Растворимые углеводы и сырая клетчатка в кормах. Улеводы нерастворимые в воде

Среди углеводов различают целлюлозу, гемицеллюлозу, палисахара (крахмал, инулин), дисахара (тростниковый сахар), монссахара (глюкоза, фруктоза, лактоза). К другим соединениям, входящим в состав корма, содержащим, так же как и углеводы, углерод, зодород и кислород, относятся пентозы, инкрустирующие вещества (лигнин, кутин.), органические кислоты, пигменты, пектиновые вещества, глюкозиды и ряд других, которые находятся в растительных и животных продуктах в небольшом количестве.

Обычно среди этих многообразных по своему составу и физиологическому значению веществ выделяют следующие группы: сырая клетчатка -в нее входят целлюлоза, гемнцеллюлоза, лигнин и другие инкрустирующие вещества; растворимые углеводы - крахмал, инулин, сахара; безазотистые эктрактивные в е щ е с т в а, куда входит все остальное; обычно растворимые углеводы не определяются, а их объединяют с группой безазотистых экстрактивных веществ, сокращенно обозначая их начальными буквами БЭВ.

Сырая клетчатка - соединение, которое в значительной степени определяет энергетическую питательность корма, содержание в нем полезных для животных органических веществ, способных к окислению.

На питательность сырой клетчатки влияет степень одревеснения, грубости, что вызывается содержанием в ней лигнина, в особенности его нерастворимых форм, и степенью волокнистости целлюлозы. Сырая клетчатка в зависимости от ее наличия в растениях и фазы развития растений совершенно поразному переваривается и усваивается. В начальные периоды развития растения, в фазе прикорневых листьев, сырая клетчатка переваривается на 70-85% и усваивается не хуже растворимых углеводов. В это время она состоит главным образом из гемицеллюлозы, аморфной целлюлозы; лигнин присутствует главным образом в виде его растворимых форм. С возрастом растения происходят следующие изменения: больше накапливается целлюлозы, она становится волокнистой, соединяется в плотные пучки (недоступные пищеварительным сокам), комплексируется с нерастворимыми формами лигнина. В результате резко снижается переваримость корма и значительно ухудшается использование животными переваренных органических веществ корма. Так, например, в одном из зарубежных опытов переваримость органического вещества тимофеевки в мае составляла 85%, а в конце июня она была равна 45%. В среднем при этом за каждый день развития растения переваримость снижалась на 0,5%.

Процесс понижения переваримости клетчатки сопровождается одновременным увеличением ее содержания в сухом веществе. Если в начальных фазах развития в растениях содержится сырой клетчатки 8-14%, то в конечных (осыпание семян, засыхание растений) до 45%. В процессе развития растений повышается удельный вес в сухом веществе лигнина. Однако большее значение в понижении энергетической питательности растения имеет то, что лигнин превращается в нерастворимые формы, входит в соединение с целлюлозой, резко снижая тем самым переваримость сырой клетчатки и других входящих в состав растения органических веществ.

При содержании в сухом веществе кормов 45% клетчатки переваримость ее оказывается низкой, равной 40%, резко снижается питательность сухого вещества. Такие корма, как озимая солома, малопроизводительны, так как резко снижают продуктивность животных. При увеличении содержания сырой клетчатки до 45-55% и выше (как в ветках, опилках и других древесных отходах, в торфе) продукты и материалы оказываются уже малопригодными для кормления животных.

Клетчатка играет рать балластного вещества, создающего объемистость пищевой массы. Дело в том, что при поедании животными меньше 2 кг сухих веществ на центнер живого веса нарушаются пищеварительные процессы, что отрицательно сказывается на усвоении питательных веществ и здоровье животных. Поэтому дача малопитательных или даже почти непитательных продуктов положительно сказывается на состоянии животных. Недостаточная объемистость рациона сказывается и на образовании у животных взращенных привычек - свиньи грызут полы на ферме , деревянные части кормушек, лошади заглатывают воздух (прикуска).

Другое положительное свойство сырой клетчатки способность хорошо обогревать животных зимой, образовывать в теле дополнительные количества тепловой энергии. Происходит это за счет того, что микроорганизмы пищеварительного тракта, в первую очередь у жвачных животных, разлагая и используя клетчатку, выделяют много тепла - примерно на 1 кг переваренной клетчатки 2500 ккал. Это обстоятельство и приводит к тому, что зимой, при низкой температуре, скот с большей охотой поедает гуменные и другие грубые корма, а весной и летом отказывается от соломы.

Возможно ли искусственно, путем обработки, изменить питательность кормов, а также некормовых продуктов? Оказывается, возможно. Дело в том, что по валовой калорийности грубые корма одинаковы с концентратами содержат в 1 кг 4400 ккал. Низкая питательность их обусловлена плохой переваримостью, а также неудовлетворительной ассимиляцией переваренных веществ. Если обработать грубый корм щелочным раствором достаточно активных щелочей - каустической соды, извести (кипелки) с наличием достаточного каличества гидроксильных групп (ОН) и числом рН не ниже 11-12, то происходит отделение целлюлозы от лигнина, волокнистое строение целлюлозы переходит в аморфное, в известной мере растворяется лигнин, а также попутно и кремниевые соли. При этом питательность сухого вещества грубых кормов резко увеличивается.

Оказывается, что аналогичная обработка щелочным раствором позволяет превратить некормовые продукты в корма. Так, обработка щелочным раствором древесных хлопьев, осиновых и березовых опилок позволила превратить их в продукт, поедаемый не талько крупным рогатым скотом, но и свиньями.

Растворимые углеводы - крахмал, инулин (в клубнях земляной груши), тростниковый сахар, глюкоза, фруктоза, лактоза -легко перевариваются и хорошо усваиваются. Они служат в теле животного материалом для образования механической и тепловой энергии и для синтеза жира. В клетках тела животного имеются моносахара, в крови глюкоза, в молоке-молочный сахар (лактоза). Животный крахмал (гликоген) имеется в весьма ограниченном количестве в печени, где он играет роль промежуточного соединения. Растворимые углеводы присутствуют главным образом в зернах, семенах, корнях и клубнях, составляя в них до 80% сухого вещества. Растворимые углеводы-лучшие источники образования жира в теле животных, так как процесс синтеза жира из них происходит более эффективно, чем из белков и жиров корма, а качество жира получается характерным для данного вида животных.

У жвачных животных избыток растворимых углеводов при недостатке протеина в корме приводит к пищеварительной дистрофии, к худшему использованию питательных веществ вследствие пониженной деятельности микроорганизмов желудочно-кишечного тракта.

Корма, богатые легкорастворнмыми углеводами, в значительном количестве используются в заключительный период откорма животных, в частности свиней, когда идет усиленное жироотложение. Растворимые углеводы более совершенно используются животными с однокамерным желудком, нежели жвачными, где они частично елужат питанием для микроорганизмов рубца.

Пентозы и пектиновые вещества по своим качествам близки к растворимым углеводам, хорошо перевариваются и используются животными. Встречаются в растительных кормах.

Органические кислоты в кормах встречаются в виде молочной, уксусной, пропионовой, маеляной. Содержание органических киелот в сухом веществе для успешного его использования не должно превышать 6%. При более высоком его содержании и числе рН ниже 3.6 - 3,8 поедаемость такого корма, например силоса, снижается. Дело в том, что животные, как правило, отказываются поедать силос, если количество свободных органических киелот превышает 100 г на центнер живого веса жвачных и 50-80 г на центнер веса свиней.

Обычно органические кислоты в кормах в большем количестве образуются благодаря брожению. Поэтому их много в силосе, барде, пивной дробине.

Наиболее желательной в кормах является молочная кислота. Она побуждает к более энергичному выделению пищеварительных соков, способствует возникновению хорошего аппетита. Силос с достаточным наличием молочной кислоты не обладает резко выраженным кислым запахом, так как молочная кислота не летуча. Уксусная кислота, как летучая, придает кормам соответствующий кислый запах. Пропионовая кислота встречается в кормах в меньшем количестве, чем уксусная и молочная. Она полезна для животных. Нежелательна в силосе масляная кислота. Ее наличие- признак маслянокислого брожения, приводящего к разложению силоса. В хорошем силосе масляная кислота отсутствует. В обшем же количестве органических кислот в силосе доля масляной не должна превышать 20%.

В рубце жвачных животных в результате жизнедеятельности микроорганизмов (бактерии, инфузорий) образуются органические кислоты - уксусная, пропионовая, масляная, валериановая и в небольшом количестве другие. Эти кислоты всасываются в кровь и служат источником синтеза различных органических веществ тела. В частности, уксусная кислота идет на образование маточного жира. Обычно среди летучих жирных кислот, образующихся в рубце, 62-73% составляет уксусная, 18-28% пропионовая, 7-16% масляная.

Органические соединения, которые являются основным источником энергии, называются углеводами. Чаще всего сахара встречаются в пище растительного происхождения. Дефицит углеводов может вызвать нарушение работы печени, а их избыток вызывает повышение уровня инсулина. Поговорим о сахарах подробнее.

Что такое углеводы?

Это органические соединения, которые содержат карбонильную группу и несколько гидроксильных. Они входят в состав тканей организмов, а также являются важным компонентом клеток. Выделяют моно -, олиго - и полисахариды, а также более сложные углеводы, такие как гликолипиды, гликозиды и другие. Углеводы являются продуктом фотосинтеза, а также основным исходным веществом биосинтеза других соединений в растениях. Благодаря большому разнообразию соединений данный класс способен играть многоплановые роли в живых организмах. Подвергаясь окислению, углеводы обеспечивают энергией все клетки. Они участвуют в становлении иммунитета, а также входят в состав многих клеточных структур.

Виды сахаров

Органические соединения делятся на две группы - простые и сложные. Углеводы первого типа - моносахариды, которые содержат карбонильную группу и представляют собой производные многоатомных спиртов. Ко второй группе принадлежат олигосахариды и полисахариды. Первые состоят их остатков моносахаридов (от двух до десяти), которые соединены гликозидной связью. Вторые могут содержать в своем составе и сотни и даже тысячи мономеров. Таблица углеводов, которые чаще всего встречаются, выглядит следующим образом:

  1. Глюкоза.
  2. Фруктоза.
  3. Галактоза.
  4. Сахароза.
  5. Лактоза.
  6. Мальтоза.
  7. Раффиноза.
  8. Крахмал.
  9. Целлюлоза.
  10. Хитин.
  11. Мурамин.
  12. Гликоген.

Список углеводов обширен. Остановимся на некоторых из них подробнее.

Простая группа углеводов

В зависимости от места, которое занимает карбонильная группа в молекуле, различают два вида моносахаридов - альдозы и кетозы. У первых функциональной группой является альдегидная, у вторых - кетонная. В зависимости от числа углеродных атомов, входящих в молекулу, складывается название моносахарида. Например, альдогексозы, альдотетрозы, кетотриозы и так далее. Эти вещества чаще всего не имеют цвета, плохо растворимы в спирте, но хорошо в воде. Простые углеводы в продуктах - твердые, не гидролизуются при переваривании. Некоторые из представителей обладают сладким вкусом.

Представители группы

Что относится к углеводам простого строения? Во-первых, это глюкоза, или альдогексоза. Она существует в двух формах - линейной и циклической. Наиболее точно описывает химические свойства глюкозы - это вторая форма. Альдогексоза содержит шесть атомов углерода. Вещество не имеет цвета, но зато сладкое на вкус. Отлично растворяется в воде. Встретить глюкозу можно практически везде. Она существует в органах растений и животных организмах, а также во фруктах. В природе альдогексоза образуется в процессе фотосинтеза.

Во-вторых, это галактоза. Вещество отличается от глюкозы расположением в пространстве гидроксильной и водородной групп у четвертого атома углерода в молекуле. Обладает сладким вкусом. Она встречается в животных и растительных организмах, а также в некоторых микроорганизмах.

И третий представитель простых углеводов - фруктоза. Вещество является самым сладким сахаром, полученным в природе. Она присутствует в овощах, фруктах, ягодах, меде. Легко усваивается организмом, быстро выводится из крови, что обуславливает ее применение больными сахарным диабетом. Фруктоза содержит мало калорий и не вызывает кариес.

Продукты, богатые простыми сахарами

  1. 90 г - кукурузный сироп.
  2. 50 г - сахара-рафинад.
  3. 40,5 г - мед.
  4. 24 г - инжир.
  5. 13 г - курага.
  6. 4 г - персики.

Суточное употребление данного вещества не должно превышать 50 г. Что касается глюкозы, то в этом случае соотношение будет немного другое:

  1. 99,9 г - сахар-рафинад.
  2. 80,3 г - мед.
  3. 69,2 г - финики.
  4. 66,9 г - перловая крупа.
  5. 61,8 г - овсяные хлопья.
  6. 60,4 г - гречка.

Чтобы рассчитать суточное употребление вещества, необходимо вес умножить на 2,6. Простые сахара обеспечивают энергией человеческий организм и помогают справляться с разными токсинами. Но нельзя забывать, что при любом употреблении должна быть мера, иначе серьезные последствия не заставят долго ждать.

Олигосахариды

Наиболее часто встречающимся видом в данной группе являются дисахариды. Что такое углеводы, содержащие несколько остатков моносахаридов? Они представляют собой гликозиды, содержащие мономеры. Моносахариды связаны между собой гликозидной связью, которая образуется в результате соединения гидроксильных групп. Исходя из строения дисахариды делятся на два виды: восстанавливающие и не восстанавливающие. К первому относится мальтоза и лактоза, а ко второму сахароза. Восстанавливающий тип обладает хорошей растворимостью и имеет сладкий вкус. Олигосахариды могут содержать более двух мономеров. Если моносахариды одинаковые, то такой углевод относится к группе гомополисахаридов, а если разные, то к гетерополисахаридов. Примером последнего типа является трисахарид раффиноза, которая содержит остатки глюкозы, фруктозы и галактозы.

Лактоза, мальтоза и сахароза

Последнее вещество хорошо растворяется, имеет сладкий вкус. Сахарный тростник и свекла являются источником получения дисахарида. В организме при гидролизе сахароза распадается на глюкозу и фруктозу. Дисахарид в больших количествах содержится в сахаре-рафинаде (99,9 г на 100 г продукта), в черносливе (67,4 г), в винограде (61,5 г) и в других продуктах. При избыточном поступлении этого вещества увеличивается способность превращаться в жир практически всех пищевых веществ. Также повышается уровень холестерина в крови. Большое количество сахарозы негативно влияет на кишечную флору.

Молочный сахар, или лактоза, содержится в молоке и его производных. Углевод расщепляется до галактозы и глюкозы благодаря специальному ферменту. Если его в организме нет, то наступает непереносимость молока. Солодовый сахар или мальтоза является промежуточным продуктом распада гликогена и крахмала. В пищевых продуктах вещество встречается в солоде, патоке, меде и проросших зернах. Состав углеводов лактозы и мальтозы представлен остатками мономеров. Только в первом случае ими являются D-галактоза и D-глюкоза, а во втором вещество представлено двумя D-глюкозами. Оба углевода являются восстанавливающимися сахарами.

Полисахариды

Что такое углеводы сложные? Они отличаются друг от друга по нескольким признакам:

1. По строению мономеров, включенных в цепь.

2. По порядку нахождения моносахаридов в цепи.

3. По типу гликозидных связей, которые соединяют мономеры.

Как и у олигосахаридов, в данной группе можно выделить гомо -, и гетерополисахариды. К первой относятся целлюлоза и крахмал, а ко второй - хитин, гликоген. Полисахариды являются важным источником энергии, который образуется в результате обмена веществ. Они участвуют в иммунных процессах, а также в сцеплении клеток в тканях.

Список сложных углеводов представлен крахмалом, целлюлозой и гликогеном, их мы рассмотрим подробнее. Одним из главных поставщиков углеводов является крахмал. Это соединения, которые включают сотни тысяч остатков глюкозы. Углевод рождается и хранится в виде зернышек в хлоропластах растений. Благодаря гидролизу крахмал переходит в водорастворимые сахара, что способствует свободному перемещению по частям растения. Попадая в человеческий организм, углевод начинает распадаться уже во рту. В наибольшем количестве крахмал содержат зерна злаков, клубни и луковицы растений. В рационе на его долю приходится около 80% всего количества употребляемых углеводов. Наибольшее количество крахмала, в расчете на 100 г продукта, содержится в рисе - 78 г. Чуть меньше в макаронах и пшене - 70 и 69 г. Сто грамм ржаного хлеба включает в себя 48 г крахмала, а в той же порции картофеля его количество достигает лишь 15 г. Суточная потребность человеческого организма в данном углеводе равна 330-450 г.

Зерновые продукты также содержат клетчатку или целлюлозу. Углевод входит в состав клеточных стенок растений. Его вклад равен 40-50 %. Человек не способен переварить целлюлозу, так нет необходимого фермента, который бы осуществлял процесс гидролиза. Но мягкий тип клетчатки, например, картофеля и овощей, способен хорошо усваиваться в пищеварительном тракте. Каково содержание данного углевода в 100 г еды? Ржаные и пшеничные отруби являются самыми богатыми клетчаткой продуктами. Их содержание достигает 44 г. Какао-порошок включает 35 г питательного углевода, а сухие грибы лишь 25. Шиповник и молотый кофе содержат 22 и 21 г. Одними из самых богатых на клетчатку фруктов являются абрикос и инжир. Содержание углевода в них достигает 18 г. В сутки человеку нужно съедать целлюлозы до 35 г. Причем наибольшая потребность в углеводе наступает в возрасте от 14 до 50 лет.

В роле энергетического материала для хорошей работы мышц и органов используется полисахарид гликоген. Пищевого значения он не имеет, так как содержание его в еде крайне низкое. Углевод иногда называют животным крахмалом из-за схожести в строении. В данной форме в животных клетках хранится глюкоза (в наибольшем количестве в печени и мышцах). В печени у взрослых людей количество углевода может достигать до 120 г. Лидером по содержанию гликогена являются сахар, мед и шоколад. Также большим содержанием углевода могут «похвастаться» финики, изюм, мармелад, сладкая соломка, бананы, арбуз, хурма и инжир. Суточная норма гликогена равна 100 г в сутки. Если человек интенсивно занимается спортом или выполняет большую работу, связанную с умственной деятельностью, количество углевода должно быть увеличено. Гликоген относится к легко усваиваемым углеводам, которые хранятся про запас, что говорит о его использовании только в случае недостатка энергии от других веществ.

К полисахаридам также относятся следующие вещества:

1. Хитин. Он входит в состав роговых оболочек членистоногих, присутствует в грибах, низших растениях и в беспозвоночных животных. Вещество играет роль опорного материала, а также выполняет механические функции.

2. Мурамин. Он присутствует в качестве опорно-механического материала клеточной стенки бактерий.

3. Декстраны. Полисахариды выступают как заменители плазмы крови. Их получают путем воздействия микроорганизмов на раствор сахарозы.

4. Пектиновые вещества. Находясь вместе с органическими кислотами, могут образовывать желе и мармелад.

Белки и углеводы. Продукты. Список

Человеческий организм нуждается в определенном количестве питательных веществ каждый день. Например, углеводов необходимо употреблять в расчете 6-8 г на 1 кг массы тела. Если человек ведет активный образ жизни, то количество будет увеличиваться. Углеводы в продуктах содержатся практически всегда. Составим список их присутствия на 100 г пищи:

  1. Наибольшее количество (более 70 г) содержатся в сахаре, мюслях, мармеладе, крахмале и рисе.
  2. От 31 до 70 г - в мучных и кондитерских изделиях, в макаронах, крупах, сухофруктах, фасоли и горохе.
  3. От 16 до 30 г углеводов содержат бананы, мороженое, шиповник, картофель, томатная паста, компоты, кокос, семечки подсолнечника и орехи кешью.
  4. От 6 до 15 г - в петрушке, укропе, свекле, моркови, крыжовник, смородина, бобах, фруктах, орехах, кукурузе, пиве, семечках тыквы, сушеных грибах и так далее.
  5. До 5 г углеводов содержится в зеленом луке, томатах, кабачках, тыквах, капусте, огурцах, клюкве, в молочных продуктах, яйцах и так далее.

Питательного вещества не должно поступать в организм меньше 100 г в сутки. В противном случае клетка не будет получать положенную ей энергию. Головной мозг не сможет выполнять свои функции анализа и координации, следовательно, мышцы не будут получать команды, что в итоге приведет к кетозу.

Что такое углеводы, мы рассказали, но, помимо них, незаменимым веществом для жизни являются белки. Они представляют собой цепочку аминокислот, связанных пептидной связью. В зависимости от состава белки различаются по своим свойствам. Например, эти вещества исполняют роль строительного материала, так как каждая клетка организма включает их в свой состав. Некоторые виды белков являются ферментами и гормонами, а также источником энергии. Они оказывают влияние на развитие и рост организма, регулируют кислотно-щелочной и водный баланс.

Таблица углеводов в еде показала, что в мясе и в рыбе, а также в некоторых видах овощей их число минимально. А каково содержание белков в пище? Самым богатым продуктом является желатин пищевой, на 100 г в нем содержится 87,2 г вещества. Далее идет горчица (37,1 г) и соя (34,9 г). Соотношение белков и углеводов в суточном употреблении на 1 кг веса должно быть 0,8 г и 7 г. Для лучшего усвоения первого вещества необходимо принимать пищу, в которой он принимает легкую форму. Это касается белков, которые присутствуют в кисломолочных продуктах и в яйцах. Плохо сочетаются в одном приеме пищи белки и углеводы. Таблица по раздельному питанию показывает, каких вариаций лучше избегать:

  1. Рис с рыбой.
  2. Картофель и курица.
  3. Макароны и мясо.
  4. Бутерброды с сыром и ветчиной.
  5. Рыба в панировке.
  6. Ореховые пирожные.
  7. Омлет с ветчиной.
  8. Мучное с ягодами.
  9. Дыню и арбуз нужно есть отдельно за час до основного приема пищи.

Хорошо сочетаются:

  1. Мясо с салатом.
  2. Рыба с овощами или на гриле.
  3. Сыр и ветчина по отдельности.
  4. Орехи в целом виде.
  5. Омлет с овощами.

Правила раздельного питания основаны на знаниях законов биохимии и информации о работе ферментов и пищевых соков. Для хорошего пищеварения любой вид еды требует индивидуального набора желудочных жидкостей, определенного количества воды, щелочную или кислотную среду, а также присутствие или отсутствие энзимов. Например, кушанье, насыщенное углеводами, для лучшего переваривания требует пищеварительного сока с щелочными ферментами, которые расщепляют данные органические вещества. А вот еда, богатая белками, уже требует кислых энзимов... Соблюдая нехитрые правила соответствия продуктов, человек укрепляет свое здоровье и поддерживает постоянный вес, без помощи диет.

«Плохие» и «хорошие» углеводы

«Быстрые» (или «неправильные») вещества - соединения, которые содержат небольшое число моносахаридов. Такие углеводы способны быстро усваиваться, повышать уровень сахара в крови, а также увеличивать количество выделяемого инсулина. Последний снижает уровень сахара крови, путем превращения его в жир. Употребление углеводов после обеда для человека, который следит за своим весом, представляет наибольшую опасность. В это время организм наиболее предрасположен к увеличению жировой массы. Что именно содержит неправильные углеводы? Продукты, список которых представлен ниже:

1. Кондитерские изделия.

3. Варенье.

4. Сладкие соки и компоты.

7. Картофель.

8. Макароны.

9. Белый рис.

10. Шоколад.

В основном это продукты, не требующие долгого приготовления. После такой еды необходимо много двигаться, иначе лишний вес даст о себе знать.

«Правильные» углеводы содержат более трех простых мономеров. Они усваиваются медленно и не вызывают резкого подъема сахара. Данный вид углеводов содержит большое количество клетчатки, которая практически не переваривается. В связи с этим человек долго остается сытым, для расщепления такой пищи требуется дополнительная энергия, кроме того, происходит естественное очищение организма. Составим список сложных углеводов, а точнее, продуктов, в которых они встречаются:

  1. Хлеб с отрубями и цельнозерновой.
  2. Гречневая и овсяная каши.
  3. Зеленые овощи.
  4. Макароны из грубого помола.
  5. Грибы.
  6. Горох.
  7. Красная фасоль.
  8. Помидоры.
  9. Молочные продукты.
  10. Фрукты.
  11. Горький шоколад.
  12. Ягоды.
  13. Чечевица.

Для подержания себя в хорошей форме нужно больше есть «хороших» углеводов в продуктах и как можно меньше «плохих». Последние лучше принимать в первую половину дня. Если нужно похудеть, то лучше исключить употребление "неправильных" углеводов, так как при их использовании человек получает пищу в большем объеме. "Правильные" питательные вещества низкокалорийные, они способны надолго оставлять ощущение сытости. Это не означает полный отказ от "плохих» углеводов, а лишь только их разумное употребление.

Обмен углеводов

Углеводы - обширная группа органических соединений, входящих в состав всех живых организмов.

Термин «углеводы» возник потому, что первые известные представители углеводов по составу отвечали химической формуле C m H 2n O n (углерод + вода). Впоследствии были обнаружены природные углеводы с другим элементным составом, однако прежнее название сохранилось.

Углеводы делятся на две группы в зависимости от их растворимости: растворимые и нерастворимые.

Растворимые углеводы , или сахара , обычно имеют сладкий вкус и кристаллическое строение. Это:

  • свекловичный или тростниковый сахар, или сахароза (греч. sakchar , от санскрит. sarkara - гравий, песок, сахарный песок);
  • виноградный сахар, или глюкоза (греч. glykys - сладкий);
  • плодовый сахар, или фруктоза (лат. fructus - плод);
  • молочный сахар, или лактоза (лат. lac , род. падеж lactis - молоко) и др.

Нерастворимые углеводы , или полисахариды , не имеют сладкого вкуса и кристаллического строения. Например:

  • крахмал ;
  • целлюлоза (лат. cellula - клетка);
  • гликоген (греч. glykys - сладкий и genés - рождающий).


Функции углеводов

1. Энергетическая. Углеводы (сахара , крахмал , гликоген ) - основной источник энергии в клетке. При расщеплении 1 г углеводов до конечных продуктов обмена веществ выделяется 17,6 кДж энергии (столько же, сколько при расщеплении 1 г белка).

2. Запасающая (резервная). Резервным углеводом у человека и других животных является гликоген , который синтезируется и накапливается в клетках печени. Запасным углеводом растений является углевод крахмал .

3. Структурная (строительная). Из целлюлозы состоят клеточные стенки у растений. Ферменты пищеварительного тракта человека не способны расщеплять целлюлозу, поэтому она не имеет пищевой ценности как источник энергии, однако волокна целлюлозы благоприятно действуют на работу кишечника. Некоторые животные (термиты, жвачные животные) содержат в кишечнике особых симбиотических простейших, разлагающих прочные молекулы целлюлозы на молекулы глюкозы. Именно поэтому термиты способны питаться древесиной, зайцы - корой, жвачные животные - сеном, ветками, соломой.

Углеводы также входят в состав нуклеиновых кислот, образуют межклеточное вещество соединительной ткани (у животных).

4. Защитная. Взаимодействуют в печени со многими ядовитыми соединениями, переводя их в безвредные и легко растворимые вещества.


Углеводы в пище человека. Углеводы обеспечивают организм энергией и играют важную роль в регуляции деятельности желудочно-кишечного тракта. Главными источниками углеводов являются хлеб, картофель, макароны, крупы, фрукты, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70 - 80% сахара.

Все углеводы делятся на легко- и трудноусваиваемые , а также неусваиваемые .

Легкоусваиваемые углеводы - сахара - содержатся во всех сладких продуктах и напитках (сахаре, мёде, конфетах, соках, фруктах). Они способствуют быстрому восстановлению сил, однако употреблять легкоусваиваемые углеводы надо с осторожностью, так как их чрезмерное количество приводит к ожирению и развитию сахарного диабета.

Трудноусваиваемые углеводы - это, главным образом, крахмал. Оптимальный источник трудноусваиваемых, но самых полезных углеводов - это крупы, картофель, хлеб и макаронные изделия. Они медленно и равномерно поставляют в кровь глюкозу и способствуют накоплению в печени гликогена , который является основным запасом углеводов в организме человека. Кроме того, цельнозерновые крупы и хлопья из них содержат много пищевых волокон, которые хорошо поглощают токсины и способствуют продвижению пищи по пищеварительному каналу. Именно поэтому пшеничная, гречневая, кукурузная и овсяная крупы очень полезны.

Неусваиваемые углеводы , так называемая пищевая клетчатка (пищевые волокна, целлюлоза), содержатся в овощах и злаках, особенно много её в капусте и отрубях. Неусваиваемые углеводы не разрушаются под действием пищеварительных соков и проходят через кишечник человека в неизменном виде. Они, хотя и не обеспечивают организм энергией, обязательно должны содержаться в пище, так как способствуют нормальной работе кишечника и положительно влияют на состав кишечной микрофлоры.


Рекомендуемая суточная норма потребления углеводов - самая непостоянная величина. Она зависит от уровня физической нагрузки, пола, возраста, пищевых традиций и др. Приблизительной нормой считается потребление 300 - 350 г углеводов в сутки.

При избыточном содержании углеводов в рационе часть их запасается в организме в форме гликогена и жировой ткани для последующего использования. Поэтому избыток углеводов в рационе способствует возникновению ожирения.

Углеводы – это органические соединения, которые состоят из одного либо нескольких простых молекул сахара. Их можно классифицировать на три группы - это моносахариды, олигосахариды и полисахариды. Все они отличаются по составу молекул сахара и по-разному действуют на организм. Для чего нужны нерастворимые углеводы? Условно эти органические соединения можно разделить на углеводы нерастворимые в воде и растворимые. К растворимым углеводам относятся моносахариды. Но только в том случае, если они имеют альфа-конфигурацию. Эти элементы легко перевариваются в пищеварительном тракте.Нерастворимые углеводы обозначают как клетчатку, которая включает в себя целлюлозу, гемицеллюлозу, пектин, камеди, растительный клей и лигнин. Все эти добавки имеют различные химические свойства и применяются для профилактики заболеваний у животных.

К нерастворимым углеводам относятся моносахариды, имеющие бета-конфигурацию, так как они намного устойчивее к пищеварительным ферментам. Летучие жирные кислоты (ЛКЖ) являются одним из самых важных источников энергии для организма. Но следует отметить, что только для травоядных, так как у мясоедов пищеварительные процессы ограничены, и эти кислоты не представляют для них энергетической ценности. Корма с такими добавками в основном дают тем животным, которым необходимо снизить избыточный вес. Если в рационе животного не преобладают углеводы, это существенно не влияет на его организм, поскольку он может использовать белки тела для создания глюкозы.

Какие углеводы нерастворимы в воде? К ним можно отнести крахмал, целлюлозу, хитин и гликоген. Все они выполняют функцию структурирующую, защитную и запасающую энергию в организме. Для чего нам нужны углеводы? Углеводы – это неотъемлемая часть человеческого организма, которая позволяет ему функционировать. Благодаря им живой организм наполняется энергией для дальнейшей жизнедеятельности. Именно благодаря этим органическим соединениям уровень глюкозы не влияет на выбросы инсулина в кровь, а это в свою очередь не приводит к более серьезным последствиям.

В основном все потребляемые углеводы растворяются в воде и так с пищей попадают в организм человека. Однако необходимо помнить о том, что нужно регулировать потребляемые углеводы, так как их недостаток либо избыток могут привести к нежелательным последствиям. Избыток этих веществ может привести к разнообразным заболеваниям, начиная от сердечно-сосудистых и заканчивая сахарным диабетом. Недостаток же, наоборот, провоцирует нарушения в обмене жиров, понижение уровня сахара и многие другие заболевания. фраза 1: углеводы нерастворимые в воде фраза 2: какие углеводы нерастворимы в воде фраза 3: углеводы растворяются в воде

Функции растворимых углеводов : транспортная, защитная, сигнальная, энергетическая.

Моносахариды: глюкоза – основной источник энергии для клеточного дыхания. Фруктоза – составная часть нектара цветов и фруктовых соков. Рибоза и дезоксирибоза – структурные элементы нуклеотидов, являющихся мономерами РНК и ДНК.

Дисахариды: сахароза (глюкоза + фруктоза) – основной продукт фотосинтеза, транспортируемый в растениях. Лактоза (глюкоза + галактоза) – входит в состав молока млекопитающих. Мальтоза (глюкоза + глюкоза) – источник энергии в прорастающих семенах.

Полимерные углеводы : крахмал, гликоген, целлюлоза, хитин. Они не растворимы в воде.

Функции полимерных углеводов : структурная, запасающая, энергетическая, защитная.

Крахмал состоит из разветвленных спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза – полимер, образованный остатками глюкозы, состоящими из нескольких прямых параллельных цепей, соединенных водородными связями. Такая структура препятствует проникновению воды и обеспечивает устойчивость целлюлозных оболочек растительных клеток.

Хитин состоит из аминопроизводных глюкозы. Основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Гликоген – запасное вещество животной клетки. Гликоген еще более ветвистый, чем крахмал и хорошо растворимы в воде.

Липиды – сложные эфиры жирных кислот и глицерина. Нерастворимы в воде, но растворимы в неполярных растворителях. Присутствуют во всех клетках. Липиды состоят из атомов водорода, кислорода и углерода. Виды липидов: жиры, воска, фосфолипиды. Функции липидов: запасающая – жиры, откладываются в запас в тканях позвоночных животных. Энергетическая – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка. Защитная – подкожный жировой слой защищает организм от механических повреждений. Структурная фосфолипиды входят в состав клеточных мембран. Теплоизоляционная – подкожный жир помогает сохранить тепло. Электроизоляционная – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов. Питательная – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма. Смазывающая – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот. Гормональная – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.



14. Ферменты, их роль в клетке.

Ферменты (энзимы) - это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при определенной температуре, нормальном давлении и определенной кислотности среды. В таких условиях реакции синтеза ила распада веществ протекали бы в клетке очень медленно, если бы не подвергались воздействиям ферментов.

Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Например, под их действием составные компоненты пищи (белки, углеводы, липиды) расщепляются до более простых соединений, из которых синтезируются новые, свойственные данному виду макромолекулы. Поэтому нарушения образования и активности ферментов нередко ведут к возникновению тяжелых болезней.

По пространственной организации ферменты состоят из нескольких полипептидных цепей и обычно обладают четвертичной структурой.

Кроме того, ферменты в своем составе могут иметь и небелковые структуры. Белковая часть носит название апофермент , а небелковая - кофактор или кофермент (коэнзим ).

Предшественниками многих коферментов являются витамины.

Ферментативный катализ подчиняется тем же законам, что и неферментативный (в химической промышленности), однако в отличие от него характеризуется высокой степенью специфичности (фермент катализирует только определенную реакцию или действует только на один тип связи). Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и др.), протекающих в клетке и организме. Например, фермент уреаза катализирует расщепление лишь одного вещества - мочевины (H 2 N-СО-NH 2 + Н 2 O → 2NH 3 + СO 2), не оказывая каталитического действия на структурно-родственные соединения.



Специфичность действия ферментов объясняет теория активного центра . Согласно ей, в молекуле каждого фермента имеется один или более участков, обеспечивающих специфическое взаимодействие фермента и вещества (субстрата). Активным центром выступает или функциональная группа (например, ОН-группа серина), или отдельная аминокислота. Обычно же для каталитического действия необходимо сочетание нескольких (в среднем от 3 до 12) расположенных в определенном порядке аминокислотных остатков. Активный центр может также формироваться ионами металлов, витаминами и другими соединениями небелковой природы - коферментами, или кофакторами. Под действием фермента происходит ослабление химических связей субстрата, и катализируемая реакция протекаете меньшей начальной затратой энергии, а следовательно, с большей скоростью. Например, одна молекула фермента каталазы может расщепить за 1 мин. более 5 млн молекул пероксида водорода (H 2 O 2), являющегося продуктом окисления в организме различных соединений.

На заключительном этапе химической реакции фермент-субстратный комплекс распадается с образованием конечных продуктов и свободного фермента, который вновь связывается с молекулами субстрата.

Скорость ферментативных реакций зависит от многих факторов: природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т. д. Например, при температурах, близких к нулю, скорость биохимических реакций замедляется до минимума. Это свойство широко используется в различных отраслях народного хозяйства, особенно в сельском хозяйстве и медицине. В частности, консервация различных органов (почки, сердце, селезенка, печень) перед их пересадкой больному происходит при охлаждении, чтобы снизить интенсивность биохимических реакций и тем самым продлить время жизни органов.

15. Строение и функции частей и органоидов клетки, их взаимосвязи как основа ее целостности.

Каждая из частей клетки, с одной стороны, является обособленной структурой со специфи­ческим строением и функциями, а с другой - компонентом более сложной системы, называе­мой клеткой. Большая часть наследственной информации эукариотической клетки сосредоточена в ядре, однако само ядро не в состоянии обеспечить ее реализацию, поскольку для этого необхо­димы как минимум цитоплазма, выступающая как основное вещество, и рибосомы, на которых и происходит этот синтез. Большинство рибосом расположено на гранулярной эндоплазматической сети, откуда белки чаще всего транспортируются в комплекс Гольджи, а затем после моди­фикации - в те части клетки, для которых они предназначены. Мембранные упаковки белков и углеводов могут встраиваться в мембраны органоидов и цитоплазматическую мембрану, обеспе­чивая их постоянное обновление. От комплекса Гольджи отшнуровываются также выполняющие важнейшие функции лизосомы и вакуоли. Например, без лизосом клетки быстро превратились бы в своеобразную свалку отработанных молекул и структур.

Протекание всех этих процессов требует энергии, вырабатываемой митохондриями, а у расте­ний - и хлоропластами. И хотя эти органоиды являются относительно автономными, т. к. имеют собственные молекулы ДНК, часть их белков все равно кодируется ядерным геномом и синтези­руется в цитоплазме.

Таким образом, клетка представляет собой неразрывное единство составляющих ее компонен­тов, каждый из которых выполняет свою уникальную функцию.

Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.

16. Многообразие клеток.

17. Вирусы - доклеточная форма, возбудители заболеваний.

1. Вирусы - живые существа или неживые объекты? Особенность - неклеточное строение вирусов; состоят из молекулы ДНК или иРНК, окруженной молекулами белка подобно оболочке.

2. Проявление вирусами признаков жизнедеятельности только в клетках других организмов, отсутствие собственного обмена веществ, способности самостоятельно размножаться вне клеток других организмов, существование в форме кристалла.

4. Вирусы - возбудители многих тяжелых заболеваний: СПИДа, бешенства, полиомиелита, гриппа, оспы и др., инфекционность- характерный признак вирусов.

5. Пути заражения ВИЧ-инфекцией, бешенством, полиомиелитом, оспой и меры профилактики заболеваний, вызываемых вирусами.

18. Профилактика ВИЧ-инфекции и заболевания СПИДом.

ВИЧ-инфекция - это медленно прогрессирующее вирусное заболевание иммунной системы, приводящее к ослаблению иммунной защиты от опухолей и инфекций. Стадия ВИЧ-инфекции, при которой из-за снижения иммунитета у человека появляются вторичные инфекционные или опухолевые заболевания, называется синдромом приобретенного иммунодефицита (СПИД).

Если при ВИЧ лечения не проводится, он почти всегда истощает иммунную систему. В результате организм становится уязвимым к одному или нескольким опасным для жизни заболеваниям, которые обычно не воздействуют на здоровых людей. Эта стадия ВИЧ-инфекции называется СПИДом или синдромом приобретенного иммунодефицита. Чем сильнее повреждена иммунная система, тем выше риск смерти в результате оппортунистических инфекций.

Эксперты договорились об использовании термина «СПИД» в начале 1980-х годов, до открытия ВИЧ, для описания впервые появившегося синдрома сильного подавления иммунной системы. Сегодня СПИД считается более поздней стадией развития ВИЧ-инфекции и заболевания.

В отсутствии лечения время развития ВИЧ в стадию СПИДа составляет обычно 8-10 лет. В то же время промежуток между появлением инфекции и возникновением симптомов колеблется – он, как правило, короче у лиц, инфицированных в результате переливания крови, и у больных детей. Факторы, которые изменяют естественную историю развития ВИЧ-инфекции, называют «кофакторами», определяющими прогрессирование заболевания. Были исследованы различные потенциальные кофакторы, включая генетические факторы, возраст, пол, путь передачи инфекции, курение, диету и другие инфекционные заболевания. Имеются обоснованные данные о том, что заболевание прогрессирует быстрее, если заражение ВИЧ-инфекцией произошло в более позднем возрасте.

В современных условиях именно с помощью усиления профилактики ВИЧ существует шанс для «купирования» эпидемии, чтобы обеспечить сохранение человеческих жизней и нормальное функционирование экономики.

Уровни профилактики:

Личностный уровень – воздействие, направленное на отдельного человека с целью сохранения его здоровья.

Семейный уровень (уровень ближайшего окружения) – воздействие, направленное на семью человека и его ближайшее окружение (друзья и все, кто непосредственно взаимодействует с человеком) с целью создания условий, при которых сама среда будет носить безопасный характер и помогать формировать ценности здоровья, заботы о себе.

Социальный уровень – воздействие на общество в целом, с целью изменения общественных норм по отношению к социально-нежелательным (рискованным) практикам.

19. Клеточный метаболизм.

Что такое метаболизм?

Метаболизм, или обмен веществ, - это совокупность процессов поступления веществ из окружающей среды, их превращений в организме и выведения из организма продуктов жизнедеятельности. В результате обмена веществ в организме сохраняется постоянство состава клеток и клеточных структур путем обновления их по мере необходимости, а также поддерживается их энергетический баланс. Процессы обмена веществ в клетках характеризуются высокой упорядоченностью и строгой последовательностью идущих в них биохимических реакций, участием в них различных ферментов и всех клеточных структур.

Обмен веществ (смотрите также Метаболизм) - совокуп­ность протекающих в живых организмах химических пре­вращений, которые обеспечивают их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружаю­щей средой. Схема обмена веществ живого организма Благодаря обмену веществ происходит рас­щепление и синтез молекул, что входят в состав клеток, образование, разрушение и обновление клеточных струк­тур и межклеточного вещества. Например, у человека по­ловина всех тканевых белков расщепляется и строится заново в среднем в течение 80 суток, белки печени и сыворотки крови наполовину обновляются каждые 10 суток, а белки мышц - 180, отдельные ферменты печени - каждые 2-4 часа. Обмен веществ неотделим от процессов превращения энергии: потенциальная энергия химических связей сложных органических молекул в результате хими­ческих превращений переходит в другие виды энергии, используемой на синтез новых соединений, для поддержа­ния структуры и функции клеток, температуры тела, для совершения работы и т.д. Все реакции обмена веществ и превращения энергии протекают при участии биологичес­ких катализаторов-ферментов. У самых разных организмов обмен веществ отличается упорядоченностью и сходством последовательности ферментативных превращений, не­смотря на большой ассортимент химических соединений, вовлекаемых в обмен. В то же время для каждого вида характерен особый, закрепленный генетически тип обмена веществ, обусловленный условиями его существования. Обмен веществ складывается из двух взаимосвязан­ных, одновременно протекающих в организме процес­сов: ассимиляции или анаболизма, диссимиляции или катаболизма. В ходе катаболических превращений происходит расщепление крупных органических молекул до простых соединений с одновременным выделением энергии, кото­рая запасается в форме богатых энергией фосфатных свя­зей, главным образом в молекуле АТФ. Катаболические превращения обычно осуществляются в результате гидро­литических и окислительных реакций и протекают как в отсутствие кислорода (анаэробный путь - гликолиз, броже­ние), так и при его участии (аэробный путь - дыхание). Второй путь эволюционно более молодой и в энергетичес­ком отношении более выгодный. Он обеспечивает полное расщепление органических веществ до CO2 и H2O. Разно­образные органические соединения в ходе катаболических процессов превращаются в ограниченное число небольших молекул (помимо CO2 и H2O); например, углеводы - в триозофосфаты и пируват. Конечные продукты азотистого обмена - мочевина, аммиак, мочевая кислота. В ходе анаболических превращений происходит био­синтез сложных молекул из простых молекул-предшест­венников. Автотрофные организмы (зеленые растения и некоторые бактерии) могут осуществлять первичный син­тез органических соединений из CO2 с использованием энергии солнечного света - фотосинтез. Гетеротрофы синтезируют органические соединения только за счет энергии и продуктов, образующихся в ре­зультате катаболических превращений. Исходным сырьем для процессов биосинтеза являются простые органические соединения. Каждая клетка синтезирует характерные для нее белки, жиры, углеводы и другие соединения. Напри­мер, гликоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Совокупность катаболических и анаболических реак­ций, протекающих в клетке в любой данный момент, составляет ее метаболизм.

Источник: www.bioaa.info

20. Энергетический обмен.

В процессе брожения энергетический обмен обычно подразделяется на три этапа. Первый этап - подготовительный. На этом этапе молекулы сложных углеводов, жиров и белков распадаются на мелкие - глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот - на нуклеотиды. В этих реакциях выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап - неполный , во время которого осуществляется бескислородное расщепление, протекает в цитоплазме клетки. Он называется также анаэробным дыханием (гликолиз) или брожением . Термин «брожение» обычно применяют к процессам, протекающим в клетках растений или микроорганизмов. На этом этапе продолжается дальнейшее расщепление веществ при участии ферментов. Например, в мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы молочной кислоты. В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ и за счет энергии, выделившейся в результате их расщепления, образуются молекулы АТФ.

У дрожжевых грибов молекула глюкозы в бескислородных условиях расщепляется на этиловый спирт и диоксид углерода. Этот процесс называется спиртовым брожением .

У других микроорганизмов процесс гликолиза завершается образованием ацетона, уксусной кислоты и др. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. При бескислородном расщеплении глюкозы до образования молочной кислоты 40% выделяемой энергии сохраняется в молекуле АТФ, а остальная энергия рассеивается в виде теплоты.

Третий этап энергетического обмена называется аэробным дыханием , или кислородным расщеплением . Этот этап энергетического обмена также ускоряется с помощью ферментов. Вещества, образовавшиеся в клетке на предыдущих этапах, при участии кислорода распадаются на конечные продукты СО 2 и Н 2 О. В процессе кислородного дыхания выделяется большое количество энергии, которая накапливается в молекулах АТФ. При расщеплении двух молекул молочной кислоты при доступе кислорода образуются 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание. Все живые организмы по способу получения энергии делятся на две большие группы: автотрофные и гетеротрофные .

21. Преобразование энергии и клетке.

Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках. Питательные вещества используются организмами в качестве источника атомов химических элементов (прежде всего атомов углерода), из которых строятся либо обновляются все структуры. В организм, кроме питательных веществ, поступают также вода, кислород, минеральные соли.

Поступившие в клетки органические вещества (или синтезированные в ходе фотосинтеза) расщепляются на строительные блоки - мономеры и направляются во все клетки организма. Часть молекул этих веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, личиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т. д.).

Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, предназначенная непосредственно для выполнения работы. Энергия необходима для синтеза всех специфических веществ организма, поддержания его высокоуно-рядоченной организации, активного транспорта веществ внутри клеток, из одних клеток в другие, из одной части организма в другую, для передачи нервных импульсов, передвижения организмов, поддержания постоянной температуры тела (у птиц и млекопитающих) и для других целей.

В ходе превращения веществ в клетках образуются конечные продукты обмена, которые могут быть токсичными для организма и выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты.

Совокупность химических реакций, происходящих в организме, называется обменом веществ нли метаболизмом. В зависимости от общей направленности процессов выделяют катаболизм и анаболизм.

Катаболизм (диссимиляция) -совокупность реакций, приводящих к образованию простых соединений из более сложных. К катаболическим относят, например, реакции гидролиза полимеров до мономеров и расщепление последних до углекислого газа, воды, аммиака, т. е. реакции энергетического обмена, в ходе которого происходит окисление органических веществ и синтез АТФ.

Анаболизм (ассимиляция) - совокупность реакций синтеза сложных органических веществ из более простых. Сюда можно отнести, например, фиксацию азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ.

Синтез веществ в клетках живых организмов часто обозначают понятием пластический обмеи, а расщепление веществ и их окисление, сопровождающееся синтезом АТФ, -энергетическим обменом. Оба вида обмена составляют основу жизнедеятельности любой клетки, а следовательно, и любого организма и тесно связаны между собой. С одной стороны, все реакции пластического обмена нуждаются в затрате энергии. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный синтез ферментов, так как продолжительность их жизни невелика. Кроме того, вещества, используемые для дыхания, образуются в ходе пластического обмена (например, в процессе фотосинтеза).

22. Значение АТФ.

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, избавляется от отходов, осуществляет активный транспорт веществ, биение жгутиков и ресничек и т. д.

Молекула АТФ представляет собой нуклеотид, образованный азотистым основанием аденином, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ соединены между собой высокоэнергетическими (макроэргическими) связями:

Связи между фосфатными группами не очень прочные, и при их разрыве выделяется большое количество энергии. В результате гидролитического отщепления от АТФ фосфатной группы образуется аденозиндифосфорная кислота (АДФ) н высвобождается порция энергии:

АДФ также может подвергаться дальнейшему гидролизу с отщеплением еще одной фосфатной группы и выделением второй порции энергии; при этом АДФ преобразуется в аденозин-монофосфат (АМФ), который далее не гидролизуется:

АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием. При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях:

Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

Таким образом, АТФ - это главный универсальный поставщик энергии в клетках всех живых организмов.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

23. Пластический обмен.

Получаемый кислород, органические вещества, вода и минеральные соли преобразуются, и человек выделяет наружу конечные продукты метаболизма, как вода, креатинин, азотосодержащие соединения, соли мочевой кислоты и другие излишки, поддерживая этим основную функцию обмена веществ. Метаболизм человека состоит из противоположных, но неотделимых действий ассимиляции (пластического обмена) и диссимиляции (энергетического обмена).

Организм, вследствие расщепления, пополняется необходимой энергией, частью которой делиться с окружающей средой в виде рассеивания тепла. Сочетание таких процессов, определяющих условия усвоения и накопления необходимой энергии, составляют суть пластического обмена и жизнедеятельности в целом.

24. Биосинтез белка.

Биосинтез белка – один из важнейших процессов обмена веществ в клетке. В ходе такого синтеза формируются биополимеры – сложные молекулы белков, состоящие из мономеров – аминокислот (см. § 4). Биосинтез белков протекает в цитоплазме клетки, а точнее – на рибосомах с участием матричной РНК – мРНК (еще ее называют информационной РНК – иРНК) и транспортной РНК (тРНК) под контролем ДНК ядра.

Выяснение роли ДНК и РНК в процессе биосинтеза белков в клетке – одно из замечательных достижений биологической науки середины XX в.

Биосинтез белков включает два этапа: транскрипцию и трансляцию.

Транскрипция . Транскрипция (от лат. transcriptio – переписывание) – это биосинтез молекул матричной РНК (мРНК), происходящий в ядре на основе молекулы ДНК.

В ходе транскрипции фермент РНК-полимераза передвигается вдоль молекулы ДНК. При этом фермент удерживает на себе нуклеотиды растущей цепи мРНК, которая синтезируется на основе одной из цепей молекулы ДНК из нуклеотидов, находящихся в ядерном матриксе (рис. 16).

Рис. 16. Схема биосинтеза белка
Матричная РНК (мРНК) – это одноцепочечная структура, и транскрипция идет с одной цепи молекулы ДНК. В результате транскрипции образуется молекула мРНК, представляющая собой точную копию участка одной из цепей ДНК (напомним, что в молекуле РНК азотистое основание тимин заменено на урацил). По длине каждая из молекул мРНК в сотни раз короче, чем молекула ДНК. Это связано с тем, что каждая мРНК является копией не всей молекулы ДНК, а только ее части – одного гена или группы рядом стоящих генов, содержащих информацию о структурах белков, необходимых для выполнения одинаковых функций.

При участии ферментов на соответствующих участках молекулы ДНК синтезируется не только мРНК, но и другие РНК – транспортная (тРНК), рибосомальная (рРНК). Затем синтезированные РНК направляются из ядра через ядерные поры в цитоплазму, к месту синтеза белка – рибосомам.

Трансляция . В рибосомах синтезируются полипептидные цепи белков на матрице мРНК, т. е. осуществляется трансляция (лат. translatio – перевод, перенесение).

Сборка белковых молекул происходит в рибосомах. При атом одна мРНК связывается с несколькими рибосомами, образуя сложную структуру – полисому. На полисоме одновременно идет синтез многих молекул одного белка.

Аминокислоты, из которых синтезируются белковые молекулы, доставляются к рибосомам молекулами тРНК. Они имеют относительно небольшие размеры (в них входят от 70 до 90 нуклеотидов) и напоминают по форме лист клевера (см. рис. 16).

На вершине «листа» каждой тРНК (напомним, что разновидностей тРНК столько, сколько существует триплетов, шифрующих аминокислоты) имеется антикодон. Он представляет собой последовательность трех нуклеотидов, комплементарных нуклеотидам триплета в мРНК. Специальный фермент опознает тРНК и присоединяет к «черешку» листа ту из аминокислот, которая кодируется одним из триплетов мРНК.

Транспортные РНК поступают в рибосомы. Участок рибосомы, в котором происходит сборка белковых молекул, называется функциональным центром рибосомы (ФЦР). В ФЦР всегда расположены только два триплета мРНК. К каждому триплету (кодону) мРНК присоединяется тРНК с комплементарным антикодоном (см. рис. 15).

Между аминокислотами под влиянием ферментов образуется пептидная связь, и аминокислота с первой тРНК (обозначим для удобства тРНК порядковыми номерами) оказывается присоединенной ко второй тРНК. Первая тРНК, освободившись от аминокислоты, выходит из рибосомы. Затем рибосома перемещается по мРНК на расстояние, равное одному триплету, и в ФЦР оказывается уже следующий триплет. Процесс сборки продолжается: пептидная связь возникает между аминокислотами, доставленными второй и третьей тРНК и т. д.

Пептидная цепочка удлиняется до тех пор, пока процесс трансляции не доходит до одного из стоп-кодонов – УАА, УАГ, УГА, которые информации об аминокислотах не несут. Как только это происходит, трансляция завершается и полипептидная цепочка покидает рибосому, погружаясь в канал эндоплазматической сети.

Каждый раз в результате трансляции синтезируется полипептидная цепь молекулы белка, точно соответствующая наследственной информации, записанной в ДНК. Скорость сборки одной молекулы белка, состоящей из 200 – 300 аминокислот, равна 1 – 2 мин. Общая схема биосинтеза белка может быть представлена следующим образом:

ДНК → (транскрипция) → мРНК → (трансляция) → белок.

Реакции матричного синтеза. Процессы трансляции, транскрипции и репликации (самоудвоения) ДНК называют реакциями матричного синтеза (от лат. matrix – штамп, форма с углублением). Эти реакции осуществляются только в живых клетках и в точном соответствии с планом, заложенным в структуре уже существующих молекул, которые играют роль матриц. Такими молекулами являются молекулы ДНК (во время репликации и транскрипции) и мРНК (во время трансляции). Таким образом, роль матрицы могут выполнять как молекулы ДНК, так и молекулы РНК.

Матричный синтез обеспечивает высокую точность передачи наследственной информации и высокую скорость синтеза макромолекул. В основе матричного синтеза лежит принцип комплементарности.

В настоящее время в науке достаточно подробно исследован механизм передачи наследственной информации. Однако остается целый ряд еще не решенных проблем. Одна из них – изучение механизмов, регулирующих активность генов. Все клетки многоклеточного организма имеют одинаковый набор генов. И тем не менее клетки разных тканей отличаются по строению, функциям, составу белков.

Специализация клетки определяется не всеми имеющимися в ней генами, а только теми, с которых была осуществлена транскрипция на мРНК и наследственная информация реализована в виде белков. Даже в одной и той же клетке скорость синтеза белковых молекул может быть различной в зависимости от условий среды и потребности в белке самой клетки.

Вероятно, существует какой-то механизм, регулирующий «включение» и «выключение» генов на разных этапах жизни клетки. Впервые объяснение этого механизма в 1961 г. предприняли французские биологи Ф. Жакоб, А. Львов и Ж. Моно на примере регуляции белкового синтеза у бактерий. За свою работу эти ученые удостоены Нобелевской премии.

Как происходит регуляция активности генов в эукариотических клетках, до сих пор неясно. Познание регуляторных механизмов транскрипции и трансляции необход



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло