Производственный шум. Защита от производственного шума

Исключительно широкое распространение производственного оборудования, характеризующегося различной частотой механических колебаний, придает важное значение исследованию колебаний, воспринимаемых слуховым анализатором. В виде звука воспринимаются колебания с частотой 16-18 000 Гц. Шум представляет собой беспорядочное сочетание звуков различной частоты и силы.

При непрерывном с бесконечно малыми интервалами расположении звуков, составляющих шум, спектр шума носит название непрерывного, или сплошного, в отличие от дискретного, или линейного, характеризующегося значительными интервалами.

В зависимости от спектрального состава различают три класса производственного шума.

Класс 1. Низкочастотные шумы (шум тихоходных агрегатов неударного действия, шум, проникающий сквозь звукоизолирующие преграды, стены, перекрытия, кожухи). Наибольшие уровни частоты в спектре шума расположены ниже 400 Гц, за которой следует понижение (не менее чем на 5 дБ на каждую последующую октаву).

Класс 2. Среднечастотные шумы (шумы большинства машин, станков и агрегатов неударного действия). Наибольшие уровни частоты в спектре шума расположены ниже 800 Гц, за которыми также следует понижение не менее чем на 5 дБ на каждую последующую октаву.

Класс 3. Высокочастотные шумы (звенящие, шипящие, свистящие, характерные для агрегатов ударного действия, потоков воздуха и газа, агрегатов, действующих с большими, скоростями). Наибольший уровень частоты в спектре шума расположен выше 800 Гц.

При резком преобладании какого-либо тона в спектре шума последний носит характер тонального. Например, при работе машины основной тон может быть различным в зависимости от числа оборотов основных ее элементов.

Спектральный анализ шума, производимый с помощью анализаторов шума или анализаторов звуковых частот, позволяет наметить меры снижения шума.

Интенсивность или сила звука оценивается количеством энергии, переносимой в единицу времени через единицу площади, перпендикулярной к направлению движения звуковой волны. Измеряется интенсивность звука в ваттах на квадратный сантиметр. Минимальная интенсивность звука, которую слуховой орган в состоянии воспринять, называется порогом слышимости. За верхнюю границу слуховых ощущений принимают порог осязания, или интенсивность звука, при которой он вызывает болевое ощущение. Интенсивность звука можно оценить по звуковому давлению, в барах или ньютонах. Бар- приблизительно одна миллионная часть атмосферного давления, ньютон равен 0,102 кг. Речь обычной громкости создает звуковое давление в 1 бар.

В физике для оценки уровня силы звука (шума) принята логарифмическая шкала уровней силы звука. В этой шкале белы представляют собой не абсолютные, а относительные единицы, выражающие превышение силы звука по отношению к исходной величине. За начало отсчета (нулевой уровень шкалы) условно принят порог слышимости стандартного тона 1000 Гц, интенсивность которого в единицах звуковой энергии равна 10 -12 вт/м 2 /сек. Наибольший по силе звук, еще воспринимаемый органом слуха, выше порога слышимости в 10-14 раз. По уровню силы звук этот выше порога слышимости на 14 единиц. Единица эта - бел; 1/10 бела - децибел (дБ). Так, при уровне силы шума в 60 дБ (или 6 бел) интенсивность шума выше порога слышимости тона 1000 Гц в 10 6 или в 1 000 000 раз. Наиболее сильный шум, который еще воспринимается органом слуха как звук, оценивается по этой шкале в 14 бел, или 140 дБ. Увеличению интенсивности звука вдвое в единицах звуковой энергии соответствует по шкале децибел увеличение на логарифм 2, т. е. на 0,3 бел, или 3 дБ.

Для физиологической оценки уровня громкости шума (звука) можно пользоваться шкалой, в которой громкость всех звуков сравнивается на слух с громкостью тона 1000 Гц, а уровень громкости его принят равным уровню силы в децибелах. Физическая оценка уровня силы шума в децибелах и физиологическая оценка его разнятся тем больше, чем слабее звук и чем ниже его частота. При уровнях силы шума 80 дБ и более физическая и физиологическая количественная характеристика почти не разнятся.

В процессе восприятия звуков (шума) слуховой анализатор в зависимости от спектрального состава и силы шума адаптируется к нему: к сильным звуковым раздражителям чувствительность органа слуха несколько понижается и восстанавливается после прекращения действия раздражителя.

Если после воздействия шума чувствительность к нему понижается (порог восприятия повышается) не более чем на 10-15 дБ, а восстановление ее наступает не более чем в течение 2-3 минут, это свидетельствует об адаптации к шуму. Изменение же порогов более значительное, и замедленное восстановление чувствительности является признаком утомления слуха. Чем выше звук, тем больше его утомляющее действие. Звуки с частотой 2000-4000 Гц оказывают утомляющее действие уже при 80 дБ, звуки до 1024 Гц при этой интенсивности вызывают менее выраженное утомление. При интенсивном шуме обычно возникает снижение слуховой чувствительности, вследствие утомления слуха и ослабления восприятия высоких частот независимо от спектра действовавшего шума.

Интенсивным шумом в производственных условиях нередко вызывается стойкое понижение чувствительности к различным тонам и шепотной речи (профессиональная тугоухость и глухота).

Клинические обследования рабочих, подвергающихся на производстве систематическому воздействию шума (ткачи, котельщики, испытатели моторов, клепальщики, кузнецы и молотобойцы, гвоздильщики и др.), выявили среди них значительный, увеличивающийся со стажем, процент лиц с ослабленным слухом, заболеваниями внутреннего и среднего уха. Чрезмерно выраженное понижение слуха наблюдалось и при обследовании непосредственно после работы, очевидно в связи со слуховым утомлением, наступавшем в течение смены. Аудиометрически установлено раннее возникновение начальных нарушений слуха, причем начальное понижение слуховой чувствительности (повышение слуховых порогов) к отдельным тонам независимо от частоты шума обнаруживается для тона 4096 Гц и лишь затем устанавливается стойкое понижение восприятия тонов более высоких и низких частот.

В развитии профессиональной глухоты, несомненно, решающую роль играет звуковоспринимающий (кохлеарный) аппарат и, вероятно, корковая область слухового анализатора. При морфологическом исследовании внутреннего уха лиц, страдавших при жизни тугоухостью, обнаружены атрофические и некробиотические изменения в кортиевом органе и основном завитке спирального ганглия. При длительной работе в условиях интенсивного шума, особенно высокочастотного, наступает постепенное ослабление слышимости сначала высоких, а затем и других тонов, которое может привести к полной глухоте.

Наряду с изменениями в слуховом аппарате установлено влияние шума на центральную нервную систему, характеризующееся симптомами перераздражения ее: замедлением нервных реакций, понижением внимания, работоспособности, производительности труда.

Под влиянием шума изменяются ритм дыхания, частота пульса, уровень кровяного давления и другие вегетативные функции. Иногда под влиянием шума наблюдалось также изменение двигательной и секреторной функций желудка, объема внутренних органов, газообмена.

Множественное нарушение функций под влиянием шума позволило Е. Е. Андреевой-Галаниной объединить весь комплекс этих нарушений в понятие «шумовая болезнь».

Таким образом, действие шума зависит от трех основных условий:
1) длительности воздействия шума; профессиональная тугоухость и профессиональная глухота развиваются обычно постепенно, в течение ряда лет;
2) интенсивности шума: чем интенсивнее шум, тем быстрее развиваются утомление и соответствующие патологические изменения;
3) частотной характеристики (спектра шума); чем больше преобладают в шуме высокие частоты, тем он опаснее в смысле развития тугоухости, тем сильнее его раздражающее действие, тем скорее возникает утомление.

Учитывая, что шум может влиять на различные функции организма (нарушает сон, мешает выполнять напряженную умственную работу), для разных помещений устанавливаются различные допустимые уровни шума.

Шум, не превышающий 30-35 дБ, не ощущается как утомительный или заметный. Такой уровень шума является допустимым для читальных залов, больничных палат, жилых комнат ночью. Для конструкторских бюро, конторских помещений допускается уровень шума 50-60 дБ.

Для производственных помещений, в которых снижение уровня шума связано с большими техническими трудностями, приходится ориентироваться не только на утомляющее действие шума, но и на предотвращение развития профессиональной патологии.

Большинство исследователей склоняется к тому, что шум в пределах 80-85 дБ, а по некоторым данным - до 90 дБ, не вызывает при длительном воздействии профессиональной тугоухости.

В Советском Союзе установлены предельно допустимые уровни шума (табл. 30), приведенные в «Гигиенических нормах допустимых уровней звукового давления и уровней звука на рабочих местах» № 1004-73. В зависимости от длительности действия и характера шума предусмотрены поправки к октавным уровням звуковых давлений (табл. 31).

Таблица 30. Допустимые уроки звукового давления и уровни звука на постоянных рабочих местах
Наименование Среднегеометрические частоты октавных полос, Гц Уровни звука, дБ А
63 125 250 500 1000 2000 4000 8000
уровни звукового давления, дБ
1. При шуме, проникающем извне помещений, находящихся на территории предприятий:
а) конструкторские бюро, комнаты расчетчиков и программистов счетно-электронных машин, помещения лабораторий для теоретических работ и обработки экспериментальных данных, помещения приема больных здравпунктов
71 61 54 49 45 42 40 38 50
б) помещения управлений (рабочие комнаты) 79 70 63 58 55 52 50 49 60
в) кабины наблюдения и дистанционного управления 94 87 82 78 75 73 71 70 60
г) то же с речевой связью по телефону 83 74 68 63 75 57 55 54 65
2. При шуме, возникающем внутри помещений и проникающем в помещения, находящиеся на территории предприятий:
а) помещения и участки точной сборки, машинописные бюро
83 74 68 63 75 57 55 54 65
б) помещения лабораторий, помещения для размещения «шумных» агрегатов счетно-вычислительных машин (табуляторов, перфораторов, магнитных барабанов и т. п.) 94 87 82 78 75 73 71 70 80
3. Постоянные рабочие места в производственных помещениях и на территории предприятий 99 92 86 83 80 78 76 74 85
Примечание . В зависимости от характера шума и его воздействия величины октавных уровней звуковых давлений, приведенных в табл. 30, подлежат уточнению согласно табл. 31.

Характеристика и виды производственных шумов

Производственный шум – совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работающих неприятные субъективные ощущения.

Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот. При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.

Полоса частот, верхняя граница которой превышает нижнюю в два раза, т.е. f 2 = 2 f 1 , называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых f 2 = 2 1/3 f 1 = 1,26 f 1 .

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой. Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (f сг мин = 31,5 Гц, f сг макс = 8000 Гц).

Таблица 2 Стандартный ряд среднегеометрических частот

f сг, Гц f 1 , Гц f 2 , Гц
16 11 22
31,5 22 44
63 44 88
125 88 177
250 177 355
500 355 710
1000 710 1420
2000 1420 2840
4000 2840 5680
8000 5680 11360

По частотной характеристике различают шумы: низкочастотные (f сг < 250); cреднечастотные (250 < f сг ≤ 500); высокочастотные (500 < f сг ≤ 8000).

Производственные шумы имеют различные спектральные и временные характеристики, которые определяют степень их воздействия на человека. По этим признакам шумы подразделяют на несколько видов. Выше характеристика шумов уже рассматривалась. В таблице 3 дана характеристика шумов с точки зрения производства.

Таблица 3 Классификация шумов

Способ классификации Вид шума Характеристика шума
По характеру спектра шума Широкополосные Непрерывный спектр шириной более одной октавы
Тональные В спектре которого имеются явно выраженные дискретные тона
По временным характеристикам Постоянные Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ
Непостоянные:

колеблющиеся во времени

прерывистые

импульсные

Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ

Уровень звука непрерывно изменяется во времени

Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более

Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с

Источники производственного шума

По природе возникновения шумы машин или агрегатов делятся на:

→ механические;

→ аэродинамические и гидродинамические;

→ электромагнитные.

На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

Аэродинамические и гидродинамические шумы – это

1) шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;

2) шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов;

3) кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

При работе различных механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.

Любой источник шума характеризуется, прежде всего, звуковой мощностью. Звуковая мощность источника – это общее количество звуковой энергии, излучаемой источником шума в окружающее пространство.

Поскольку источники производственного шума, как правило, излучают звуки различной частоты и интенсивности, то полную шумовую характеристику источника дает шумовой спектр – распределение звуковой мощности (или уровня звуковой мощности) по октавным полосам частот.

Источники шума часто излучают звуковую энергию неравномерно по направлениям. Эта неравномерность излучения характеризуется коэффициентом Ф(j) - фактором направленности.

Фактор направленности Ф(j) показывает отношение интенсивности звука I(j), создаваемого источником в направлении с угловой координатой j к интенсивности I ср, которую развил бы в этой же точке ненаправленный источник, имеющий ту же звуковую мощность и излучающий звук во все стороны равномерно:

Ф(j) = I(j) /I ср = p 2 (j)/p 2 ср,

где р ср - звуковое давление (усредненное по всем направлениям на постоянном расстоянии от источника); p (j) - звуковое давление в угловом направлении j, измеренное на том же расстоянии от источника.

Измерение шума. Шумомеры

Все методы измерения шумов делятся на стандартные и нестандартные. Стандартные измерения регламентируются соответствующими стандартами и обеспечиваются стандартизованными средствами измерения. Величины, подлежащие измерению, так же стандартизованы. Нестандартные методы применяются при научных исследованиях и при решении специальных задач.

Измерительные стенды, установки, приборы и звукоизмерительные камеры подлежат метрологической аттестации в соответствующих службах с выдачей аттестационных документов, в которых указываются основные метрологические параметры, предельные значения измеряемых величин и погрешности измерения.

Стандартными величинами, подлежащими измерению, для постоянных шумов являются: уровень звукового давления в октавных или третьоктавных полосах частот в контрольных точках; уровень звука в контрольных точках.

Шумоизмерительные приборы – шумомеры – состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) – быстро, S (slow) – медленно, I (pik) – импульс. Шкалу F применяют при измерениях постоянных шумов, S – колеблющихся и прерывистых, I – импульсных.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 – для лабораторных и натурных измерений; 2 – для технических измерений; 3 – для ориентировочных измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.

Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот. В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.

Частотная характеристика фильтра К (f) =U вых /U вх представляет собой зависимость коэффициента передачи сигнала со входа фильтра U вх на его выход U вых от частоты сигнала f.

Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов.

Способы защиты от шума на предприятиях

Согласно ГОСТ 12.1.003-83 при разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочих мест следует принимать все необходимые меры по снижению шума, воздействующего на человека, до значений, не превышающих допустимые.

Защита от шума должна обеспечиваться разработкой шумобезопасной техники, применением средств и методов коллективной защиты, в том числе строительно-акустических, применением средств индивидуальной защиты.

В первую очередь следует использовать средства коллективной защиты. По отношению к источнику возбуждения шума коллективные средства защиты подразделяются на средства, снижающие шум в источнике его возникновения, и средства, снижающие шум на пути его распространения от источника до защищаемого объекта.

Снижение шума в источнике осуществляется за счет улучшения конструкции машины или изменения технологического процесса. Средства, снижающие шум в источнике его возникновения в зависимости от характера шумообразования подразделяются на средства, снижающие шум механического происхождения, аэродинамического и гидродинамического происхождения, электромагнитного происхождения.

Методы и средства коллективной защиты в зависимости от способа реализации подразделяются на строительно-акустические, архитектурно-планировочные и организационно-технические и включают в себя:

→ изменение направленности излучения шума;

→ рациональную планировку предприятий и производственных помещений;

→ акустическую обработку помещений;

→ применение звукоизоляции.

В ряде случаев величина показателя направленности достигает 10 - 15 дБ, что необходимо учитывать при использовании установок с направленным излучением, ориентируя эти установки так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места.

Рациональная планировка предприятий и производственных помещений позволяет снизить уровень шума на рабочих местах за счет увеличения расстояния до источников шума.

При планировке территории предприятий наиболее шумные помещения должны быть сконцентрированы в одном - двух местах. Расстояние между шумными и тихими помещениями должно обеспечивать необходимое снижение шума. Если предприятие расположено в черте города, то шумные помещения должны находиться в глубине территории предприятия, как можно дальше от жилой застройки.

Внутри здания тихие помещения необходимо располагать вдали от шумных так, чтобы их разделяло несколько других помещений или ограждение с хорошей звукоизоляцией.

Акустическая обработка помещения – это облицовка части внутренних ограждающих поверхностей звукопоглощающими материалами, а также размещение в помещении штучных поглотителей, представляющих собой свободно подвешиваемые объемные поглощающие тела различной формы.

Под звукопоглощением понимают свойство поверхностей уменьшать интенсивность отраженных ими волн за счет преобразования звуковой энергии в тепловую. Эффективность снижения шума звукопоглощением зависит в основном от акустических характеристик самого помещения и частотных характеристик материалов, применяемых для акустической обработки. Наиболее часто для акустической обработки применяют однородные пористые материалы, критерием выбора которых является соответствие максимума в частотной эффективности материала максимуму в спектре снижаемого шума в помещении.

Акустически обработанные поверхности помещения уменьшают интенсивность отраженных звуковых волн, что приводит к снижению шума в зоне отраженного звука; в зоне прямого звука эффект акустической обработки значительно ниже.

Звукопоглощающая облицовка размещается на потолке и в верхних частях стен (при высоте помещения не более 6-8 м) таким образом, чтобы акустически обработанная поверхность составляла не менее 60% от общей площади ограничивающих помещение поверхностей. В относительно низких (менее 6 м) и протяженных помещениях облицовки рекомендуется размещать на потолке. В узких и очень высоких помещениях целесообразно размещать облицовку на стенах, оставляя только их нижние части (2 м высоты) необлицованными. В помещениях высотой более 6 м следует предусматривать устройство звукопоглощающего подвесного потолка.

Если площадь поверхностей, на которых возможно размещение звукопоглощающей облицовки мала, или конструктивно невозможно выполнить облицовку на ограждающих поверхностях, то применяются штучные звукопоглотители.

В области средних и высоких частот эффект от применения акустической облицовки может составлять 6¸15 дБ.

К архитектурно-планировочным решениям также относится создание санитарно-защитных зон вокруг предприятий. По мере увеличения расстояния от источника уровень шума уменьшается. Поэтому создание санитарно-защитной зоны необходимой ширины является наиболее простым способом обеспечения санитарно-гигиенических норм вокруг предприятий.

Выбор ширины санитарно-защитной зоны зависит от установленного оборудования, например, ширина санитарно-защитной зоны вокруг крупных ТЭС может составлять несколько километров. Для объектов, находящихся в черте города, создание такой санитарно-защитной зоны порой становится неразрешимой задачей. Сократить ширину санитарно-защитной зоны можно уменьшением шума на путях его распространения.

Средства индивидуальной защиты (СИЗ) применяются в том случае, если другими способами обеспечить допустимый уровень шума на рабочем месте не удается. Принцип действия СИЗ – защитить наиболее чувствительный канал воздействия шума на организм человека – ухо. Применение СИЗ позволяет предупредить расстройство не только органов слуха, но и нервной системы от действия чрезмерного раздражителя.

Наиболее эффективны СИЗ, как правило, в области высоких частот.

СИЗ включают в себя противошумные вкладыши (беруши), наушники, шлемы и каски, специальные костюмы.



Изучение промышленного шума показало, что по характеру звучания он, как правило, подразделяется на постоянный и широкополосный. Наиболее значительные уровни наблюдаются на частотах 500-1000 Гц, т.е. в зоне наибольшей чувствительности органа слуха. Это свидетельствует о необходимости проведения мероприятий по нормализации акустического режима в районах размещения данных объектов. В производственных цехах устанавливается большое количество разнотипного технологического оборудования. Создаваемый предприятиями шум в значительной мере зависит от эффективности мероприятий по шумоглушению. Так, даже крупные вентиляционные установки, компрессорные станции, различные мотороиспытательные стенды могут быть оборудованы шумоглушащими устройствами различной эффективности. Предприятия могут иметь наружные ограждения, обладающие различной звукоизоляцией, что влияет на интенсивность шума, распространяющегося на прилегающую территорию.

Влияние шума на физиологические процессы организма человека.

Воздействие шума на человека происходит в двух направлениях:

  • 1) нагрузка на орган слуха как систему, воспринимающую звуковую энергию;
  • 2) воздействие на центральные звенья звукового анализатора как систему приема информации.

Нагрузку на орган слуха оценивают помощью определения смещения порогов восприятия тонов, которое зависит от длительности воздействия и величины звукового давления.

Воздействие на ЦНС называется «неспецифическим» влиянием, которое можно объективно оценить по физиологическим показателям.

Изменения функционального состояния нервной системы под влиянием шума:

  • слабость;
  • головная боль тупого характера;
  • чувство тяжести и шума в голове, возникающие к концу рабочей смены или после работы;
  • головокружение при перемене положения тела;
  • снижение трудоспособности, внимания;
  • повышенная потливость, особенно при волнениях;
  • нарушение ритма сна (сонливость днем, тревожный сон в ночное время);
  • апатия;
  • ослабление памяти, неустойчивое настроение;
  • зябкость;
  • повышенная раздражительность;
  • быстрая утомляемость;
  • учащение пульса.

Данные симптомы часто возникают при отсутствии выраженных признаков поражения слуха и могут быть начальным проявлением любых психических болезней, а также наблюдаются при неврозах и психопатиях.

Реакция сердечно-сосудистой системы на шум:

  • брадикардия (урежение частоты сердечных сокращений);
  • синусовая аритмия;
  • нарушения проводимости;
  • сокращение числа эритроцитов в крови;
  • спазм артериальных сосудов;
  • неприятные ощущения в области сердца в виде покалываний, сердцебиения;
  • уменьшение емкости функционирующего сосудистого русла;
  • выраженная неустойчивость пульса и артериального давления, особенно в период пребывания в условиях шума.

Кроме того, имеется экспериментальное подтверждение того, что некоторые химические вещества воздействуют на нервную систему и вызывают сдвиг порога слуха у подопытных животных, особенно, если использование их происходит на фоне шума. К таким материалам относятся:

  • тяжелые металлы, типа соединений свинца и триметилтина;
  • органические растворители, типа толуола, ксилола и дисульфида углерода;
  • удушающий газ - оксид углерода.

Многие из них содержатся в выхлопах городского транспорта.

Изменения нервной и сердечно-сосудистой систем являются неспецифической реакцией организма на воздействие многих раздражителей, в том числе шума. Частота и выраженность их в значительной мере зависят от наличия других сопутствующих факторов. Например, при сочетании интенсивного шума с нервно-эмоциональным напряжением у людей часто отмечается тенденция к сосудистой гипертензии, а также наблюдается тенденция к увеличению частоты таких заболеваний, как вегето-сосуди- стая дистония (на 20%), ишемическая и болезнь сердца и гипертоническая болезнь (на 10%) и др.

Влияние шума на обмен веществ в нервной ткани. Было проведено множество исследований с целью изучения механизмов нарушений, вызванных шумом. Важные исследования по неснецифичности шумового раздражения для клеточных образований звукового анализатора и других структур, например спинномозговых ганглиев, показывают, что шум может действовать как непосредственно на клетку, так и опосредованно через нервную систему на нее же и вызывать различные реакции (денатурацию нативных белков, изменение реактивности), приводящие к обратимым или необратимым изменениям клеток, что лежит в основе функциональных повреждений органов и систем.

При изучении энергетического обмена животных с использованием биохимических, морфологических и электронно-микроскопических методов выяснилось, что при длительном воздействии шума неблагоприятное влияние возрастает не только от уровня шума, но и от его частотного характера.

Высокочастотные шумы (октавная полоса 4000 Гц) по сравнению с эквивалентными по энергии низкочастотными шумами (октавная полоса 125 Гц) вызывают более глубокие нарушения нервной трофики, т.е. процессов в нейронах, которые обеспечивают нормальную жизнедеятельность иннервируемых им структур (органов и тканей). Кроме того, нарушается синтез макроэргических фосфорных соединений, высокоэнергетических соединений, молекулы которых содержат богатые энергией, или макроэргические, связи.

Был проведен опыт по изучению мозга крыс, которые подвергались хроническому (трехмесячное воздействие но шесть часов ежедневно) влиянию интенсивного шума (97 дБ). Результаты электронно-микроскопического исследования мозга животных показывают значительные изменения ультраструктуры митохондрий и синаптических пузырьков нервных клеток, что свидетельствует о нарушении функциональной возможности синапса. Изменения структуры митохондрий, а также просветление цитоплазмы и неравномерное распределение хроматина в ядре свидетельствовали об угнетении окислительных процессов и замедлении тканевого метаболизма. Эти изменения клеток мозга согласуются с данными биохимических исследований, свидетельствующих о нарушении трофики и метаболизма.

Нарушения сна под влиянием шума. Крайне неблагоприятно действуют прерывистые, внезапно возникающие шумы, особенно в вечерние и ночные часы, на только что заснувшего человека. Это объясняется тем, что в период засыпания мозг находится в состоянии «гипноидной» фазы. В это время развиваются парадоксальные отношения к окружающей действительности, поэтому даже слабые шумовые раздражители могут давать непропорционально сверхсильный эффект. Внезапно возникающий во время сна шум (грохот грузовика, громкая музыка и др.) нередко вызывает сильный испуг, особенно у больных и у детей.

Шум уменьшает продолжительность и глубину сна. Установлено, что большую роль играет хронологическая конфигурация шумов, чередование шумов различной интенсивности. Так, неравномерное движение транспорта сильнее нарушает сон, чем интенсивное, но равномерное. Очевидно, адаптация к регулярным и частым шумам наступает гораздо легче, чем к нерегулярным и редким.

Реакция на шумовое воздействие зависит от возраста, пола и состояния здоровья человека. При одной и той же интенсивности шума люди в возрасте 70 лет просыпаются в 72% случаев, а дети 7-8 лет - только в 1% случаев. Пороговой интенсивностью шума, вызывающей пробуждение детей, является 50 дБ (А), взрослых - 30 дБ (А), а пожилые люди реагируют на еще меньшую величину. Женщины более легко просыпаются при шуме. Это объясняется тем, что они чаще, чем мужчины, переходят от стадии глубокого сна к легкому сну.

Шум влияет на различные стадии сна. Так, стадия парадоксального сна, характеризующаяся сновидениями, быстрыми глазными движениями и другими признаками, должна занимать не менее 20% всего периода сна; уменьшение этой стадии сна приводит к серьезным расстройствам нервной системы и умственной деятельности человека. Сокращение стадии глубокого сна приводит к гормональным нарушениям, депрессии и другим психическим нарушениям.

Под влиянием шума в 50 дБ (А) срок засыпания увеличивается на час и более, сон становится поверхностным, после пробуждения люди чувствуют усталость, головную боль, а нередко и сердцебиение.

Отсутствие нормального отдыха после трудового дня приводит к тому, что естественно развивающееся после работы утомление не исчезает, а постепенно переходит в хроническое переутомление, способствующее развитию ряда заболеваний, таких как расстройство центральной нервной системы, гипертоническая болезнь.

Воздействие шума на психику. Громкие звуки вызывают раздражение ЦНС, при котором в организме повышается уровень адреналина в крови, учащаются дыхание, сердцебиение, повышается артериальное давление, подавляется моторика желудочно-кишечного тракта, сужаются сосуды периферической кровеносной системы, понижается мышечный тонус. На уровне сознания организм приводится в состояние готовности и готов к сопротивлению. Организм рефлекторно реагирует на шум как на предупреждающий сигнал. Это дает постоянную нагрузку на нервную систему и не позволяет ей в достаточной мере восстановиться.

Постоянный шум увеличивает раздражительность человека, повышает уровень тревожности и агрессивности.

Влияние шума на внимание и трудоспособность. Каждый человек воспринимает шум по-разному. Влияние шума на трудоспособность во многом зависит от возраста, темперамента, состояния здоровья, окружающих условий.

Наиболее неблагоприятными для процесса работы являются:

  • длительный шум громкостью свыше 90 дБ;
  • прерывистый, неожиданный или не поддающийся контролю шум громкостью менее 90 дБ, если в спектре шума преобладают высокие частоты.

Способность шума отвлекать человека от какой-либо деятельности прямо пропорциональна громкости, но зависит от настроения человека и от конкретной ситуации. Например, едва слышимый звук может раздражать, а грохот духового оркестра - приносить положительные эмоции. Чем резче переход от тишины к шуму, тем неприятнее кажется звук.

Отрицательно сказываются на процессе работы следующие факторы:

  • характеристики шума;
  • характеристики задания;
  • этапы работы, которые считаются важными;
  • индивидуальное восприятие.

Мешающее действие шума связано и с информацией, которую он несет: так, заснувшая мать может не отреагировать на раскаты грома за окном, но тихий, еле слышный плач ребенка разбудит ее мгновенно. Находясь на рабочем месте, человек не замечает шумы более громкие, чем дома, где, согласно исследованиям, человеку не мешает шум громкостью около 40-45 дБ (Л) днем и 35 дБ (Л) ночью. После периода привыкания большинство работников перестанет обращать внимание на шум, но будет по-прежнему жаловаться на усталость, раздражительность и бессонницу. (Привыкание пройдет более успешно, если новички с самого начала, прежде чем у них начнет ухудшаться слух, будут должным образом обеспечены защитными средствами.)

Влияние шума на интенсивность труда изучалось как в лабораторных условиях, так и в условиях реального производства. Результаты исследований показали, что шум обычно практически не сказывается на выполнении однообразной, монотонной работы, а в некоторых случаях может даже приводить к увеличению ее интенсивности, если уровень шума характеризуется как низкий или умеренный.

Высокий уровень шума может снижать интенсивность выполнения работ, особенно, если речь идет о выполнении сложной операции или нескольких операций одновременно. Непостоянные шумы обычно представляют собой большую помеху в работе, чем шум постоянный, особенно, если шум возникает неожиданно и не поддается контролю.

Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБ (А) производительность труда снижается на 20%.

Шум мешает выполнению следующих заданий:

  • задания, которые требуют концентрации, обучения или аналитического мышления;
  • задания, неотъемлемой частью которых является разговор (восприятие речи на слух);
  • задания, требующие значительных мышечных усилий;
  • синхронные задания;
  • задания, требующие непрерывного участия в процессе выполнения;
  • задания, при выполнении которых необходимо быть бдительным длительное время;
  • выполнение любых заданий, при которых необходимо воспринимать слуховые сигналы;
  • задания, требующие внимания, чтобы воспринимать одновременно несколько звуковых сигналов.

Поскольку человек постоянно окружен акустической средой, абсолютная тишина становится повреждающим фактором для психики человека, отрицательно сказываясь на его жизнедеятельности. У всех людей, помещаемых в звуко- и светонепроницаемые помещения, через некоторое время появляются галлюцинации (как звуковые, так и визуальные), которыми мозг пытается восполнить недостающую информацию.

Реакция организма на шум во многом зависит от возраста. Так, в возрасте до 27 лет на шум реагируют 46,3% людей, а в возрасте 58 лет и старше - 72%. Большое количество жалоб у лиц пожилого возраста, очевидно, связано с возрастными особенностями и состоянием центральной нервной системы этой возрастной группы населения.

Также наблюдается зависимость между количеством жалоб и характером выполняемой работы. Беспокоящее действие шума сказывается больше на людях, занятых умственным трудом, чем на работающих физически, что, по-видимому, связано с большим утомлением нервной системы.

Шум - один из наиболее распространенных факторов производственной среды. Источниками звуков и шумов являются . Основные производственные процессы, сопровождающиеся шумом, это:

  • клепка
  • штамповка
  • испытание авиамоторов
  • работа на ткацких станках и др.

Создание новых видов современной промышленной техники, оборудования больших мощностей и значительного числа оборотов приводят к возрастанию интенсивности шума, усложнению его характера.

Действие шума может проявляться в:

  • специфической патологии органа слуха;
  • неблагоприятном влиянии на нервную, сердечно-сосудистую и другие системы организма;
  • снижении производительности труда;
  • возникновении травм.

Производственный шум

Под шумом обычно понимается комплекс звуков разной интенсивности и высоты, беспорядочно изменяющихся во времени, неблагоприятно действующих на организм человека.

С физической точки зрения звук и шумы представляют собой волнообразно распространяющееся колебательное движение частиц упругой среды. Чем больше амплитуда колебаний звучащего тела, тем больше амплитуда звукового давления и соответствующая сила звука или шума.

Человеческое ухо способно воспринимать колебания в диапазоне от 16 до 20 000 в секунду. Звуковое колебательное движение характеризуется:

  • Амплитудой
  • Периодом
  • Частотой колебания

Число колебаний, которое совершает частица в единицу времени, называется частотой колебания и измеряется в герцах (Гц). Герц - одно колебание в секунду.

Для санитарно-гигиенической характеристики шума на производстве пользуются не физическими (давление, энергия), а относительными величинами, так называемыми децибелами (дБ), основанными на субъективном восприятии звука.

Шкала децибел имеет то преимущество, что весь огромный диапазон интенсивностей (от едва слышимых до чрезмерно громких) выражается числами от 0 до 140 дБ. Это позволяет при характеристике уровней шумов оперировать малыми числами.

Воспринимаемый нами шелест листьев равен 30 дБ,
громкая речь - 70 дБ,
автомобильный сигнал – 90 дБ,
шум в ткацких цехах равен 105-110 дБ,
при ручной клепке металла 110 — 115 дБ.

Важной характеристикой шума является плотность распределения мощности по спектру частот.

Если в составе шума преобладают интенсивности звуков с частотой колебаний не более 300-400 Гц, то такой шум называют низкочастотным. При преобладании интенсивности звуков с частотой колебаний от 400 до 1000 Гц шум называют среднечастотным, выше частоты 1000 Гц — высокочастотным.

Шум принято разделять также на:

  • Стабильный
  • Импульсный

В производственных условиях на первый план выступает воздействие шума на орган слуха. Воздействие шума может сказаться на работоспособности учащихся, мешать нормальному ходу обучения.

Так, шум в 95-105 дБ, характерный для текстильного производства, вызывал у учащихся ухудшение показателей мышечной и умственной работоспособности.

Существенные изменения в функциональном состоянии центральной нервной системы под влиянием шума отмечались у учащихся, проходящих производственное обучение в шумных цехах различных производств.

Более значительные, чем у взрослых механизаторов сельского хозяйства, наблюдались сдвиги в функциональном состоянии 17-летних учащихся сельских ПТУ, подвергавшихся воздействию высокочастотного шума. Отмеченные сдвиги наступали уже через 3 часа после начала работы и выражались в понижении работоспособности, остроты слуха почти на 33%, т.е. развитии у них выраженного утомления.

Исследования функционального состояния учащихся, работающих в слесарных и токарных мастерских профтехучилищ, выявили изменения артериального давления, сдвиги со стороны центральной нервной и мышечной систем, а также снижение общей работоспособности. Подобные явления связаны с воздействием факторов производственной среды и в первую очередь шума.

Исследования, проведенные среди взрослых рабочих и подростков, позволили выявить у последних более сильное снижение слуха по сравнению со взрослыми, работающими в аналогичных условиях производственной среды.

Борьба с производственным шумом

Для борьбы с производственным шумом предусматриваются следующие мероприятия:
1. изоляция источников шума в производственных помещениях путем установления плотных деревянных, кирпичных перегородок с перенесением за перегородку. При невозможности изолировать источники шума возле них устанавливают звукоизолированные кабины для обслуживающего персонала;

2. установка агрегатов, работа которых сопровождается сильным сотрясением (молоты, штамповочные автоматы и др.), на виброизолирующие материалы или специальный фундамент;

3. замена шумных технологических процессов бесшумными (штамповка и ковка заменяются обработкой давлением, электросваркой);

4. расположение шумных цехов на определенном расстоянии от жилых строений с соблюдением зон разрывов; кроме того, их сосредоточивают в одном месте и окружают зелеными насаждениями; утолщенные стены цехов с внутренней стороны облицовывают специальными акустическими плитами;

5. применение индивидуальных приспособлений для защиты органа слуха.

Для профилактики отрицательного воздействия шумового фактора в учебно-производственных помещениях предусматривают следующие мероприятия:
1. Снижение шума в источнике его образования.

2. Устранение возможности передачи шума от источника и из помещения, где установлены агрегаты, создающие шум, в соседние помещения и за пределы здания за счет усиления звукоизолирующих свойств конструкций.

3. Снижение уровня шума в помещениях с шумным оборудованием.

4. Рациональная планировка помещений, имеющих источники шума.

Профилактика

Ограничение вредного воздействия шума на организм обучающихся и работающих подростков может быть достигнуто также с помощью:

  • технической и медицинской профилактики воздействия шума;
  • использования коллективных и индивидуальных средств защиты;
  • организации рационального режима труда и отдыха подростков.

Техническая профилактика проводится обслуживающим персоналом, осуществляющим постоянный контроль за исправностью, герметизацией, звукоизоляцией производственного оборудования, состоянием вентиляционных установок.

Помещения, имеющие источники ума, не должны облицовываться керамической плиткой и окрашиваться масляной краской. Для усиления звукопоглощения под оборудованием рекомендуется размещать функциональные поглотители в виде кубов, конусов и др.

Рациональная планировка помещений предусматривает раздельное размещение шумных и тихих цехов и оборудования.

Медицинская профилактика воздействия шума заключается в своевременной организации предварительных и периодических медицинских осмотров учащихся. При приеме подростков для обучения специальностям, освоение которых связано с воздействием производственного шума, должны строго учитываться медицинские противопоказания.

Коллективные и индивидуальные средства защиты используются при невозможности проведения мероприятий по снижению производственного шума до нормативных уровней. К таким средствам могут быть отнесены:

  • звукоизолированные кабины наблюдения и дистанционного управления
  • переносные полузакрытые кабины
  • экраны
  • тихие комнаты отдыха
  • различные индивидуальные средства защиты органа слуха: наушники, вкладыши, тампоны и др.

Организация рационального режима труда и отдыха будет способствовать уменьшению степени неблагоприятного воздействия шума на организм.

Опасный шум

Предельный уровень шума для подростков на производстве - 65 дБ. В настоящее время принято оценивать шумы в виде показателя предельного спектра (ПС), численная величина которого соответствует уровню звукового давления шума в децибелах со среднегеометрической частотой 1000 Гц.

Учитывая, что не во всех случаях удается снизить производственный шум до установленных норм (ПС-65), в целях профилактики целесообразно введение таких режимов труда, которые учитывали бы длительность пребывания подростков-учащихся на рабочих местах.

Кроме того, в работе должны быть предусмотрены обязательные 10-15-минутные перерывы, которые проводят в специально отведенных помещениях, изолированных от воздействия шумовых факторов. Такие перерывы устраиваются для подростков, работающих:

  • первый год — через 50 мин работы;
  • второй год - через 1,5 ч работы;
  • третий год - через 2 ч работы.

По истечении допустимого времени работы в условиях производственного шума подростки могут выполнять другую работу по усмотрению администрации.

Шум — это совокупность звуков, неблагоприятно воздействующих на организм человека и мешающих его работе и отдыху.

Источниками звука являются упругие колебания материальных частиц и тел, передаваемых жидкой, твердой и газообразной средой.

Скорость звука в воздухе при нормальной температуре составляет приблизительно 340 м/с, в воде -1 430 м/с, в алмазе — 18 000 м/с.

Звук с частотой от 16 Гц до 20 кГц называется слышимый, с частотой менее 16 Гц — и более 20 кГц — .

Область пространства, в котором распространяются звуковые волны, называется звуковым полем, которое характеризуется интенсивностью звука, скоростью его распространения и звуковым давлением.

Интенсивность звука — это количество звуковой энергии, передаваемой звуковой волной за 1 с через площадку 1 м 2, перпендикулярную направлению распространения звука, Вт/м2.

Звуковое давление — им называется разность между мгновенным значением полного давления, создаваемого звуковой волной и средним давлением, которое наблюдается в невозмущенной среде. Единица измерения — Па.

Порог слуха молодого человека в диапазоне частот от 1 000 до 4 000 Гц соответствует давлению 2× 10-5 Па. Наибольшее значение звукового давления, вызывающего болезненные ощущения, называется порогом болевого ощущения и составляет 2× 102 Па. Между этими значениями лежит область слухового восприятия.

Интенсивность воздействия шума на человека оценивается уровнем звукового давления (L), который определяется как логарифм отношения эффективного значения звукового давления к пороговому. Единица измерения — децибел, дБ.

На пороге слышимости при среднегеометрической частоте 1 000 Гц уровень звукового давления равен нулю, а на пороге болевого ощущения — 120-130 дБ.

Окружающие человека шумы имеют разную интенсивность: шепот — 10-20 дБА, разговорная речь — 50-60 дБА, шум от двигателя легкового автомобиля — 80 дБА, а от грузового — 90 дБА, шум от оркестра — 110-120 дБА, шум при взлете реактивного самолета на расстоянии 25 м — 140 дБА, выстрел из винтовки — 160 дБА, а из тяжелого орудия — 170 дБА.

Виды производственного шума

Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным ; если прослушивается звук определенной частоты, шум называется тональным ; шум, воспринимаемый как отдельные импульсы (удары), называется импульсным.

В зависимости от характера спектра шумы разделяются на низкочастотные (максимальное звуковое давление меньше 400 Гц), среднечастотные (звуковое давление в пределах 400-1000 Гц) и высокочастотные (звуковое давление больше 1000 Гц).

В зависимости от временных характеристик шумы разделяются на постоянные и непостоянные.

Непостоянные шумы бывают колеблющимися по времени, уровень звука которых непрерывно изменяется во времени; прерывистыми, уровень звука которых резко падает до уровня фонового шума; импульсными , состоящими из сигналов менее 1 с.

В зависимости от физической природы шумы могут быть:

  • механическими - возникающими при вибрации поверхностей машин и при одиночных или периодических ударных процессах (штамповка, клепка, обрубка и т.п.);
  • аэродинамическими — шумы вентиляторов, компрессоров, двигателей внутреннего сгорания, выпусков пара и воздуха в атмосферу;
  • электромагнитными - возникающими в электрических машинах и оборудовании за счет магнитною поля, обусловленного электрическим током;
  • гидродинамическими - возникающими вследствие стационарных и нестационарных процессов в жидкостях (насосы).

В зависимости от характера действия шумы делятся на стабильные, прерывистые и воющие ; последние два особенно неблагоприятно действуют на слух.

Шум создается одиночными или комплексными источниками, находящимися снаружи или внутри здания, — это прежде всего транспортные средства, техническое оборудование промышленных и бытовых предприятий, вентиляторные, газотурбокомпрессорные установки, санигарно-техническое оборудование жилых зданий, трансформаторы.

В производственной сфере шумы наиболее распространены в промышленности и сельском хозяйстве. Значительный уровень шума наблюдается в горнорудной промышленности, машиностроении, лесозаготовительной и деревообрабатывающей, текстильной промышленности.

Воздействие шума на организм человека

Шум, возникающий при работе производственного оборудования и превышающий нормативные значения, воздействует на центральную и вегетативную нервную систему человека, органы слуха.

Шум воспринимается весьма субъективно. При этом имеет значение конкретная ситуация, состояние здоровья, настроение, окружающая обстановка.

Основное физиологическое воздействие шума заключается в том, что повреждается внутреннее ухо, возможны изменения электрической проводимости кожи, биоэлектрической активности головного мозга, сердца и скорости дыхания, общей двигательной активности, а также изменения размера некоторых желез эндокринной системы, кровяного давления, сужение кровеносных сосудов, расширение зрачков глаз. Работающий в условиях длительного шумового воздействия испытывает раздражительность, головную боль, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, нарушение сна. В шумном фоне ухудшается общение людей, в результате чего иногда возникает чувство одиночества и неудовлетворенности, что может привести к несчастным случаям.

Длительное воздействие шума, уровень которого превышает допустимые значения, может привести к заболеванию человека шумовой болезнью — нейросенсорная тугоухость. На основании всего выше сказанного шум следует считать причиной потери слуха, некоторых нервных заболеваний, снижения продуктивности в работе и некоторых случаях потери жизни.

Гигиеническое нормирование шума

Основная цель нормирования шума на рабочих местах — это установление предельно допустимого уровня шума (ПДУ), который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Предельно допустимые уровни шума на рабочих местах регламентированы СН 2.2.4/2.8.562-96 “Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки”, СНиП 23-03-03 “Защита от шума”.

Мероприятия по защите от шума

Защита от шума достигается разработкой шумобезопасной техники, применением средств и методов коллективной защиты, а также средств индивидуальной защиты.

Разработка шумобезопасной техники — уменьшение шума в источнике — достигается улучшением конструкции машин, применением малошумных материалов в этих конструкциях.

Средства и методы коллективной защиты подразделяются на акустические, архитектурно-планировочные, организационно-технические.

Защита от шума акустическими средствами предполагает:

  • звукоизоляцию (устройство звукоизолирующих кабин, кожухов, ограждений, установку акустических экранов);
  • звукопоглощение (применение звукопоглощающих облицовок, штучных поглотителей);
  • глушители шума (абсорбционные, реактивные, комбинированные).

Архитектурно-планировочные методы — рациональная акустическая планировка зданий; размещение в зданиях технологического оборудования, машин и механизмов; рациональное размещение рабочих мест; планирование зон движения транспорта; создание шумозащищенных зон в местах нахождения человека.

Организационно-технические мероприятия — изменение технологических процессов; устройство дистанционного управления и автоматического контроля; своевременный планово-предупредительный ремонт оборудования; рациональный режим труда и отдыха.

Если невозможно уменьшить шум, действующий на работников, до допустимых уровней, то необходимо использовать средства индивидуальной защиты (СИЗ) — противошумные вкладыши из ультратонкого волокна “Беруши” одноразового использования, а также противошумные вкладыши многократного использования (эбонитовые, резиновые, из пенопласта) в форме конуса, грибка, лепестка. Они эффективны для снижения шума на средних и высоких частотах на 10-15 дБА. Наушники снижают уровень звукового давления на 7-38 дБ в диапазоне частот 125-8 000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, оголовья, каски, которые снижают уровень звукового давления на 30-40 дБ в диапазоне частот 125-8 000 Гц.

См.также

Защита от производственного шума

Основные мероприятия по борьбе с шумом — это технические мероприятия, которые проводятся потрем главным направлениям:

  • устранение причин возникновения шума или снижение его в источнике;
  • ослабление шума на путях передачи;
  • непосредственная защита работающих.

Наиболее эффективным средством снижения шума является замена шумных технологических операций малошумными или полностью бесшумными, однако этот путь борьбы с шумом не всегда возможен, поэтому большое значение имеет снижение шума в источнике — путем совершенствования конструкции или схемы той части оборудования, которая производит шум, использования в конструкции материалов с пониженными акустическими свойствами, оборудования на источнике шума дополнительного звукоизолирующего устройства или ограждения, расположенного по возможности ближе к источнику.

Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух , закрывающий отдельный шумный узел машины.

Значительный эффект снижения шума от оборудования дает применение акустических экранов, отгораживающих шумный механизм от рабочего места или зоны обслуживания машины.

Применение звукопоглощающих облицовок для отделки потолка и стен шумных помещений (рис. 1) изменяет спектр шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

Рис. 1. Акустическая обработка помещений: а — звукопоглощающие облицовки; б — штучные звукопоглощатели; 1 — защитный перфорированный слой; 2 — звукопоглощающий материал; 3 — защитная стеклоткань; 4 — стена или потолок; 5 — воздушный промежуток; 6 — плита из звукопоглощающего материала

Для снижения аэродинамического шума применяют глушители , которые принято делить на абсорбционные, использующие облицовку поверхностей воздуховодов звукопоглощающим материалом: реактивные типа расширительных камер, резонаторов, узких отростков, длина которых равна 1/4 длины волны заглушаемого звука: комбинированные, в которых поверхности реактивных глушителей облицовывают звукопоглощающим материалом; экранные.

Учитывая, что с помощью технических средств в настоящее время не всегда удается решить проблему снижения уровня шума, большое внимание должно уделяться применению средств индивидуальной защиты : наушников, вкладышей, шлемов, защищающих ухо от неблагоприятного действия шума. Эффективность средств индивидуальной защиты может быть обеспечена их правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло