Сферическая аберрация. Аберрации объективов Аберрация оптической системы

Рассмотрим даваемое оптической системой изображение Точки, расположенной на оптической оси. Так как оптическая система обладает круговой симметрией относительно оптической оси, то достаточно ограничиться выбором лучей, лежащих в меридиональной плоскости. На рис. 113 показан ход лучей, характерный для положительной одиночной линзы. Положение

Рис. 113. Сферическая аберрация положительной лннзы

Рис. 114. Сферическая аберрация для точки вне оси

идеального изображения предметной точки А определяется параксиальным лучом, пересекающим оптическую ось на расстоянии от последней поверхности. Лучи, образующие с оптической осью конечные углы не приходят в точку идеального изображения. Для одиночной положительной линзы, чем больше абсолютное значение угла тем ближе к линзе луч пересекает оптическую ось. Это объясняется неодинаковой оптической силой линзы в ее различных зонах, которая увеличивается по мере удаления от оптической оси.

Указанное нарушение гомоцентричности вышедшего пучка лучей можно характеризовать разностью продольных отрезков для параксиальных лучей и для лучей, проходящих через плоскость входного зрачка на конечных высотах: Эта разность называется продольной сферической аберрацией.

Наличие сферической аберрации в системе приводит к тому, что вместо резкого изображения точки в плоскости идеального изображения получается кружок рассеяния, диаметр которого равен удвоенному значению Последнее связано с продольной сферической аберрацией соотношением

и называется поперечной сферической аберрацией.

Следует отметить, что при сферической аберрации сохраняется симметрия в вышедшем из системы пучке лучей. В отличие от других монохроматических аберраций сферическая аберрация имеет место во всех точках поля оптической системы, причем при отсутствии других аберраций для точек вне оси вышедший из системы пучок лучей будет оставаться симметричным относительно главного луча (рис. 114).

Приближенное значение сферической аберрации можно определить по формулам аберраций третьего порядка через

Для предмета, расположенного на конечном расстоянии, как следует из рис. 113,

В пределах действенности теории аберраций третьего порядка можно принять

Если положить, что то согласно условиям нормировки получим

Тогда по формуле (253) найдем, что поперечная сферическая аберрация третьего порядка для предметной точки, расположенной на конечном расстоянии,

Соответственно для продольной сферической аберраций третьего лорядка при допущении согласно (262) и (263) получим

Формулы (263) и (264) справедливы и для случая предмета, расположенного в бесконечности, если вычислена при условиях нормировки (256), т. е. при реальном фокусном расстоянии.

В практике аберрационного расчета оптических систем при вычислении сферической аберрации третьего порядка удобно пользоваться формулами, содержащими координату луча на входном зрачке. Тогда при согласно (257) и (262) получим:

если вычислена при условиях нормировки (256).

Для условий нормировки (258), т. е. для приведенной системы, согласно (259) и (262) будем иметь:

Из приведенных выше формул следует, что при данной сферическая аберрация третьего порядка тем больше, чем больше координата луча на входном зрачке.

Так как сферическая аберрация присутствует для всех точек поля, то при аберрационной коррекции оптической системы первостепенное внимание уделяют исправлению сферической аберрации. Наиболее простой оптической системой со сферическими поверхностями, в которой можно уменьшить сферическую аберрацию, является комбинация положительной и отрицательной линз. Как у положительной, так и у отрицательной линз крайние зоны преломляют лучи сильнее, чем зоны, расположенные вблизи оси (рис. 115). Отрицательная линза имеет положительную сферическую аберрацию. Поэтому комбинация положительной линзы, имеющей отрицательную сферическую аберрацию, с отрицательной линзой позволяет получить систему с исправленной сферической аберрацией. К сожалению, устранить сферическую аберрацию можно только для некоторых лучей, но нельзя ее полностью исправить в пределах всего входного зрачка.

Рис. 115. Сферическая аберрация отрицательной линзы

Таким образом, любая оптическая система всегда имеет остаточную сферическую аберрацию. Остаточные аберрации оптической системы обычно представляют в виде таблиц и иллюстрируют графиками. Для предметной точки, расположенной на оптической оси, приводятся графики продольной и поперечной сферических аберраций, представленные в виде функций координат, или

Кривые продольной и соответствующей ей поперечной сферической аберрации показаны на рис. 116. Графики на рис. 116, а соответствуют оптической системе с недоисправленной сферической аберрацией. Если для такой системы ее сферическая аберрация определяется только аберрациями третьего порядка, то согласно формуле (264) кривая продольной сферической аберрации имеет вид квадратичной параболы, а кривая поперечной аберрации - кубической параболы. Графики на рис. 116, б соответствуют оптической системе, у которой сферическая аберрация исправлена для луча, проходящего через край входного зрачка, а графики на рис. 116, в - оптической системе с перенаправленной сферической аберрацией. Исправление или переисправление сферической аберрации можно получить, например, комбинируя положительную и отрицательную линзы.

Поперечная сферическая аберрация характеризует кружок рассеяния, который получается вместо идеального изображения точки. Диаметр кружка рассеяния для данной оптической системы зависит от выбора плоскости изображения. Если эту плоскость сместить относительно плоскости идеального изображения (плоскости Гаусса) на величину (рис. 117, а), то в смещенной плоскости получим поперечную аберрацию связанную с поперечной аберрацией в плоскости Гаусса зависимостью

В формуле (266) слагаемое на графике поперечной сферической аберрации, построенном в координатах является прямой, проходящей через начало координат. При

Рис. 116. Графическое представление продольной и поперечной сферических аберраций

И астигматизма). Различают сферическую аберрацию третьего, пятого и высшего порядков .

Энциклопедичный YouTube

  • 1 / 5

    Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .

    Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

    δ ′ = 2 h 1 δ s ′ a ′ {\displaystyle {\delta "}={\frac {2h_{1}\delta s"}{a"}}} ,

    • 2h 1 - диаметр отверстия системы;
    • a" - расстояние от системы до точки изображения;
    • δs" - продольная аберрация.

    Для объектов расположенных в бесконечности

    A ′ = f ′ {\displaystyle {a"}={f"}} ,

    Для построения характеристической кривой продольной сферической аберрации по оси абсцисс откладывают продольную сферическую аберрацию δs", а по оси ординат - высоты лучей на входном зрачке h . Для построения аналогичной кривой для поперечной аберрации по оси абсцисс откладывают тангенсы апертурных углов в пространстве изображений, а по оси ординат радиусы кружков рассеяния δg"

    Комбинируя такие простые линзы, можно значительно исправить сферическую аберрацию.

    Уменьшение и исправление

    В отдельных случаях небольшая величина сферической аберрации третьего порядка может быть исправлена за счёт некоторой дефокусировки объектива. При этом плоскость изображения смещается к, так называемой, «плоскости лучшей установки» , находящейся, как правило, посередине, между пересечением осевых и крайних лучей, и не совпадающей с самым узким местом пересечения всех лучей широкого пучка (диском наименьшего рассеяния) . Это несовпадение объясняется распределением световой энергии в диске наименьшего рассеяния, образующей максимумы освещённости не только в центре, но и на краю . То есть, можно сказать, что «диск» представляет из себя яркое кольцо с центральной точкой. Поэтому, разрешение оптической системы, в плоскости совпадающей с с диском наименьшего рассеяния, будет ниже, несмотря на меньшую величину поперечной сферической аберрации. Пригодность этого метода зависит от величины сферической аберрации, и характера распределения освещённости в диске рассеяния.

    Достаточно успешно сферическая аберрация исправляется при помощи комбинации из положительной и отрицательной линз . Причём, если линзы не склеиваются, то, кроме кривизны поверхностей компонентов, на величину сферической аберрации будет влиять и величина воздушного зазора (даже в том случае, если поверхности, ограничивающие этот воздушный промежуток, имеют одинаковую кривизну). При этом способе коррекции, как правило исправляются и хроматические аберрации .

    Строго говоря, сферическая аберрация может быть вполне исправлена только для какой-нибудь пары узких зон, и притом лишь для определенных двух сопряженных точек. Однако, практически исправление может быть весьма удовлетворительным даже для двухлинзовых систем.

    Обычно сферическую аберрацию устраняют для одного значения высоты h 0 соответствующего краю зрачка системы. При этом наибольшее значение остаточной сферической аберрации ожидается на высоте h e определяемой по простой формуле
    h e h 0 = 0.707 {\displaystyle {\frac {h_{e}}{h_{0}}}={0.707}}

    Возникновение этой погрешности можно проследить с помощью легко доступных опытов. Возьмем простую собирающую линзу 1 (например, плосковыпуклую линзу) по возможности с большим диаметром и малым фокусным расстоянием. Небольшой и в то же время достаточно яркий источник света можно получить, если, просверлив в большом экране 2 отверстие диаметром около , укрепить перед ним кусочек матового стекла 3, освещенного сильной лампой с небольшого расстояния. Еще лучше сконцентрировать на матовом стекле свет от дугового фонаря. Эта «светящаяся точка» должна быть расположена на главной оптической оси линзы (рис. 228, а).

    Рис. 228. Экспериментальное изучение сферической аберрации: а) линза, на которую падает широкий пучок, дает расплывчатое изображение; б) центральная зона линзы дает хорошее резкое изображение

    С помощью указанной линзы, на которую падают широкие световые пучки, не удается получить резкое изображение источника. Как бы мы ни перемещали экран 4, на нем получается довольно расплывчатое изображение. Но если ограничить пучки, падающие на линзу, поставив перед ней кусок картона 5 с небольшим отверстием против центральной части (рис. 228, б), то изображение значительно улучшится: можно найти такое положение экрана 4, что изображение источника на нем будет достаточно резким. Это наблюдение вполне согласуется с тем, что нам известно относительно изображения, получаемого в линзе с помощью узких приосевых пучков (ср. §89).

    Рис. 229. Экран с отверстиями для изучения сферической аберрации

    Заменим теперь картон с центральным отверстием куском картона с небольшими отверстиями, расположенными вдоль диаметра линзы (рис. 229). Ход лучей, проходящих через эти отверстия, можно проследить, если слегка задымить воздух за линзой. Мы обнаружим, что лучи, проходящие через отверстия, расположенные на различном расстоянии от центра линзы, пересекаются в разных точках: чем дальше от оси линзы выходит луч, тем сильнее он преломляется и тем ближе к линзе находится точка его пресечения с осью.

    Таким образом, наши опыты показывают, что лучи, проходящие через отдельные зоны линзы, расположенные на разных расстояниях от оси, дают изображения источника, лежащие на разных расстояниях от линзы. При данном положении экрана разные зоны линзы дадут на нем: одни - более резкие, другие - более расплывчатые изображения источника, которые сольются в светлый кружок. В результате линза большого диаметра дает изображение точечного источника не в виде точки, а в виде расплывчатого светлого пятнышка.

    Итак, при использовании широких световых пучков мы не получаем точечного изображения даже в том случае, когда источник расположен на главной оси. Эта погрешность оптических систем называется сферической аберрацией.

    Рис. 230. Возникновение сферической аберрации. Лучи, выходящие из линзы на разной высоте над осью, дают изображения точки в разных точках

    Для простых отрицательных линз благодаря сферической аберрации фокусное расстояние лучей, проходящих через центральную зону линзы, также будет более значительным, чем для лучей, проходящих через периферическую зону. Другими словами, параллельный пучок, проходя через центральную зону рассеивающей линзы, становится менее расходящимся, чем пучок, идущий через наружные зоны. Заставив свет после собирающей линзы пройти через рассеивающую, мы увеличим фокусное расстояние. Это увеличение будет, однако, менее значительным для центральных лучей, чем для лучей периферических (рис. 231).

    Рис. 231. Сферическая аберрация: а) в собирающей линзе; б) в рассеивающей линзе

    Таким образом, более длинное фокусное расстояние собирающей линзы, соответствующее центральным лучам, увеличится в меньшей степени, чем более короткое фокусное расстояние периферических лучей. Следовательно, рассеивающая линза благодаря своей сферической аберрации выравнивает различие фокусных расстояний центральных и периферических лучей, обусловленное сферической аберрацией собирающей линзы. Правильно рассчитав комбинацию собирающей и рассеивающей линз, мы можем столь полно осуществить это выравнивание, что сферическая аберрация системы из двух линз: будет практически сведена к нулю (рис 232). Обычно обе простые линзы склеиваются (рис. 233).

    Рис. 232. Исправление сферической аберрации путем комбинирования собирающей и рассеивающей линз

    Рис. 233. Склеенный астрономический объектив, исправленный на сферическую аберрацию

    Из сказанного видно, что уничтожение сферической аберрации осуществляется комбинацией двух частей системы сферические аберрации которых взаимно компенсируют друг друга. Аналогичным образом мы поступаем и при исправлении других недостатков системы.

    Примером оптической системы с устраненной сферической аберрацией могут служить астрономические объективы. Если звезда находится на оси объектива, то ее изображение практически не искажено аберрацией, хотя диаметр объектива может достигать нескольких десятков сантиметров.

    1. Введение в теорию аберраций

    Когда речь идет о характеристиках объектива, очень часто приходится слышать слово аберрации . «Это отличный объектив, в нем практически исправлены все аберрации!», - тезис, который очень часто можно встретить в обсуждениях или обзорах. Гораздо реже можно услышать и диаметрально противоположное мнение, к примеру: «Это замечательный объектив, его остаточные аберрации хорошо выражены и формируют необыкновенно пластичный и красивый рисунок»…

    Почему же возникают такие разные мнения? Я попробую дать ответ на этот вопрос: насколько это явление действительно хорошо/плохо для объективов и для жанров фотографии в целом. Но для начала, давайте попробуем разобраться, что, же такое аберрации фотографического объектива. Начнем мы с теории и некоторых определений.

    В общем применении термин Аберрация (лат. ab- «от» + лат. errare «блуждать, заблуждаться») - это отклонение от нормы, ошибка, некое нарушение нормальной работы системы.

    Аберрация объектива - ошибка, или погрешность изображения в оптической системе. Она вызвана тем, что в реальной среде может возникать существенное отклонение лучей от того направления, по которому они идут в расчетной «идеальной» оптической системе.

    В итоге страдает общепринятое качество фотографического изображения: недостаточная резкость в центре, потеря контраста, сильная нерезкость по краям, искривление геометрии и пространства, цветные ореолы и т.п.

    Основные аберрации, характерные для фотографических объективов, следующие:

    1. Коматическая аберрация.
    2. Дисторсия.
    3. Астигматизм.
    4. Кривизна поля изображения.

    Перед тем как познакомиться поближе с каждой из них, давайте вспомним из статьи , как происходит прохождение через линзу лучей в идеальной оптической системе:

    Илл. 1. Прохождение лучей в идеальной оптической системе.

    Как мы видим, все лучим при этом собираются в одной точке F - главном фокусе. Но в реальности, все обстоит намного сложнее. Сущность оптических аберраций в том, что лучи, падающие на линзу из одной светящейся точки, не собираются тоже в одной точке. Итак, давайте посмотрим, какие отклонения происходят в оптической системе при воздействии различных аберраций.

    Тут еще надо сразу отметить, что и в простой линзе и в сложном объективе все далее описываемые аберрации действуют совместно.

    Действие сферической аберрации состоит в том, что лучи, падающие на края линзы, собираются ближе к линзе, чем лучи, падающие на центральную часть линзы. Вследствие этого, изображение точки на плоскости получается в виде размытого кружка или диска.

    Илл. 2. Сферическая аберрация.

    В фотографиях действие сферической аберрации проявляется в виде смягченного изображения. Особенно часто эффект заметен на открытых диафрагмах, причем объективы с большей светосилой больше подвержены этой аберрации. Если при этом сохраняется и резкость контуров, такой софт-эффект может быть весьма полезным для некоторых видов съемки, например, портретной.

    Илл.3. Софт-эффект на открытой диафрагме обусловленный действием сферической аберрации.

    В объективах построенных полностью из сферических линз практически невозможно полностью устранить этот вид аберраций. В сверхсветосильных объективах единственный эффективный способ ее существенной компенсации - использование асферических элементов в оптической схеме.

    3. Коматическая аберрация, или «Кома»

    Это частный вид сферической аберрации для боковых лучей. Действие ее заключается в том, что лучи, приходящие под углом к оптической оси не собираются в одной точке. При этом изображение светящейся точки на краях кадра получается в виде «летящей кометы», а не в форме точки. Кома также может привести к засвечиванию участков изображения в зоне нерезкости.

    Илл. 4. Кома.

    Илл. 5. Кома на фотоизображении

    Является прямым следствием дисперсии света. Суть ее состоит в том, что луч белого света, проходя через линзу, разлагается на составляющие его цветные лучи. Коротковолновые лучи (синие, фиолетовые) преломляются в линзе сильнее и сходятся ближе к ней, чем длиннофокусные (оранжевые, красные).

    Илл. 6. Хроматическая аберрация. Ф - фокус фиолетовых лучей. К - фокус красных лучей.

    Здесь, как и в случае сферической аберрации, изображение светящейся точки на плоскости, получается в виде размытого кружка/диска.

    На фотографиях хроматическая аберрация проявляется в виде посторонних оттенков и цветных контуров у объектов съемки. Особенно заметно влияние аберрации в контрастных сюжетах. В настоящее время ХА достаточно легко исправляется в RAW-конверторах, если съемка велась в RAW-формате.

    Илл. 7. Пример проявления хроматической аберрации.

    5. Дисторсия

    Дисторсия проявляется в искривлении и искажении геометрии фотоснимка. Т.е. масштаб изображения меняется с удалением от центра поля к краям, вследствие чего прямые линии искривляются к центру или к краям.

    Различают бочкообразную или отрицательную (наиболее характерна для широкого угла) и подушкообразную или положительную дисторсию (чаще проявляется на длинном фокусе).

    Илл. 8. Подушкообразная и бочкообразная дисторсия

    Дисторсия намного сильнее обычно выражена у объективов с переменным фокусным расстоянием (зумы), чем у объективов с постоянным фокусным (фиксы). У некоторых эффектных объективов, например Fish Eye (Рыбий глаз), намеренно не исправляется и даже подчеркивается дисторсия.

    Илл. 9. Ярко-выраженная бочкообразная дисторсия объектива Zenitar 16 mm FishEye.

    В современных объективах, в том числе с переменным фокусным расстоянием, дисторсия достаточно эффективно корректируется введением в оптическую схему асферической линзы (или нескольких линз).

    6. Астигматизм

    Астигматизм (от греч. Stigma - точка) характеризуется в невозможности получить на краях поля изображения светящейся точки и в виде точки и даже в виде диска. При этом светящаяся точка, находящаяся на главной оптической оси, передается как точка, но если точка вне этой оси - как затемнение, скрещенные линии и т.д.

    Это явление чаще всего наблюдается по краям изображения.

    Илл. 10. Проявление астигматизма

    7. Кривизна поля изображения

    Кривизна поля изображения - это аберрация, в результате которой изображение плоского объекта, перпендикулярного к оптической оси объектива, лежит на поверхности, вогнутой либо выпуклой к объективу. Эта аберрация вызывает неравномерную резкость по полю изображения. Когда центральная часть изображения фокусирована резко, то его края будут лежать не в фокусе, и изобразятся не резко. Если установку на резкость производить по краям изображения, то его центральная часть будет нерезкой.

    Идеальных вещей не существует... Не существует и идеального объектива - объектива, способного строить изображение бесконечно малой точки в виде бесконечно малой точки. Виной тому - сферическая аберрация .

    Сферическая аберрация - искажение, возникающее из-за разности фокусов для лучей, проходящих на разных расстояних от оптической оси. В отличие от описанных ранее комы и астигматизма, это искажение не является ассиметричным и приводит к равномерному расхождению лучей от точечного источника света.

    Сферическая аберрация присуща в разной степени всем объективам, за немногим исключением (одно известное мне - Эра-12, у нее резкость в большей мере ограничена хроматизмом) именно это искажение ограничивает резкость объектива на открытой диафрагме.

    Схема 1 (Википедия). Появление сферической аберрации

    Сферическая аберрация имеет много лиц - иногда ее величают благородным "софтом", иногда - низкопробным "мылом", она в большей мере формирует боке объектива. Благодар ей Триоплан 100/2.8 - генератор пузырей, а Новый Петцваль Ломографического общества имеет контроль размытия... Впрочем, обо всем по порядку.

    Как проявляется сферическая аберрация на снимке

    Наиболее очевидным проявлением является нерезкость контуров объекта в зоне резкости ("свечение контуров", "софт-эффект"), скрадывание мелких деталей, ощущение дефокусировки ("мыло" - в тяжелых случаях);

    Пример сферической аберрации (софт) на снимке, выполненном на Индустар-26М от ФЭД, F/2.8

    Гораздо менее очевидным является проявление сферической аберрации в боке объектива. В зависимости от знака, степени исправления и пр. сферическая аберрация может формировать различные кружки нерезкости.

    Пример снимка на Триплет 78/2.8 (F/2.8) - кружки нерезкости имеют яркую кайму и светлый центр - объектив имеет большую величину сферической аберрации

    Пример снимка на апланат КО-120М 120/1.8 (F/1.8) - кружок нерезкости имеет слабо выраженную кайму, но она таки есть. У объектива, судя по тестам (опубликованы мною ранее в иной статье) - сферическая аберрация невелика

    И, как пример объектива, у которого величина сферической аберрации несказанно мала - снимок на Эра-12 125/4 (F/4). Кружок вообще лишен каймы, распределение яркости очень ровное. Это говорит о превосходной коррекции объектива (что действительно правда).

    Устранение сферической абберации

    Основной способ - диафрагмирование. Отсекание "лишних" пучков позволяет хорошо поднимать резкость.

    Схема 2 (Википедия) - уменьшение сферической аберрации с помощью диарфамы (1 рис.) и с помощью дефокусировки (2 рис.). Способ дефокусировки обычно не подходит для фотографии.

    Примеры фотографий миры (вырезан центр) на разных диафрагмах - 2.8, 4, 5.6 и 8, выполненнах с помощью объектива Индустар-61 (ранний, ФЭД).

    F/2.8 - заматен довольно сильный софт

    F/4 - софт уменьшился, улучшилась детализация снимка

    F/5.6 - софт практически отутствует

    F/8 - софт отсутствует, хорошо видны мелкие детали

    В графических редакторах можно использовать функции повышения резкости и удаления размытия, что позволяет несколько уменьшить негативный эффект сферической аберрации.

    Иногда сферическая аберрация возникает из-за неисправности объектива. Обычно - нарушения промежутков между линзами. Помогает юстировка.

    Например, есть подозрение, что при пересчете Юпитер-9 на ЛЗОС пошло что-то не так: в сравнении с Юпитер-9 производства КМЗ, резкость у ЛЗОС просто отсутствует из-а огромной сферической аберрации. Де-факто - объективы отличаются абсолютно всем,кроме циферок 85/2. Белый может биться с Canon 85/1.8 USM, а черный - разве что с Триплетом 78/2.8 и софт-объективами.

    Снимок на черный Юпитер-9 80-х годов, ЛЗОС (F/2)

    Снимок на белый Юпитер-9 1959 г., КМЗ (F/2)

    Отношение к сферической аберрации фотографа

    Сферическая аберрация снижает резкость снимка и иногда неприятна - кажется, что объект не в фокусе. Не следует в обычной съемке использовать оптику с повышенной сфрической аберрацией.

    Однако сферическая аберрация - неотъемлемая часть рисунка обеъктива. Без нее не было бы красивых мягких портретов на Таир-11, сумасшедших сказочных моноклевых пейзажей, пузырчатого боке знаменитого Meyer Trioplan, "гороха" Индустара-26М и "объемных" кружков в виде кошачьего глаза у Zeiss Planar 50/1.7. Не стоит пытаться избавиться от сферической аберрации в объективах - стоит пытаться найти ей применение. Хотя, конечно, избыточная сферическая аберрация в большинстве случаев ничего хорошего не несет.

    Выводы

    В статье мы подробно разобрали влияние сферической аберрации на фотографию: на резкость, боке, эстетичность и пр.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло