, механизмы действия, практическое применение.
  • 1. Требования к антисептическим и дезинфицирующим средствам:
  • 3. Характеристики
  • 1. Абсолютная и относительная передозировка лекарственных препаратов. Причины, меры предупреждения и коррекции. Понятие о антидотах и комплексонах.
  • 2. Фенотиазиновые нейролептики. Сравн. Характеристика, показания, побочные действия.
  • 3. Антикоагулянты непрямого действия. Фармакокинетика и фармакодинамика. Принципы дозирования и контроля за терапией антикоагулянтами.
  • 1.Отравления, виды, помощь, примеры отравлений.
  • 2.Нейролептики
  • 3.Гемостатики, классификация, механизм, показания, побочка.
  • I. Ульцерогенное действие обусловлено 2-мя механизмами
  • 2)Рвотные средства рефлекторного и центрального действия. Механизм действия (сульфат меди, апоморфин). Противорвотные средства, механизм действия (метоклопрамид, ондасетрон). Показания к назначению.
  • 11 Нейроэндокринные эффекты. адг, пролактина, стг, ↓ гтг (фсг и лг) и актг
  • 2. На сердечно-сосудистую систему:
  • 1.Мягкие лекарственные формы. Сравнительная характеристика мягких лекарственных форм.
  • Вопрос1. Рецепт, его структура и содержание. Правила выписывания рецептов на лекарственные средства амбулаторным больным. Формы рецептурных бланков.
  • Вопрос3. Антипротозойные средства - метронидазол (трихопол), трихомонацид, мономицин, тетрациклины, солюсурьмин. Классификация, механизмы действия. Показания к назначению.
  • Вопрос1. Принципы изыскания новых лекарственных средств, пути внедрения их в медицинскую практику
  • 1. Жидкие лекарст венные формы. Настои,отвары,настойки,экстракты,эмульсии. Сравнительная характеристика,практическое применение.
  • 1. Жидкие лекарственные формы: настои, отвары, настойки, экстракты, эмульсии. Сравнительная характеристика, практическое применение.
  • 1) 1. Твердые лекарственные формы. Сравнительная оценка таблеток, драже, порошков, микрокапсулированных форм для лекарственной терапии. Имплантационные лекарственные формы.
  • 2) Адреномиметические средства непрямого типа действия (симпатомиметики). Эфедрин гидрохлорид, механизм действия, фармакологические эффекты, показания к применению. Побочное действие.
  • 3) Противоатеросклеротические средства, классификация. Статины, механизм действия, показания к назначению. Побочные эффекты.
  • Вопрос1. Принципы изыскания новых лекарственных средств, пути внедрения их в медицинскую практику

    Прогресс фармакологии характеризуется непрерывным поиском и созданием новых препаратов. Создание лекарств начинается с исследований химиков и фармакологов, творческое сотрудничество которых абсолютно необходимо при открытии новых препаратов. При этом поиск новых средств развивается по нескольким направлениям.

    Основным путем является ХИМИЧЕСКИЙ синтез препаратов, который может реализоваться в виде НАПРАВЛЕННОГО синтеза или иметь ЭМПИРИЧЕСКИЙ путь. Если направленный синтез связан с воспроизведением биогенных веществ (инсулин, адреналин, норадреналин), созданием антиметаболитов (ПАБК-сульфаниламиды), модификацией молекул соединений с известной биологической активностью (изменение структуры ацетилхолина - ганглиоблокатор гигроний) и т. д., то эмпирический путь состоит или из случайных находок, либо поиска путем скрининга, то есть просеивания различных химических соединений на фармакологическую активность.

    Одним из примеров эмпирических находок может быть приведен случай обранужения гипогликемического эффекта при использовании сульфаниламидов, что впоследствии привело к созданию сульфаниламидных синтетических перфоральных противодиабетических средств (бутамид, хлорпропамид).

    Весьма трудоемок и другой вариант эмпирического пути создания лекарств - МЕТОД СКРИНИНГА. Однако он неизбежен, особенно если исследуется новый класс химических соединений, свойства которых, исходя из их структуры, трудно прогнозировать (малоэффективный путь). И здесь огромную роль в настоящее время играет компьютеризация научного поиска.

    В настоящее время лекарственные средства получают главным образом посредством направленного химического синтеза, который может осуществляться а) путем подобия (введение дополнительных цепочек, радикалов) б) путем комплементарности, то есть соответствия каким-либо рецепторам тканей и органов.

    В арсенале лекарственных средств, помимо синтетических препаратов, значительное место занимают препараты и индивидуальные вещества из ЛЕКАРСТВЕННОГО СЫРЬЯ растительного или животного происхождения, а также из различных минералов. Это прежде всего галеновы, новогаленовы препараты, алкалоиды, гликозиды. Так из опия получают морфин, кодеин, папаверин, из рауфльфии змеевидной - резерпин, из наперстянки - сердечные гликозиды - дигитоксин, дигоксин; из ряда эндокринных желез крупного рогатого скота - гормоны, иммуноактивные препараты (инсулин, тиреоидин, тактивин и т. д.).

    Некоторые лекарственные средства являются продуктами жизнедеятельности грибов и микроорганизмов. Пример - антибиотики. Лекарственные вещества растительного, животного, микробного, грибкового происхождения часто служат основой для их синтеза, а также последующих химических превращений и получения полусинтетических и синтетических препаратов.

    Набирают темпы создания лекарственных средств путем использования методов генной инженерии (инсулин и т. п.).

    Новое лекарственное средство, пройдя через все эти "сита" (исследование фармактивности, фармакодинамики, фармакокинетики, изучение побочных эффектов, токсичности и т. д.) допускается на клинические испытания. Здесь используется метод "слепого контроля", эффект плацебо, метод двойного "слепого контроля", когда ни врач, ни больной не знает, когда это плацебо используется. Знает только специальная комиссия. Клинические испытания проводятся на людях, и во многих странах это осуществляется на добровольцах. Здесь, безусловно, возникает масса юридических, деонтологических, нравственных аспектов проблемы, которые требуют своей четкой разработки, регламентации и утверждения законов на данный счет.

    Некоторые открытия в области фармакологии и их внедрение в медицинскую практику:

    1865 г. – установлено влияние сердечных гликозидов на сердце

    1879 г. – открытие нитроглицерина

    1921 г. – открытие инсулина

    1939 г. – открытие пенициллина

    1942 г. – открытие первых противоопухолевых препаратов

    1952 г. – открытие психотропных средств

    1955 г. – оральные контрацептивы

    1958 г. – первые в-адреноблокаторы

    1987 г. – группа статинов (гиполипидемические средства)

    1992 г. – ингибиторы АПФ

    1994 г. – ингибиторы протонного насоса

    вопрос2. . Мышечные релаксанты периферического действия (курареподобные средства).Классификация, механизм действия,фармакодинамика.Препараты: пипекурония бромид (ардуан), суксаметония йодид (дитилин), атракурий (тракриум), тубокурарин.Показания и противопоказания к применению. Меры помощи при передозировке.

    Классификация:

    1) Антидеполяризующие ср-ва:

    Тубокурарина хлорид

    Панкурония бромид

    Пипекурония бромид

    2) Деполяризующие ср-ва:

    3) В-ва смешанного типа действия:

    Диоксоний

    1 .Антидеполяризующие препараты блокируют н-холинорецепторы и препятствуют деполяризующему действию ацетилхолина. Блокирующее действие на ионные каналы имеет второстепенное значение. Антидеполяризующие средства могут быть конкурентными и неконкурентными н-холиноблокаторами. Так, возможен истинный конкурентный антагонизм между курареподобным веществом (например, тубокурарином) и ацетилхолином по влиянию на н-холинорецепторы. Если на фоне нервно-мышечного блока, вызванного тубокурарином, в области н-холинорецепторов концевой пластинки значительно повысить концентрацию ацетилхолина, то это приведет к восстановлению нервно-мышечной передачи (конкурентно действующий ацетил-холин вытеснит связанный с холинорецепторами тубокурарин). Если при этом вновь повысить до определенных величин концентрацию тубокурарина, то снова наступит блокирующий эффект. Курареподобные средства, действующие по такому принципу, называют конкурентными. К препаратам конкурентного типа действия относятся также панкуроний (павулон), пипекуроний (ардуан). Кроме того, имеются препараты неконкурентного типа (например, престонал). В этом случае курареподобный препарат и ацетилхолин, по-видимому, реагируют с разными, но взаимосвязанными рецепторными субстратами концевой пластинки.

    2. Деполяризующие средства (например, дитилин) возбуждают н-холинорецепторы и вызывают стойкую деполяризацию постсинаптической мембраны. Вначале развитие деполяризации проявляется мышечными подергиваниями-фасцикуляциями (нервно-мышечная передача кратковременно облегчается). Через небольшой промежуток времени наступает миопаралитический эффект.

    3. Отдельные курареподобные средства обладают смешанным типом действия (может быть сочетание деполяризующих и антидеполяризующих свойств). К этой группе относится диоксоний (деполяризующе-неконкурентный препарат). Сначала он вызывает кратковременную деполяризацию, которая сменяется недеполяризующим блоком.

    По продолжительности миопаралитического действия курареподобные средства условно можно подразделить на три группы: короткого действия (5-10 мин)-дитилин, средней продолжительности (20-50 мин) - тубокурарин, пипекуроний, панкуроний.

    Большинство курареподобных средств обладает высокой избирательностью действия в отношении нервно-мышечных синапсов. Вместе с тем они могут влиять и на другие звенья рефлекторной дуги. Ряд антидеполяризующих веществ обладает умеренной ганглиоблокирующей активностью (особенно тубокурарин), одним из проявлений которой является снижение артериального давления, а также угнетающим влиянием на н-холинорецепторы синока-ротидной зоны и мозгового слоя надпочечника. Для некоторых веществ (панкуроний) отмечено выраженное м-холиноблокирующее (ваголитическое) действие в отношении сердца, что приводит к тахикардии.

    Тубокурарин и некоторые другие препараты могут стимулировать высвобождение гистамина, что сопровождается снижением артериального давления, повышением тонуса мышц бронхов.

    Деполяризующие курареподобные средства оказывают определенное влияние на электролитный баланс. В результате деполяризации постсинаптичес-кой мембраны ионы калия выходят из скелетных мышц и содержание их в экстрацеллюлярной жидкости и плазме крови увеличивается. Это может быть причиной аритмий сердца.

    Деполяризующие курареподобные вещества стимулируют аннулоспиральные окончания скелетных мышц. Это приводит к усилению афферентной импульсации в проприоцептивных волокнах и может вызывать угнетение моносинаптических рефлексов.

    Курареподобные препараты, являющиеся четвертичными аммониевыми соединениями, плохо всасываются в желудочно-кишечном тракте, поэтому вводят их парентерально, обычно внутривенно.

    Курареподобные препараты широко применяют в анестезиологии при проведении разнообразных хирургических вмешательств. Вызывая расслабление скелетных мышц, они значительно облегчают проведение многих операций на органах грудной и брюшной полостей, а также на верхних и нижних конечностях. Их применяют при интубации трахеи, бронхоскопии, вправлении вывихов и репозиции костных отломков. Кроме того, эти препараты иногда используют при лечении столбняка, при электросудорожной терапии.

    Побочные эффекты курареподобных средств не носят угрожающего характера. Артериальное давление может снижаться (тубокурарин) и повышаться (дитилин). Для ряда препаратов типична тахикардия. Иногда возникают аритмии сердца (дитилин), бронхоспазм (тубокурарин), повышение внутриглазного давления (дитилин). Для деполяризующих веществ характерны мышечные боли. У лиц с генетически обусловленной недостаточностью холин-эстеразы плазмы крови дитилин может вызывать длительное апноэ (до 6-8 ч и более вместо обычных 5-10 мин).

    Курареподобные средства следует применять с осторожностью при заболеваниях печени, почек, а также в старческом возрасте.

    Следует помнить, что курареподобные средства угнетают или полностью выключают дыхание. Поэтому они могут быть использованы в медицинской практике только при наличии антагонистов и всех необходимых условий для проведения искусственного дыхания.

    Вопрос3. Антиангинальные средства бета-адреноблокаторы, и блокаторы кальциевых каналов. Механизм антиангинального действия, фармакодинамика. Сравнительная характеристика – пропранолол (анаприлин), атенолол (тенормин), верапамил, (изоптин), нифедипин. Показания к назначению. Побочное действие.

    БЕТА-АДРЕНОБЛОКАТОРЫ

    Данная группа средств в последние годы нашла широкое распространение для лечения целого ряда терапевтических заболеваний.

    Различают неселективные бета-адреноблокаторы (тимолол, пропранолол, соталол, надолол, окспренолол, пиндолол и др.) и селективные бета-1-адреноблокаторы (метопролол, атенолол, ацебутолол и др.).

    Терапевтическая активность этой группы препаратов при стенокардии обусловлена их способностью блокировать влияние симпатической нервной системы на сердце, что приводит к снижению его работы и уменьшению потребления миокардом кислорода.

    АНАПРИЛИН (пропранолол, индерал, обзидан; таблетки по 0, 01 и 0, 04) - некардиоселективный бета-адреноблокатор без собственной симпатомиметической активности с непродолжительным действием. Анаприлин снижает все 4 функции сердца, прежде всего - сократимость миокарда. Максимально выраженный эффект наблюдается в течение 30-60 минут, терапевтический эффект, в связи с коротким периодом полувыведения (2, 5-3, 2 часа), длится 5-6 часов. Это означает что препарат следует принимать 4-5 раз в сутки. Анаприлин используют только для профилактики приступов стенокардии, исключительно при типичной ее форме, так как при вазоспастической форме стенокардии на фоне заблокированных бета-адренорецепторов, катехоламины будут усиливать спазм коронарных сосудов.

    Побочные эффекты: снижение сократимости миокарда, брадикардия, АВ-блокады, бронхоспазм; тошнота, рвота, диарея, общая слабость, головокружение, иногда - аллергические реакции. Возможны явления депрессии. При одновременном применении сахароснижающих средств - опасность гипогликемии.

    АНТАГОНИСТЫ КАЛЬЦИЯ (БЛОКАТОРЫ КАЛЬЦИЕВЫХ КАНАЛОВ)

    Значение кальция в выполнении организмом жизненно важных функций огромно. Кальций необходим для регуляции процессов возбуждения и торможения как в гладкой, так и в скелетной мускулатуре. Поступая из внешней среды или из внутриклеточного депо под действием различных стимулов, кальций взаимодействует с кальций-связывающими белками цитоплазмы, выполняющими роль регуляторов.

    Для сердца и сосудов значение кальция несколько различно, что связано с преобладанием (в сердце или сосудах) специфичных кальцийсвязывающих белков. В миокардиоцитах имеется особый белок - тропонин (лейотонин), а в гладких миоцитах сосудов - особый термостабильный кальций-зависимый белок кальмодулин. В зависимости от того, действуют ли они в большей степени на тропонин или кальмодулин, одни блокаторы кальциевых каналов в большей степени влияют на сердце, а другие - на сосуды. Например, такой антагонист кальция как ВЕРАПАМИЛ в большей степени действует на сердце (очень важным является его антиаритмическое действие).

    Антиангинальный эффект препаратов этой группы связан как с прямым их действием на миокард, так и, прежде всего, с влиянием на периферическую гемодинамику. Антагонисты кальция блокируют его поступление в гладкомышечную клетку, таким образом уменьшая ее способность к сокращению. Действие этих средств на коронарные сосуды характеризуется как антиспастическое, в результате коронарный кровоток увеличивается, а вследствие действия на периферические сосуды - снижается АД. Благодаря этому снижается постнагрузка на сердце, улучшается кровоток в зоне ишемии. Эти препараты уменьшают механическую работу сердца и потребность миокарда в кислороде, увеличивают количество коллатералей. При их использовании у больных уменьшается частота и интенсивность приступов стенокардии, повышается толерантность к физическим нагрузкам.

    Наиболее часто с этой целью применяют нифедипин (синонимы: фенигидин, коринфар, кордафен, кордипин и др.; таб. по 0, 01). Эффект наступает через 15-20 минут и продолжается 4-6 часов. Препарат уступает нитроглицерину по силе антиангинального эффекта.

    В отличие от верапамила препарат обладает слабой антиаритмической активностью, сильно снижает диастолическое давление. Особенно хорошо расслабляет коронарные сосуды при вазоспастической стенокардии. Вообще при этой форме стенокардии антагонисты кальция предпочтительнее. Кроме нифедипина для хронического лечения стенокардии используют созданные в 80-х годах производные нифедипина второго поколения: исрадипин (син.: ломир).

    Данная группа препаратов дает незначительное количество побочных эффектов: снижение АД, головные боли, мышечная слабость, тошнота, запоры. Непрерывный прием препаратов в течение 2-3 месяцев ведет к развитию толерантности.

    При стенокардии с брадикардией, используют производное эфедрина - ОКСИФЕДРИН (ильдамен, МИОФЕДРИН; таблетки по 0, 016). Препарат обладает частичной агонистической активностью по отношению к бета-1-рецепторам сердца, оказывает непосредственное коронарорасширяющее действие, повышает сократительную способность миокарда без избыточного увеличения потребности в кислороде. Другой подобный препарат НОНАХЛАЗИН, отечественного производства, выпускается в таблетках по 0, 03 - производное фенотиазина. Препарат обладает положительным инотропным эффектом и снижает тонус коронарных артерий.

    При лечении больных со стенокардией находит применение и такой препарат как дипиридамол (курантил)- производное пиримидина. Этот препарат действует на микроциркуляцию крови в мелких сосудах, препятствуя агрегации тромбоцитов, увеличивает число коллатералей и интенсивность коллатерального кровотока, однако, может вызвать симптом "обкрадывания", особенно при внутривенном введении у больных с выраженным коронарным атеросклерозом, так как препарат вызывает расширение тех сосудов, которые не поражены склерозом. С другой стороны, этот препарат показан больным, у которых есть стенокардия, а также вследствие различных причин повышена свертываемость крови.

    Средства типа валидола имеют рефлекторный тип действия. В состав этого препарата входит ментол (25% раствор ментола в ментоловом эфире изовалериановой кислоты). Является слабым антиангинальным средством, оказывает седативное действие и умеренный рефлекторный сосудорасширяющий эффект. Показан при легких формах стенокардии.

    Билет 10

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСТИТЕТ

    ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ

    И СОЦИАЛЬНОМУ РАЗВИТИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

    (ГОУ ВПО НГМУ РОСЗДРАВА)

    Кафедра фармацевтической химии

    К УРСОВ АЯ РАБОТА

    по фармацевтической химии

    на тему: «Создание и испытание новых лекарственных препаратов»

    Выполнила: студентка 4 курса заочного

    отделения фармацевтического факультета

    (сокращенная форма обучения на базе ВХО)

    Кунденко Диана Александровна

    Проверила: Пашкова Л.В.

    Новосибирск 2012

    1. Этапы процесса создания нового лекарственного препарата. Стабильность и сроки хранения лекарственных средств

    2. Клинические испытания лекарственных средств (GCP). Этапы GCP

    3. Количественный анализ смесей без предварительного разделения компонентов физико-химическими методами

    4. Система контроля качества в условиях химико-фармацевтических заводов и фабрик

    5. Основные задачи и особенности биофармацевтического анализа

    6. Виды государственных стандартов. Требования общих стандартов к лекарственным формам

    7. Кислота хлористоводородная: физические свойства, подлинность, количественное определение, применение, хранение

    8. Кислород: физические свойства, подлинность, доброкачественность, количественное определение, применение, хранение

    9. Висмута нитрат основной: физические свойства, испытание на подлинность, количественное определение, применение, хранение

    10. Препараты соединений магния, применяемые в медицинской практике: физические свойства, подлинность, количественное определение, применение, хранение

    11. Препараты железа и его соединений: физические свойства, подлинность, количественное определение, применение, хранение

    12. Фармакопейные радиоактивные препараты: подлинность, установление радиохимического состава, удельная активность

    1. Этапы процесса создания нового лекарственного препарата. Стабильность и сроки хранения лекарственных средств

    Создание лекарственных препаратов - длительный процесс, включающий несколько основных этапов - от прогнозирования до реализации в аптеке.

    Создание нового лекарственного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определенным положениям и стандартам, утвержденным государственными учреждениями, Фармакопейным Комитетом, Фармакологическим Комитетом, Управлением МЗ РФ по внедрению новых лекарственных средств.

    Разработка нового ЛВ включает следующие стадии:

    1) Замысел создания нового ЛВ. Возникает обычно в результате совместной работы ученых двух специальностей: фармакологов и химиков-синтетиков. Уже на этой стадии осуществляется предварительный отбор синтезированных соединений, которые, по мнению специалистов, могут быть потенциально биологически активными веществами.

    2) Синтез предварительно отобранных структур. На этой стадии так же осуществляется отбор, в результате которого вещества и т.д., не подвергаются дальнейшему исследованию.

    3) Фармакологический скрининг и доклинические испытания. Основной этап, во время которого отсеиваются неперспективные вещества, синтезированные на предыдущем этапе.

    4) Клиническая проверка. Ее выполняют только для перспективных БАВ, которые прошли все этапы фармакологического скрининга.

    5) Разработка технологии производства нового ЛВ и более рациональной ЛФ.

    6) Подготовка нормативной документации, включающей способы контроля качества как самого ЛВ, так и его ЛФ.

    7) Внедрение ЛВ в промышленное производство и отработка всех стадийного получения в заводских условиях.

    Получение новой активной субстанции (действующего вещества или комплекса веществ) идет по трем основным направлениям.

    Эмпирический путь: скрининг, случайные находки;

    Направленный синтез: воспроизведение структуры эндогенных веществ, химическая модификация известных молекул;

    Целенаправленный синтез (рациональный дизайн химического соединения), основанный на понимании зависимости «химическая структура фармакологическое действие».

    Эмпирический путь (от греч. empeiria - опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд химических соединений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах; спазмолитической активности - на изолированных гладкомышечных органах (ex vivo); гипогликемической активности по способности понижать уровень сахара в крови испытуемых животных (in vivo). Затем среди исследуемых химических соединений выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, которые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen - отсеивать, сортировать). Ряд препаратов был внедрен в медицинскую практику в результате случайных находок. Так было выявлено противомикробное действие азокрасителя с сульфаниламидной боковой цепью (красного стрептоцида), в результате чего появилась целая группа химиотерапевтических средств сульфаниламиды.

    Другой путь создания лекарственных веществ состоит в получении соединений с определенным видом фармакологической активности. Он получил название направленного синтеза лекарственных веществ.

    Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины.

    Химическая модификация известных молекул позволяет создать лекарственные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием. Так, изменение химической структуры ингибиторов карбоангидразы привело к созданию тиазидных диуретиков, обладающих более сильным диуретическим действием.

    Введение дополнительных радикалов и фтора в молекулу налидиксовой кислоты позволило получить новую группу противомикробных средств фторхинолонов с расширенным спектром противомикробного действия.

    Целенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами. Синтез новых структур с предполагаемой активностью чаще всего проводится в том классе химических соединений, где уже найдены вещества, обладающие определенной направленностью действия. Примером может служить создание блокаторов Н2 гистаминовых рецепторов. Было известно, что гистамин является мощным стимулятором секреции хлористоводородной кислоты в желудке и что противогистаминные средства (применяемые при аллергических реакциях) не устраняют этот эффект. На этом основании был сделан вывод, что существуют подтипы гистаминовых рецепторов, выполняющих различные функции, и эти подтипы рецепторов блокируются веществами разной химической структуры. Была выдвинута гипотеза, что модификация молекулы гистамина может привести к созданию селективных антагонистов гистаминовых рецепторов желудка. В результате рационального дизайна молекулы гистамина в середине 70х годов XX века появилось противоязвенное средство циметидин - первый блокатор Н2 гистаминовых рецепторов. Выделение лекарственных веществ из тканей и органов животных, растений и минералов

    Таким путем выделены лекарственные вещества или комплексы веществ: гормоны; галеновы, новогаленовы препараты, органопрепараты и минеральные вещества. Выделение лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, методами биотехнологии (клеточной и генной инженерии). Выделением лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, занимается биотехнология.

    Биотехнология использует в промышленном масштабе биологические системы и биологические процессы. Обычно применяются микроорганизмы, культуры клеток, культуры тканей растений и животных.

    Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии. Разработаны биотехнологические методы получения соматостатина, фолликулостимулирующего гормона, тироксина, стероидных гормонов. После получения новой активной субстанции и определения ее основных фармакологических свойств она проходит ряд доклинических исследований.

    Различные ЛС имеют разные сроки годности. Срок годности - это период, в течение которого лекарственное средство должно полностью удовлетворять всем требованиям соответствующего Государственного стандарта качества. Стабильность (устойчивость) лекарственного вещества (ЛВ) и его качество тесно связаны между собой. Критерием стабильности служит сохранение качества ЛВ. Снижение количественного содержания фармакологически активного вещества в ЛС подтверждает его нестабильность. Этот процесс характеризуется константой скорости разложения ЛВ. Уменьшение количественного содержания не должно сопровождаться образованием токсичных продуктов или изменением физико-химических свойств ЛВ. Как правило, уменьшение количества ЛВ на 10% не должно происходить в течение 3-4 лет в готовых лекарственных формах и в течение 3 месяцев в ЛС, приготавливаемых в условиях аптеки.

    Под сроком годности ЛС понимают период времени, в течение которого они должны полностью сохранять свою терапевтическую активность, безвредность и по уровню качественных и количественных характеристик соответствовать требованиям ГФ или ФС, в соответствии с которыми были выпущены и хранились в условиях, предусмотренных указанными статьями.

    По истечении срока годности ЛС не может быть использовано без пере контроля качества и соответствующего изменение установленного срока годности.

    Процессы, происходящие при хранении ЛС, могут привести к изменению их химического состава или физических свойств (образованию осадка, изменению окраски или агрегатного состояния). Эти процессы приводят к постепенной потере фармакологической активности или к образованию примесей, изменяющих направленность фармакологического действия.

    Срок годности ЛС зависит от протекающих в них физических, химических и биологических процессов. На эти процессы большое влияние оказывает температура, влажность, свет, рН среды, состав воздуха и другие факторы.

    К физическим процессам, происходящим во время хранения ЛС, относятся: поглощение и потеря воды; изменение фазового состояния, например плавление, испарение или сублимация, расслаивание, укрупнение частиц дисперсной фазы и др. Так, при хранении легколетучих веществ (раствор аммиака, бромкамфара, йод, йодоформ, эфирные масла) может изменяться содержание ЛВ в лекарственной форме.

    Химические процессы протекают в виде реакций гидролиза, окисления-восстановления, рацемизации, образования высокомолекулярных соединений. Биологические процессы вызывают изменения в лекарствах под влиянием жизнедеятельности микроорганизмов, что приводит к снижению стабильности ЛС и инфицированию человека.

    Лекарства чаще всего загрязняются сапрофитами, широко распространенными в окружающей среде. Сапрофиты способны разлагать органические вещества: белки, липиды, углеводы. Дрожжевые и нитчатые грибы разрушают алкалоиды, антипирин, гликозиды, глюкозу, различные витамины.

    Срок годности ЛС может резко снижаться из-за низкого качества упаковки. Например, при хранении растворов для инъекций во флаконах или ампулах из некачественного стекла происходит переход силиката натрия и калия из стекла в раствор. Это приводит к увеличению значения рН среды и образованию так называемых «блесток» (частичек разрушенного стекла). При повышении рН соли алкалоидов и синтетических азотсодержащих оснований разлагаются со снижением или потерей лечебного действия и образованием токсических продуктов. Щелочные растворы катализируют процессы окисления аскорбиновой кислоты, аминазина, эрготала, викасола, витаминов, антибиотиков, гликозидов. Кроме того, щелочность стекла также способствует развитию микрофлоры.

    Срок годности ЛС может быть увеличен стабилизацией.

    Используют два метода стабилизации лекарств - физический и химический.

    Методы физической стабилизации, как правило, основаны на защите лекарственных веществ от неблагоприятных воздействий внешней среды. В последние годы предложен ряд физических приемов повышения стойкости лекарств в процессе их приготовления и при хранении. Например, используется сублимационная сушка термолабильных веществ. Так, водный раствор бензилпенициллина сохраняет свою активность 1 - 2 сут, в то время как обезвоженный препарат активен в течение 2 - 3 лет. Ампулирование растворов можно осуществлять в токе инертных газов. Возможно нанесение защитных покрытий на твердые гетерогенные системы (таблетки, драже, гранулы), а также микрокапсулирование.

    Однако методы физической стабилизации не всегда эффективны. Поэтому чаще используют методы химической стабилизации, основанные на введении в лекарства особых вспомогательных веществ - стабилизаторов. Стабилизаторы обеспечивают стабильность физико-химических, микробиологических свойств, биологической активности ЛС на протяжении определенного срока их хранения. Химическая стабилизация имеет особое значение для лекарств, подвергающихся различным видам стерилизации, особенно термической. Таким образом, стабилизация лекарств - комплексная проблема, включающая изучение устойчивости лекарств в виде истинных растворов или дисперсных систем к химическим превращениям и микробной контаминации.

    2. Клинические испытания лекарственных средств (GCP). Этапы GCP

    Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами GLP (Good Laboratory Practice Качественная лабораторная практика), GMP (Good Manufacturing Practice Качественная производственная практика) и GCP (Good Clinical Practice Качественная клиническая практика).

    Клинические испытания лекарственных средств включают систематическое изучение исследуемого препарата на людях в целях проверки его лечебного действия или выявления нежелательной реакции, а также изучение всасывания, распределения, метаболизма и выведения из организма для определения его эффективности и безопасности.

    Клинические исследования лекарственного средства являются необходимым этапом разработки любого нового препарата, или расширения показаний для применения лекарственного средства, уже известного врачам. На начальных этапах разработки лекарственных средств проводятся химические, физические, биологические, микробиологические, фармакологические, токсикологические и другие исследования на тканях (in vitro) или на лабораторных животных. Это так называемые доклинические исследования, целью которых является получение научными методами оценок и доказательств эффективности и безопасности лекарственных средств. Однако эти исследования не могут дать достоверной информации о том, как изучаемые препараты будут действовать у человека, так как организм лабораторных животных отличается от человеческого и по фармакокинетическим характеристикам и по реакции органов и систем на лекарства. Поэтому необходимо проведение клинических испытаний лекарственных средств у человека.

    Клиническое исследование (испытание) лекарственного средство - это системное изучение лекарственного препарата посредством применения его у человека (пациента или здорового добровольца) с целью оценки его безопасности и эффективности, а также выявления или подтверждения его клинических, фармакологических, фармакодинамических свойств, оценки всасывания, распределения, метаболизма, выведения и взаимодействия с другими лекарственными средствами. Решение о начале клинического исследования принимает заказчик, который несет ответственность за организацию, контроль и финансирование исследования. Ответственность за практическое проведение исследования возложена на исследователя. Как правило, спонсором являются фармацевтические компании - разработчики лекарственных средств, однако в роли спонсора может выступать и исследователь, если исследование начато по его инициативе и он несет полную ответственность за его проведение.

    Клинические исследования должны проводиться в соответствии с основополагающими этическими принципами Хельсинкской Декларации, Правилами GСP (Good Clinical Practice, Надлежащая Клиническая Практика) и действующими нормативными требованиями. До начала клинического исследования должна быть проведена оценка соотношения предвидимого риска с ожидаемой пользой для испытуемого и общества. Во главу угла ставится принцип приоритета прав, безопасности и здоровья испытуемого над интересами науки и общества. Испытуемый может быть включен в исследование только на основании добровольного информированного согласия (ИС), полученного после детального ознакомления с материалами исследования. Участвующие в испытании нового препарата пациенты (добровольцы) должны получить информацию о сути и возможных последствиях испытаний, ожидаемой эффективности лекарства, степени риска, заключить договор о страховании жизни и здоровья в порядке, предусмотренном законодательством, а во время испытаний находиться под постоянным наблюдением квалифицированного персонала. В случае возникновения угрозы здоровью или жизни пациента, а также по желанию пациента или его законного представителя руководитель клинических испытаний обязан приостановить испытания. Кроме того, клинические испытания приостанавливаются в случае отсутствия или недостаточной эффективности лекарства, а также нарушения этических норм.

    Первый этап клинических испытаний ЛС осуществляется на 30 - 50 добровольцах. Следующий этап - расширенные испытания на базе 2 - 5 клиник с привлечением большого числа (нескольких тысяч) больных. При этом заполняются индивидуальные карты больных с подробным описанием результатов различных исследований - анализов крови, мочи, УЗИ и др.

    Каждое лекарственное средство проходит 4 фазы (этапа) клинических исследований.

    Фаза I. Первый опыт применения нового активного вещества у человека. Чаще всего исследования начинаются у добровольцев (взрослые здоровые мужчины). Главная цель исследований - решить, стоит ли продолжать работу над новым препаратом, и, если удастся, установить дозы, которые будут использоваться у пациентов во время II фазы клинических исследований. В ходе этой фазы исследователи получают предварительные данные о безопасности нового препарата и впервые описывают его фармакокинетику и фармакодинамику у человека. Иногда невозможно провести исследования I фазы у здоровых добровольцев из-за токсичности данного препарата (лечение онкологических заболеваний, СПИДа). В этом случае проводятся нетерапевтические исследования с участием пациентов с этой патологией в специализированных учреждениях.

    Фаза II. Обычно это первый опыт применения у пациентов с заболеванием, для лечения которого предполагается использовать препарат. Вторая фаза делится на IIa и IIb. Фаза IIa -- это терапевтические пилотные исследования (pilot studies), так как полученные в них результаты обеспечивают оптимальное планирование последующих исследований. Фаза IIb -- это более обширные исследования у пациентов с заболеванием, которое является основным показанием к назначению нового лекарственного средства. Главная цель -- доказать эффективность и безопасность препарата. Результаты этих исследований (pivotal trial) служат основой для планирования исследований III фазы.

    Фаза III. Многоцентровые испытания с участием больших (и по возможности, разнообразных) групп пациентов (в среднем 1000-3000 человек). Основная цель - получение дополнительных данных о безопасности и эффективности различных форм препарата, о характере наиболее частых нежелательных реакций и т.п. Чаще всего клинические исследования этой фазы - двойные слепые контролируемые, рандомизированные, а условия исследований максимально приближены к обычной реальной рутинной медицинской практике. Данные, полученные в клинических исследованиях III фазы, являются основой для создания инструкций по применению препарата и для решения о его регистрации Фармакологическим комитетом. Рекомендация к клиническому применению в медицинской практике считается обоснованной, если новый препарат:

    Более эффективен, чем известные препараты аналогичного действия;

    Обладает лучшей переносимостью, чем известные препараты (при одинаковой эффективности);

    Эффективен в тех случаях, когда лечение известными препаратами безуспешно;

    Более выгоден экономически, имеет более простую методику лечения или более удобную лекарственную форму;

    При комбинированной терапии повышает эффективность уже существующих лекарственных средств, не увеличивая их токсичности.

    Фаза IV. Исследования проводятся после начала продажи препарата с целью получить более подробную информацию о длительном применении в различных группах пациентов и при различных факторах риска и т.д. и таким образом более полно оценить стратегию применения лекарственного средства. В исследовании принимает участие большое количество пациентов, это позволяет выявить ранее неизвестные и редко встречающиеся нежелательные явления.

    Если лекарственное средство собираются применять по новому показанию, еще не зарегистрированному, то для этого проводятся дополнительные исследования, начиная с фазы II. Наиболее часто на практике проводят открытое исследование, при котором врачу и больному известен способ лечения (исследуемый препарат или препарат сравнения).

    При испытании простым слепым методом больной не знает, какой препарат он принимает (это может быть плацебо), а при использовании двойного слепого метода об этом не осведомлены ни больной, ни врач, а только руководитель испытания (в современном клиническом исследовании нового лекарственного средства участвуют четыре стороны: спонсор исследования (чаще всего это фармацевтическая компания-производитель), монитор - контрактная исследовательская организация, врач-исследователь, пациент). Кроме того, возможны тройные слепые исследования, когда ни врач, ни пациент, ни те, кто организует исследование и обрабатывает его данные, не знают назначенного лечения у конкретного пациента.

    Если врачи будут знать, какой пациент лечится каким средством, они непроизвольно могут давать оценки лечению в зависимости от своих предпочтений или объяснений. Применение слепых методов повышает достоверность результатов клинического испытания, устраняя влияние субъективных факторов. Если больной знает, что он получает новое многообещающее лекарство, то эффект лечения может быть связан с его успокоением, удовлетворенностью тем, что достигнуто самое желанное лечение из возможных.

    Плацебо (лат. placere - нравиться, цениться) обозначает препарат, заведомо не обладающий никакими целебными свойствами.Большой энциклопедический словарь определяет плацебо как «лекарственную форму, содержащую нейтральные вещества. Применяют для изучения роли внушения в лечебном эффекте какого-либо лекарственного вещества, в качестве контроля при исследовании эффективности новых лекарственных препаратов». качество лекарственный препарат фармацевтический

    Негативные плацебо-эффекты носят название ноцебо. Если пациент знает, какие побочные действия имеются у препарата, то в 77 % случаев они возникают у него, когда он принимает плацебо. Вера в тот или иной эффект может обусловить появление побочного действия. Согласно комментарию Всемирной медицинской ассоциации к статье 29 Хельсинкской декларации, «…применение плацебо оправданно, если это не приведет к повышению риска причинения серьезного либо необратимого ущерба здоровью…», то есть если больной не останется без эффективного лечения.

    Существует термин «полные слепые исследования», когда все стороны исследования не имеют информации о типе лечения у конкретного больного до завершения анализа полученных результатов.

    Рандомизированные контролируемые испытанияслужат стандартом качества научных исследований эффективности лечения. Для исследования сначала отбираются пациенты из большого числа людей с изучаемым состоянием. Затем этих пациентов разделяют случайным образом на две группы, сопоставимые по основным прогностическим признакам. Группы формируются случайным образом (рандомизация) путем использования таблиц случайных чисел, в которых каждая цифра или каждая комбинация цифр имеет равную вероятность отбора. Это означает, что пациенты одной группы будут в среднем обладать теми же характеристиками, что и пациенты другой. Кроме того, до проведения рандомизации следует убедиться в том, что характеристики заболевания, о которых известно, что они сильно влияют на исход, встречаются в экспериментальных и контрольных группах с одинаковой частотой. Для этого надо сначала распределить пациентов по подгруппам с одинаковым прогнозом и только затем рандомизировать их отдельно в каждой подгруппе - стратифицированная рандомизация. Экспериментальная группа (группа лечения) подвергается вмешательству, которое, как ожидается, будет полезным. Контрольная группа (группа сравнения) находится в точно таких же условиях, как и первая, за исключением того, что ее пациенты не подвергаются изучаемому вмешательству.

    3. Количественный анализ смесей без предварительного разделения компонентов физико-химическими методами

    Физико-химические методы приобретают все большее значение для целей объективной идентификации и количественного определения лекарственных веществ. Наиболее доступны для использования в фармацевтическом анализе фотометрические методы, в частности спектрофотометрия в ИК- и УФ-областях, фотометрия в видимой области спектра и их различные модификации. Эти методы включены в Государственную фармакопею, в Международную фармакопею и национальные фармакопеи многих стран, а также в другие нормативные документы. Фармакопейные статьи, представляющие собой государственные стандарты, содержащие перечень показателей и методов, используемых для контроля качества лекарственного средства.

    Физико-химические методы анализа имеют ряд преимуществ перед классическими химическими методами. Они основаны на использовании как физических, так и химических свойств веществ и в большинстве случаев отличаются экспрессностью, избирательностью, высокой чувствительностью, возможностью унификации и автоматизации.

    Включению разработанных методик в нормативные документы предшествуют широкие исследования в области фармацевтического анализа. Число выполненных и опубликованных работ по использованию фотометрических методов огромно.

    Для установления подлинности лекарственных веществ фармакопеи используют, наряду с прочими физическими и химическими методами, ИК-спектроскопию - метод, обеспечивающий наиболее объективную идентификацию. ИК-спектры испытуемых лекарственных веществ сравнивают либо с полученным в тех же условиях спектром стандартного образца, либо с прилагаемым спектром, снятым ранее для данного лекарственного вещества.

    Наряду с ИК-спектроскопией в анализе лекарственных веществ используют различные варианты УФ-спектрофотометрии органических соединений. В первых работах в данном направлении обобщено состояние и намечены перспективы использования этого метода. Сформулированы подходы к применению УФ-спектрофотометрии в стандартизации лекарств, разработаны различные способы выполнения анализа. В представленных в фармакопеях и другой нормативной документации методах испытаний на подлинность идентификацию осуществляют обычно по общепринятым параметрам УФ-спектров - длине волн максимумов и минимумов светопоглощения и по удельному показателю поглощения. Для этой цели могут быть использованы также такие параметры, как положение и полуширина полосы поглощения, фактор асимметрии, интегральная интенсивность, сила осциллятора. При контроле по этим параметрам повышается специфичность качественного анализа.

    В ряде случаев для фотометрического определения лекарственных веществ используют видимую область спектра. Анализ основан на проведении цветных реакций с последующим измерением оптической плотности на спектрофотометрах и фотоколориметрах.

    В фармацевтическом анализе спектрофотометрию в УФ - и видимой областях нередко сочетают с методами разделения (тонкослойная и другие виды хроматографии).

    Как известно, повышенной точностью обладают дифференциальные методы фотометрических измерений, осуществляемые с использованием раствора сравнения, содержащего определенное количество стандартного образца испытуемого вещества. Такой прием приводит к расширению рабочей области шкалы прибора, позволяет увеличить концентрацию анализируемых растворов и, в конечном счете, повышает точность определения.

    4. Система контроля качества в условиях химико-фармацевтических заводов и фабрик

    Производитель лекарственных средств должен организовать производство так, что лекарственные средства гарантированно соответствовали своему назначению и предъявляемым к ним требованиям и не создавали риска для потребителей из-за нарушения условий безопасности, качества или эффективности. Ответственность за выполнение этих требований несут руководители и все работники предприятия.

    Для достижения этой цели на предприятии-производителе должна быть создана система обеспечения качества, включающая в себя организацию работы по GMP, контроль качества и систему анализа рисков.

    Контроль качества включает в себя отбор проб, проведение испытаний (анализов) и оформление соответствующей документации.

    Цель контроля качества - не допустить к использованию или реализации материалы или продукцию, не удовлетворяющие требованиям качества. Деятельность по контролю качества не ограничивается только работой лаборатории, а включает в себя также проведение исследований, проверок и участие в принятии любых решений, касающихся качества продукции. Основополагающим принципом контроля качества является его независимость от производственных подразделений.

    Основные требования к контролю качества:

    Наличие необходимых помещений и оборудования, обученного персонала, утвержденных методик по отбору проб, проверке и проведению испытаний исходных и упаковочных материалов, промежуточной, на расфасованной и готовой продукции;

    Проведение испытаний аттестованными методами;

    Составление протоколов, подтверждающих фактическое проведение всех необходимых отборов проб, проверок и испытаний, а также регистрацию любых отклонений и расследований в полном объеме;

    Сохранение достаточного количества образцов исходных материалов и продукции для возможной проверки в случае необходимости. Образцы продукции следует хранить в их окончательной упаковке, за исключением крупных упаковок.

    На каждом предприятии изготовителе должен быть отдел контроля качества, независимый от других подразделений.

    Для лекарственных препаратов регламентируется надлежащая микробиологическая чистота. Загрязнение микроорганизмами может происходить на разных стадиях производства. Поэтому испытания на микробиологическую чистоту осуществляются на всех стадиях получения ЛС. Основными источниками микробной контаминации являются сырье, вода, оборудование, воздух производственных помещений, упаковка готовой продукции, персонал. Для количественного определения содержания микроорганизмов в воздухе используются различные методы отбора проб: фильтрация, осаждение в жидкостях, осаждение на твердые среды. Для оценки микробиологической чистоты проводят испытания на стерильность.

    При определении стерильности ЛС, обладающих выраженным антибактериальным действием, бактериостатическими, фунгистатическими свойствами, а также лекарственных средств, содержащих консерванты или разлитых в емкости более 100 мл, используют метод мембранной фильтрации.

    При контроле стерильности лекарственных форм в-лактамных антибиотиков возможно использование в качестве альтернативного метода прямого посева с применением фермента пенициллиназы в количестве, достаточном для полной инактивации испытуемого антибиотика.

    Применение метода мембранной фильтрации основано на пропускании ЛС через полимерную мембрану. При этом микроорганизмы остаются на поверхности мембраны. Далее мембрану помещают в соответствующую питательную среду и наблюдают образование колоний при инкубировании.

    Для подсчета жизнеспособных микроорганизмов обычно используют мембраны из эфиров целлюлозы (нитроцеллюлозы, ацетоцеллюлозы и смешанных эфиров целлюлозы) с размером пор 0,45 мкм.

    Техника проведения испытаний на микробиологическую чистоту лекарственных средств с использованием метода мембранной фильтрации приведена в дополнении к ФС «Испытание на микробиологическую чистоту» от 28 декабря 1995 г.

    Качество лекарственных средств можно с уверенностью гарантировать, если на всех этапах жизненного цикла лекарственных препаратов строго соблюдаются все правила обращения, в частности проведения доклинических и клинических исследований, производства, оптовой и розничной реализации фармацевтической продукции.

    5. Основные задачи и особенности биофармацевтического анализа

    Биофармацевтический анализ - новое перспективное направление фармацевтической химии. Задачей биофармацевтического анализа является разработка способов выделения, очистки, идентификации и количественного определения лекарственных веществ и их метаболитов в таких биологических жидкостях, как моча, слюна, кровь, плазма или сыворотка крови и др. Только на основе применения таких методик можно выполнять биофармацевтические исследования, т.е. изучать вопросы всасывания, транспорта и выведения лекарственных веществ, его биологическую доступность, процессы метаболизма. Все это позволяет предупреждать возможное токсическое воздействие лекарственных средств, разрабатывать оптимальные режимы фармакотерапии и контролировать процесс лечения. Особенно важно определять в биологических жидкостях концентрацию лекарственного вещества, когда они наряду с терапевтическим эффектом проявляют токсичность. Необходимо также контролировать содержание лекарственных веществ в биологических жидкостях больных, страдающих желудочно-кишечными заболеваниями и заболеваниями печени и почек. При таких заболеваниях изменяются процессы всасывания, нарушаются метаболические процессы, замедляется выведение лекарственных веществ из организма.

    Биологические жидкости - очень сложные объекты для выполнения анализа. Они представляют собой многокомпонентные смеси, включающие большое число неорганических и органических соединений различной химической структуры: микроэлементы, аминокислоты, полипептиды, белки, ферменты и др. Их концентрация колеблется от 10 мг/мл до нескольких нанограммов. Даже в такой относительно простой физиологической жидкости, как моча, идентифицировано несколько сотен органических соединений. Всякий биологический объект - очень динамичная система. Ее состояние и химический состав зависят от индивидуальных особенностей организма, воздействия факторов внешней среды (состав пищи, физическая и психическая нагрузка и т.д.). Все это еще в большей степени усложняет выполнение биофармацевтического анализа, так как на фоне столь большого количества сложных по химическому строению органических веществ нужно определять нередко очень малые концентрации ЛВ. Вводимые в биологические жидкости ЛВ в процессе биологической трансформации образуют метаболиты, количество которых нередко исчисляется несколькими десятками. Выделение этих веществ из сложных смесей, разделение на индивидуальные компоненты и установление химического состава - задача необычайно трудная.

    Таким образом, можно выделить следующие особенности биофармацевтического анализа:

    1. Объекты исследования представляют собой многокомпонентные смеси соединений.

    2. Количества определяемых веществ, как правило, исчисляются микрограммами и даже нанограммами.

    3. Исследуемые лекарственные вещества и их метаболиты находятся в среде, состоящей из большого числа природных соединений (белков, ферментов и др.).

    4. Условия выделения, очистки и анализа исследуемых веществ зависят от вида биологической жидкости, подвергаемой исследованию.

    Помимо теоретического значения, которое имеют исследования в области биофармацевтического анализа для изучения вновь создаваемых лекарственных веществ, несомненна и практическая роль этой отрасли знаний.

    Следовательно, биофармацевтический анализ представляет собой своеобразный инструмент, необходимый для проведения не только биофармацевтических, но и фармакокинетических исследований.

    6. Виды государственных стандартов. Требования общих стандартов к лекарственным формам

    Под стандартизацией качества продукции понимают процесс установления и применения стандартов. Стандартом называют эталон или образец, принимаемый за исходный, для сопоставления с ним других аналогичных объектов. Стандарт как нормативный документ устанавливает комплекс норм или требований к объекту стандартизации. Применение стандартов способствует улучшению качества продукции.

    В Российской Федерации установлены следующие категории нормативных документов НД: Государственные стандарты (ГОСТ), отраслевые стандарты (ОСТ), республиканские стандарты (РС.Т) и технические условия (ТУ). Стандартами на ЛС являются ФС, ТУ, регламентирующие их качество, а также производственные регламенты, нормирующие их технологию. ФС - нормативные документы, определяющие комплекс норм качества и методы их определения. Эти документы обеспечивают одинаковую эффективность и безопасность ЛС, а также постоянство и единообразие их производства независимо от серии. Основным документом, нормирующим качество выпускаемых в нашей стране лекарств, является Государственная фармакопея (ГФ). Нормативными документами, отражающими дополнительные технические требования к производству, контролю, хранению, маркировке, упаковке, транспортировке ЛС, являются отраслевые стандарты (ОСТы).

    С июня 2000 г. в России введен в действие отраслевой стандарт «Правила организации производства и контроля качества ЛС». Это стандарт, идентичный международным правилам GМР.

    Кроме указанного стандарта, обеспечивающего получение качественных ЛС, введен в действие стандарт, нормирующий качество ЛС, регламентирующий порядок создания новой и совершенствования действующей нормативной документации на ЛС. Он утвержден МЗ РФ 1 ноября 2001 г. (приказ №388), зарегистрирован Минюстом РФ 16 ноября 2001 г. и представляет собой отраслевой стандарт ОСТ 91500.05.001-00 «Стандарты качества лекарственных средств. Основные положения». Ранее действовавший стандарт ОСТ 42-506-96 утратил свою силу.Цель создания отраслевого стандарта - установление категорий и единого порядка разработки, изложения, оформления, экспертизы, согласования, обозначения и утверждения стандартов качества ЛС. Требования данного стандарта являются обязательными для организаций-разработчиков, предприятий-изготовителей ЛС, организаций и учреждений, осуществляющих экспертизу стандартов качества отечественных ЛС, независимо от ведомственной принадлежности, юридического статуса и форм собственности.

    Во вновь утвержденном ОСТе произведено изменение категорий стандартов качества ЛС. Стандарт качества лекарственного средства - это нормативный документ (НД), содержащий перечень нормируемых показателей и методов контроля качества ЛС. Он должен обеспечивать разработку эффективного и безопасного ЛС.

    Новый ОСТ предусматривает наличие двух категорий стандартов качества:

    Государственные стандарты качества лекарственных средств (ГСКЛС), к которым относятся: общая фармакопейная статья (ОФС) и фармакопейная статья (ФС);

    Стандарт качества (СКЛС); фармакопейная статья предприятия (ФСП).

    ОФС содержит основные общие требования к лекарственной форме или описание стандартных методов контроля ЛС. ОФС включает перечень нормируемых показателей и методов испытаний конкретной ЛФ или описание методов анализа ЛС, требования к реактивам, титрованным растворам, индикаторам.

    ФС содержит обязательный перечень показателей и методов контроля качества лекарственного средства (с учетом его ЛФ), соответствующих требованиям ведущих зарубежных фармакопей.

    Лекарственное лечение неразрывно связано с лекарственной формой. В связи с тем, что эффективность лечения зависит от лекарственной формы, к ней предъявляются следующие общие требования:

    Соответствие лечебному назначению, биодоступность лекарственного вещества в данной ЛФ и соответствующая фармакокинетика;

    Равномерность распределения лекарственных веществ в массе вспомогательных ингредиентов и отсюда точность дозирования;

    Стабильность в процессе срока хранения;

    Соответствие нормам микробной контаминации, при необходимости консервирования;

    Удобство приема, возможность корригирования неприятного вкуса;

    Компактность.

    ОФС и ФС разрабатываются и пересматриваются через 5 лет Научным центром экспертизы и государственного контроля ЛС, а на иммунобиологические препараты - Национальным органом контроля МИБП.

    ОФС и ФС составляют Государственную фармакопею (ГФ), которая издается Минздравом РФ и подлежит переизданию каждые 5 лет. Государственная фармакопея - это сборник государственных стандартов качества ЛС, имеющий законодательный характер.

    7. Кислота хлористоводородная: физические свойства, подлинность, количественное определение, применение, хранение

    Кислота хлористоводородная разведенная (Acidum hydrochloridum dilutum) - бесцветная прозрачная жидкость кислой реакции. плотность, плотность раствора 1,038-1,039 г/см3, объемная доля 8,2-8,4 %

    Кислота хлористоводородная (Acidum hydrochloridum) - бесцветная прозрачная летучая жидкость со своеобразным запахом. Плотность 1,122-1,124 г/см3 , объемная доля 24,8-25,2 %.

    Лекарственные препараты кислоты хлористоводородной смешиваются с водой и этанолом во всех соотношениях. Отличаются они только по содержанию хлороводорода и соответственно по плотности.

    Хлорид-ион можно обнаружить с помощю нитрата серебра по образованию нерастворимого в воде и в растворе азотной кислоты, но растворимого в растворе аммиака осадка хлорида серебра:

    HCl+H2O->AgClv+HNO3

    AgCl+2NH3*H2O->2Cl+2H2O

    Еще один способ обнаружения хлорид-иона основан на выделении свободного хлора при нагревании лекарственных препаратов с диоксида марганца:

    4HCl+MnO2->Cl2?+MnCl2+2H2O

    Хлор обнаруживается по запаху.

    Определяют содержание хлороводорода в лекарственных препаратах кислоты хлористоводородной методом кислотно-основного титрования, титруя раствором гидроксида натрия в присутствии индикатора метилового оранжевого:

    HCl+NaOH->NaCl+H2O

    Испытания на чистоту. Соляная кислота может содержать примеси тяжелых металлов, главным образом в виде солей железа (II) и железа (III). Эти примеси могут попасть в ЛС из материала аппарата, в котором получают кислоту. Обнаружить присутствие солей железа можно следующими реакциями:

    FeCl3 + K4>KFeFe(CN)6v + 3KCl

    FeCl2 + K3>KFeFe(CN)6v + 2KCl

    Из двух последних реакций видно, что состав образующихся осадков идентичен. Это было установлено сравнительно недавно. Ранее полагали, что образуются два индивидуальных соединения - берлинская лазурь и турнбулева синь.

    Если хлористый водород получают по реакции между водородом и хлором, то в качестве примеси может быть обнаружен хлор. Его определение в растворе проводят, добавляя калия йодид в присутствии хлороформа, который приобретает фиолетовую окраску в результате концентрирования в нем выделяющегося йода:

    Cl2 + 2KI> I2 + 2 KCl

    При получении хлористого водорода по реакции:

    2NaCl(ТВ) + H2SO4(КОНЦ) > Na2SO4(ТВ) + 2 HCl^

    В ЛС возможны примеси сульфитов и сульфатов. Примесь сернистой кислоты можно обнаружить при добавлении йода и раствора крахмала. При этом происходит восстановление йода:H2SO3 + I2 + H2O > H2SO4 + 2HI и синяя окраска йодокрахмального комплекса исчезает.

    При добавлении раствора хлорида бария образуется белый осадок сульфата бария:

    H2SO4 + BaCl2 > BaSO4 + HCl

    Если соляная кислота была получена с использованием серной кислоты, в качестве весьма нежелательной примеси может присутствовать и мышьяк.

    Количественное определение. Концентрацию соляной кислоты можно определить двумя методами:

    1). методом нейтрализации (титрование щелочью по метиловому оранжевому - фармакопейный метод):

    HCl + NaOH> NaCl + H2O

    2) аргентометрическим методом по хлорид-иону:

    HCl + AgNO3> AgClv + HNO3

    Кислота хлористоводородная применялась ранее как лекарственное средство при недостаточной кислотности желудочного сока. Назначают внутрь 2-4 раза в день во время еды по 10-15 капель (на?-1/2 стакана воды).

    Титрованные растворы хлористоводородной кислоты с молярной концентрацией 0,01 - 1 моль/л используются в фармацевтическом анализе. Хранение: в закрытых емкостях из стекла или другого инертного материала при температуре ниже 30 °С.

    Применяют кислоту хлористоводородную разведенную при недостаточной кислотности желудочного сока. Назначают внутрь 2-4 раза в день во время еды по 10-15 капель (на?-1/2 стакана воды) Если она прописана без обозначения концентрации, всегда отпускают кислоту хлористоводородную разведенную; 6 % раствор кислоты используют при лечении чесотки по Демьяновичу.

    Условия хранения:

    Список Б. В сухом месте. В склянках с притертыми пробками. Для медицинских целей применяют разведенную хлористоводородную кислоту.

    8. Кислород: физические свойства, подлинность, доброкачественность, количественное определение, применение, хранение

    Кислород - Oxygenium. Простое вещество кислород состоит из неполярных молекул О2 (дикислород) с у,р-связью, устойчивая аллотропная форма существования элемента в свободном виде.

    Бесцветный газ, в жидком состоянии - светло-голубой, в твердом - синий.

    Составная часть воздуха: 20,94% по объему, 23,13% по массе. Из жидкого воздуха кислород выкипает после азота N2.

    На воздухе поддерживает горение

    Малорастворим в воде (31 мл/ 1 л Н2О при 20 °С), но несколько лучше, чем N2.

    Подлинность кислорода определяют внесением в струю газа тлеющей лучины, которая при этом вспыхивает и горит ярким пламенем.

    К отверстию газоотводной трубки необходимо изредка подносить тлеющую лучину, и как только она начнет вспыхивать, следует приподнять трубку, затем опустить ее в кристаллизатор с водой и подвести под цилиндр. Поступающий кислород заполняет цилиндр, вытесняя воду.

    В один из цилиндров с N2O вносят тлеющую лучину, она вспыхивает и горит ярким пламенем.

    Для отличия кислорода от другого газообразного препарата - азота закиси (диазота оксид) смешивают равные объемы кислорода и оксида азота. Смесь газов окрашивается в оранжево-красный цвет вследствие образования диоксида азота: 2NO+O2-> 2NO2

    Азота закись указанной реакции не дает. В процессе промышленного производства кислород может загрязняться примесями других газов.

    Оценка на чистоту: во всех испытаниях на чистоту примесь других газов устанавливают, пропуская определенное количество кислорода (со скоростью 4 л/ч) через 100 мл раствора реактива.

    Кислород должен быть нейтральным. Наличие газообразных примесей кислотного и основного характера устанавливают колориметрическим методом (изменение окраски раствора индикатора метилового красного)

    Примесь углерода (II) обнаруживается пропускание кислорода через аммиачный раствор нитрата серебра. Потемнение свидетельствует о восстановлении серебра оксида углерода:

    CO+2[ Ag(NH3)2]NO3+2H2O -> 2Agv+(NH4)CO3+2NH4NO3

    Наличие примеси диоксида углерода устанавливают по образованию опалесценции при пропускании кислорода через раствор гидроксида бария:

    CO2+Ba(OH)2 -> BaCO3v+H2O

    Отсутствие примесей озона и других окисляющих веществ устанавливают, пропуская кислород через раствор иодидиа калия, к которому добавлен раствор крахмала и капля ледяной уксусной кислоты. Раствор должен оставаться бесцветным. Появление синей окраски свидетельствует о наличии примеси озона:

    2KI+O3+H2O -> I2+2KOH+O2 ?

    Количественное определение. Все способы количественного определения кислорода основаны на взаимодействии с легко окисляющимися веществами. Для этого может быть использована медь. Кислород пропускают через раствор, содержащий смесь растворов хлорида аммония и аммиака (аммиачный буферный раствор, рН = 9,25 ±1). Туда же помещают кусочки медной проволоки диаметром около 1 мм. Медь окисляется кислородом:

    Образующийся оксид меди (II) взаимодействует с аммиаком с образованием ярко-синего аммиаката меди (II):

    CuO + 2 NH3 + 2 NH4CI > Cl2 + H2O

    Применение. В медицине кислород применяют для приготовления кислородных водных и воздушных ванн, для вдыхания больными - «медицинский газ». Для общей анестезии в виде ингаляционного наркоза используют смесь кислорода и малотоксичного циклопропана.

    Кислород применяют при заболеваниях, сопровождающихся кислородной недостаточностью (гипоксии). Ингаляциями кислорода пользуются при заболеваниях органов дыхания (пневмонии, отеке легких), сердечно-сосудистой системы (сердечной недостаточности, коронарной недостаточности), отравлениях оксидом углерода (II), синильной кислотой, удушающими веществами (хлором С12, фосгеном СОС12). Назначают для вдыхания смесь 40-60 % кислорода и воздуха со скоростью 4-5 л/мин. Используют также карбоген - смесь 95 % кислорода и 5 % диоксида углерода.

    При гипербарической оксигенации кислород применяют под давлением 1,2-2 атм в специальных барокамерах. Установлена высокая эффективность этого метода в хирургии, интенсивной терапии тяжелых заболеваний, при отравлениях. При этом улучшается кислородное насыщение тканей и гемодинамика. Обычно проводят один сеанс вдень (40-60 мин), продолжительность лечения - 8 - 10 сеансов.

    Используется также метод энтеральной оксигенотерапии путем введения в желудок кислородной пены, применяемой в виде кислородного коктейля. Коктейль готовят пропусканием кислорода под небольшим давлением через белок куриного яйца, к которому добавляют настой шиповника, глюкозу, витамины группы В и С, настои лекарственных растений. В качестве пенообразователя могут быть использованы фруктовые соки, концентрат хлебного кваса. Коктейль применяется для улучшения обменных процессов в комплексной терапии сердечно-сосудистых заболеваний.

    Хранение. В аптеках кислород хранят в баллонах синего цвета объемом 27-50 л, вмещающих 4-7,5 м3 газа под давлением 100-150 атм. Резьбу редуктора баллона нельзя смазывать жиром или органическими маслами (возможно самовозгорание). Смазкой служит только тальк («мыльный камень» - минерал, относящийся к слоистым силикатам). Кислород отпускают из аптек в специальных подушках, снабженных воронкообразным мундштуком для вдыхания.

    Подобные документы

      Стабильность, как фактор качества лекарственных средств. Физические, химические и биологические процессы, протекающие при их хранении. Влияние условий получения на стабильность лекарств. Классификация групп ЛС. Срок годности и период переконтроля.

      презентация , добавлен 26.10.2016

      Цель эпидемиологических экспериментальных исследований. Этапы создания лекарственного средства. Стандарты, в соответствии с которыми проводятся клинические испытания и представляются их результаты. Многоцентровое клиническое исследование лекарств.

      презентация , добавлен 16.03.2015

      Этапы разработки лекарственных препаратов. Цель проведения клинических исследований. Их основные показатели. Типовые дизайны клинического исследования. Испытание фармакологических и лекарственных средств. Исследование биодоступности и биоэквивалентности.

      презентация , добавлен 27.03.2015

      Помещение и условия хранения фармацевтической продукции. Особенности контроля качества лекарственных средств, правила Good Storage Practice. Обеспечение качества лекарственных препаратов и средств в аптечных организациях, их выборочный контроль.

      реферат , добавлен 16.09.2010

      Физические и химические процессы, происходящие при хранении лекарственных средств. Влияние условий получения, степени чистоты и химического состава упаковочного материала на стабильность лекарственных средств. Хранение ЛФ, изготавливаемых в аптеках.

      реферат , добавлен 16.11.2010

      Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

      курсовая работа , добавлен 07.04.2016

      Микрофлора готовых лекарственных форм. Микробное обсеменение лекарственных препаратов. Способы предупреждения микробной порчи готовых лекарственных веществ. Нормы микробов в нестерильных лекарственных формах. Стерильные и асептические препараты.

      презентация , добавлен 06.10.2017

      Стандартизация лекарственных средств. Нормативные требования к качеству препаратов. Определение подлинности сырья как задача практической фармакогнозии. Уровни контроля лекарственного растительного сырья. Исследование лекарственного препарата "Дентос".

      презентация , добавлен 29.01.2017

      Проблема фальсификации лекарственных средств. Классификация фальсифицированных лекарств. Распространение контрафактной продукции в Украине. Трамадол и его свойства. Исследование лекарственного препарата методами БИК-спектроскопии и УФ-спектрофотометрии.

      курсовая работа , добавлен 10.11.2011

      Государственная гарантия качества лекарственных средств, ее социальная значимость для охраны здоровья населения. Физико-химические свойства фармацевтических продуктов и материалов; организационно-правовые и технологические условия и стандарты их хранения.

    Химико-фармацевтическая промышленность выпускает огромное количество лечебно-профилактических препаратов. В нашей стране зарегистрировано и занесено в Государственный реестр более 3 тыс. лекарственных средств. Однако перед фармакологами и химиками стоит задача постоянного поиска и создания новых, более эффективных лечебно-профилактических средств.

    Особого успеха в деле создания новых препаратов достигли фармакология и фармацевтическая промышленность во второй половине прошлого столетия. 60-90% современных лекарственных средств не было известно еще 30 – 40 лет назад. Разработка и производство новых лекарственных средств - длительный процесс тщательных, многоэтапных фармакологических исследований и разносторонней организационной деятельности фармакологов, химиков, фармацевтов.

    Создание лекарственных препаратов можно подразделить на несколько этапов:

    1) составление плана поиска индивидуального вещества или суммарного препарата, который можно получить из различных источников;

    2) получение веществ, которые намечены;

    3) первичное исследование нового препарата на лабораторных животных. При этом изучают фармакодинамику веществ (специфическая активность, длительность эффекта, механизм и локализация действия) и фармакокинетику препарата (всасывание, распределение, превращение в организме и выведение). Определяют также побочный эффект, токсичность, канцерогенность, тератогенность и иммуногенность, эффективность веществ при патологических состояниях;

    4) более детальное исследование отобранных веществ и сравнение их с известными лекарственными препаратами;

    5) передача перспективных лекарственных препаратов в фармакологический комитет, состоящий из экспертов различных специальностей;

    6) клиническое испытании новых лекарственных средств. От врачей в это время требуется творческий, строго научный подход в определении дозировок, схемы применения, установлении показаний, противопоказаний и побочных явлений;

    7) вторичное представление результатов клинических испытаний в фармакологический комитет. При положительном решении лекарственное вещество получает «запись о рождении», ему присваивается фармацевтическое название и выдается рекомендация для промышленного производства;

    8) разработка технологии промышленного производства препаратов.

    К источникам получения лекарственных средств можно отнести:

    · - минеральные вещества;

    · - сырье растительного и животного происхождения;

    · - синтетические соединения;

    · - продукты жизнедеятельности микроорганизмов и грибов.

    В настоящее время поиск лекарственных веществ ведется по следующим направлениям:

    · - химический синтез препаратов;


    · - получение препаратов из лекарственного сырья;

    · - биосинтез лекарственных веществ - продуктов жизнедеятель­ности микроорганизмов и грибов;

    · - генетическая инженерия лекарственных средств.

    Химический синтез препаратов подразделяется на два направления:

    · направленный синтез;

    · эмпирический путь.

    Направленный синтез может осуществляться путем воспроизведения биогенных веществ, синтезируемых живыми организмами. Таким путем были получены адреналин, норадреналин, окситоцин и др. К направленному синтезу относится поиск антиметаболитов - антагонистов естественных метаболитов. Например, антиметаболиты парааминобензойной кислоты, необходимой для роста и развития микроорганизмов, - сульфаниламидные препараты. Создание новых лекарственных веществ может осуществляться путем химической модификации молекул соединений с известной биологической активностью. Этим путем синтезированы многие более эффективные сульфаниламидные препараты. Определенный интерес представляет путь создания новых лекарственных средств, основанный на изучении химических превращений лекарств в организме и их продуктов метаболизма, а также механизмов химических превращений веществ. Например, в процессе биотрансформации имизина в организме образуется диметилимипрамин, обладающий более высокой активностью. Получение новых препаратов возможно и путем сочетания структур двух и более известных соединений с требуемыми свойствами.

    Определенное значение в создании новых препаратов имеет и эмпирический путь. В результате случайных находок был открыт ряд препаратов. Около 40 лет назад косметические фирмы стали выпускать крем для бритья с добавлением веществ, которые раздражали мышечные волокна, поднимающие волосы (ощетинившуюся бороду легче брить). Случайно один пытливый парикмахер обратил внимание на то, что у его клиентов, болевших гипертонической болезнью, после применения нового крема кровяное давление уменьшается. Клофелин, который входил в состав крема, в настоящее время широко применяют для снижения артериального давления. Случайно открыто слабительное средство фенолфталеин и антидиабетический препарат будамид.

    В основном эмпирический путь открытия новых препаратов осуществляется путем скрининга (от англ. to screen - просеивать). Этот путь основан на испытании многих химических соединений для выявления нового эффективного препарата. Это - малоэффективный и трудоемкий путь поиска лекарственных веществ. В среднем на 5-10 тыс. исследованных соединений приходится один оригинальный препарат. Стоимость одного препарата, получаемого этим путем, составляет около 7 млн долл.

    Биотехнология - одно из будущих направлений получения лекарственных средств из сырья растительного и животного происхождения и микроорганизмов.

    Перспективным направлением для фармакологии в создании новых лекарственных средств является использование достижений генетической инженерии. Так, манипуляции с генами позволили создать бактерии, продуцирующие инсулин, гормон роста человека, интерферон. Эти препараты в сотни раз дешевле своих природных аналогов, и их часто удается получить в более очищенном виде. А если учесть, что ряд активных веществ белкового происхождения присутствует в организме человека и животных в мизерных количествах и даже для их исследования приходится перерабатывать килограммы биоматериала, то перспективы этого направления в фармакологии становятся ясны. На основе генно-инженерных методов получены белки, регулирующие иммунный ответ; белки, являющиеся основой зубной эмали; белки с выраженным противовоспалительным действием; белки, стимулирующие рост и развитие кровеносных сосудов.

    В ряде стран уже начали применять генно-инженерный активизатор плазминогена, позволяющий быстро и эффективно растворить тромбы в кровеносных сосудах. Все шире используется генно-инженерный фактор некроза опухолей - эффективное противораковое средство.

    Технические стандарты на производство лекарственного средства и его форм, методы контроля их качества утверждает Фармакопейный комитет России. Только с его одобрения лекарственный препарат выпускается для широкого медицинского или ветеринарного применения.



    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло