Щитовидной железы гормоны их физиологические эффекты. Гормоны щитовидной железы: механизм действия и физиологические эффекты

Гипоталамический тиреотропин-рилизинг гормон (ТРГ) стимулирует тиреотрофные клетки передней доли гипофиза, секретирующие ТТГ, который, в свою очередь, стимулирует рост щитовидной железы и секрецию ею тиреоидных гормонов. Кроме того, действие тиреоидных гормонов в гипофизе и периферических тканях модулируется местными дейодиназами, превращающими Т 4 в более активный Т 3 . Наконец, молекулярные эффекты Т 3 в отдельных тканях зависят от подтипов рецепторов Т 3 , активации или репрессии специфических генов и взаимодействия рецепторов Т 3 с другими лигандами, другими рецепторами (например, ретиноидным Х-рецептором, РХР), а также коактиваторами и корепрессорами.

Тиреотропин-рилизинг гормон
ТРГ (трипептид пироглутамил-гистидил-пролинамид) синтезируется нейронами супраоптических и паравентрикулярных ядер гипоталамуса. Он накапливается в срединном возвышении гипоталамуса, а затем транспортируется по гипоталамо-гипофизарной портальной системе вен, проходящей через ножку гипофиза, в переднюю его долю, где контролирует синтез и секрецию ТТГ. В других отделах гипоталамуса и головного мозга, а также в спинном мозге ТРГ может играть роль нейротрансмиттера. Ген ТРГ, расположенный на хромосоме 3, кодирует крупную молекулу пре-про-ТРГ, содержащую пять последовательностей предшественника гормона. Экспрессия гена ТРГ подавляется как Т 3 плазмы, так и Т 3 , образующимся в результате дейодирования Т 4 в самих пептидергических нейронах.
В передней доле гипофиза ТРГ взаимодействует со своими рецепторами, локализованными на мембранах ТТГ- и ПРЛ-секретирующих клеток, стимулируя синтез и секрецию этих гормонов. Рецептор ТРГ принадлежит к семейству сопряженных с G-белками рецепторов с семью трансмембранными доменами. ТРГ связывается с третьей трансмембранной спиралью рецептора и активирует как образование цГМФ, так и инозитол-1,4,5-трифосфатный (ИФ 3) каскад, что приводит к высвобождению внутриклеточного Са 2+ и образованию диацилглицерина и, следовательно, к активации протеинкиназы С. Эти реакции ответственны за стимуляцию синтеза ТТГ, координированную транскрипцию генов, кодирующих субъединицы ТТГ, и посттрансляционное глико-зилирование ТТГ, придающее ему биологическую активность.
ТРГ-стимулируемая секреция ТТГ имеет импульсный характер; средняя амплитуда импульсов, регистрируемых каждые 2 часа, составляет 0,6 мЕд/л. У здорового человека секреция ТТГ подчиняется суточному ритму. Максимальный уровень ТТГ в плазме определяется между полуночью и 4 часами утра. Этот ритм задается, по-видимому, импульсным генератором синтеза ТРГ в нейронах гипоталамуса.
Тиреоидные гормоны снижают количество рецепторов ТРГ на тиреотрофах гипофиза, что формирует дополнительный механизм отрицательной обратной связи. В результате при гипертиреозе снижается амплитуда импульсов ТТГ и его ночной выброс, а при гипотиреозе и то, и другое увеличивается. У экспериментальных животных и новорожденных детей воздействие холода усиливает секрецию ТРГ и ТТГ. Синтез и секрецию ТРГ стимулируют также некоторые гормоны и лекарственные вещества (например, вазопрессин и а-адренергические агонисты).
При внутривенном введении человеку ТРГ в дозах 200-500 мкг концентрация ТТГ в сыворотке быстро возрастает в 3-5 раз; реакция достигает пика в первые 30 минут после введения и продолжается 2-3 часа. При первичном гипотиреозе на фоне повышенного базального уровня ТТГ реакция ТТГ на экзогенный ТРГ усиливается. У больных с гипертиреозом, автономно функционирующими узлами щитовидной железы и центральным гипотиреозом, а также у получающих высокие дозы экзогенных тиреоидных гормонов, реакция ТТГ на ТРГ ослаблена.
ТРГ присутствует и в островковых клетках поджелудочной железы, желудочно-кишечном тракте, плаценте, сердце, предстательной железе, яичках и яичниках. Его продукция в этих тканях не ингибируется Т 3 , а физиологическая роль остается неизвестной.


Тиреотропин (тиреотропный гормон, ТТГ)

ТТГ представляет собой гликопротеин (28 кДа), состоящий из α- и β-субъединиц, нековалентно связанных друг с другом. Та же самая α-субъединица входит в состав еще двух гликопротеиновых гормонов гипофиза - фолликулостимулирующего (ФСГ) и лютеинизирующего (ЛГ), а также гормона плаценты - хорионического гонадотропина человека (ХГЧ); β-субъединицы всех этих гормонов различаются, и именно они определяют связывание гормонов с их специфическими рецепторами и биологическую активность каждого из гормонов. Гены α- и β-субъединиц ТТГ локализованы соответственно на хромосоме 6 и 1. У человека α-субъединица содержит полипептидное ядро из 92 аминокислотных остатков и две олигосахаридные цепи, а β-субъединица - полипептидное ядро из 112 аминокислотных остатков и одну олигосахаридную цепь. Каждая из полипептидных цепей α- и β-субъединиц ТТГ образует три петли, свернутых в цистиновый узел. В ШЭР и аппарате Гольджи происходит гликозилирование полипептидных ядер, т. е. присоединение к ним остатков глюкозы, маннозы и фукозы и концевых остатков сульфата или сиаловой кислоты. Эти углеводные остатки увеличивают срок присутствия гормона в плазме и его способность активировать рецептор ТТГ (ТТГ-Р).
ТТГ регулирует рост клеток и продукцию гормонов щитовидной железы, связываясь со своим специфическим рецептором. На базолатеральной мембране каждого тиреоцита находится примерно 1000 таких рецепторов. Связывание ТТГ активирует внутриклеточные сигнальные пути, опосредуемые как циклическим аденозинмонофосфатом (цАМФ), так и фосфоинозитолом. Ген ТТГ-Р, расположеный на хромосоме 14, кодирует одноцепочечный гликопротеин из 764 аминокислотных остатков. ТТГ-Р принадлежит к семейству сопряженных с G-белками рецепторов с семью трансмембранными доменами; внеклеточная часть ТТГ-Р связывает лиганд (ТТГ), а внутримембранная и внутриклеточная части ответственны за активацию сигнальных путей, стимуляции роста тиреоцитов и синтеза и секреции тиреоидных гормонов.
Известные наследственные дефекты синтеза или действия ТТГ включают мутации генов факторов транскрипции, определяющих дифференцировку тиреотрофов гипофиза (POU1F1, PROP1, LHX3, HESX1), мутации генов ТРГ, β-субъединицы ТТГ, ТТГ-Р и белка GSa, передающего сигнал от связывания ТТГ с ТТГ-Р на аденилатциклазу. К гипотиреозу может приводить и появление в сыворотке тиреоблокирующих антител.
Наиболее частой формой гипертиреоза является болезнь Грейвса, при которой ТТГ-Р связывается и активируется аутоантителами. Однако ТТГ-Р участвует в патогенезе и других форм гипертиреоза. Активирующие мутации гена ТТГ-Р в зародышевых клетках лежат в основе семейного гипертиреоза, а соматические мутации этого гена - в основе токсической аденомы щитовидной железы. Другие мутации могут обусловливать синтез аномального ТТГ-Р, который активируется структурно сходным лигандом - ХГЧ, как это наблюдается при семейном гипертиреозе беременных.

Влияние ТТГ на клетки щитовидной железы
ТТГ оказывает многообразное влияние на тиреоциты. Большинство из них опосредуется системой G-белок-аденилатциклаза-цАМФ, но играет роль и активация фосфатидилинозитоловой (ФИФ 2) системы, сопровождающаяся увеличением внутриклеточного уровня кальция. Основные эффекты ТТГ перечислены ниже.

Изменение морфологии тиреоцитов

ТТГ быстро индуцирует появление псевдоподий на границе тиреоцитов с коллоидом, что ускоряет резорбцию тиреоглобулина. Содержание коллоида в просвете фолликулов уменьшается. В клетках появляются капли коллоида, стимулируется образование лизосом и гидролиз тиреоглобулина.

Росттиреоцитов
Отдельные тиреоциты увеличиваются в размерах. Возрастает васкуляризация щитовидной железы и со временем развивается зоб.


Метаболизм йода

ТТГ стимулирует все стадии метаболизма йодида - от его поглощения и транспорта в щитовидной железе до йодирования тиреоглобулина и секреции тиреоидных гормонов. Влияние на транспорт йодида опосредуется цАМФ, а на йодирование тиреоглобулина - гидролизом фосфатидилинозитол-4,5-дифосфата (ФИФ 2) и повышением внутриклеточного уровня Са 2+ . ТТГ действует на транспорт йодида в тиреоциты двухфазно: поглощение йодида вначале угнетается (отток йодида), а через несколько часов возрастает. Отток йодида может быть следствием ускорения гидролиза тиреоглобулина с освобождением гормонов и истечением йодида из железы.

Прочие эффекты ТТГ
К другим эффектам ТТГ относятся стимуляция транскрипции мРНК тиреоглобулина и ТПО, ускорение образования МИТ, ДИТ, Т 3 и Т 4 и повышение активности лизосом с усилением секреции Т 4 и Т 3 . Под влиянием ТТГ возрастает также активность 5"-дейодиназы 1-го типа, что способствует сохранению йодида в щитовидной железе.
Кроме того, ТТГ стимулирует поглощение и окисление глюкозы, а также потребление кислорода щитовидной железой. Ускоряется также кругооборот фосфолипидов и активируется синтез пуриновых и пиримидиновых предшественников ДНК и РНК.

Концентрация ТТГ в сыворотке
В крови присутствуют как целые молекулы ТТГ, так и его отдельные а-субъединицы, концентрации которых при определении иммунологическими методами в норме составляют соответственно 0,5-4,0 мЕд/л и 0,5-2 мкг/л. Содержание ТТГ в сыворотке возрастает при первичном гипотиреозе и снижается при тиреотоксикозе, будь-то эндогенном или связанном с приемом избыточных количеств тиреоидных гормонов. Т 1/2 ТТГ в плазме составляет примерно 30 минут, а его суточная продукция - около 40-150 мЕд.
У больных с ТТГ-секретирующими опухолями гипофиза в сыворотке часто обнаруживается непропорционально высокое содержание а-субъединицы. Повышенная ее концентрация характерна также для здоровых женщин в постменопаузальном периоде, поскольку в этот период усиливается секреция гонадотропинов.

Регуляция гипофизарной секреции ТТГ

Синтез и секреция ТТГ регулируются в основном двумя факторами:

  1. уровнем Т 3 в тирео-трофных клетках, от которого зависит экспрессия мРНК ТТГ, ее трансляция и секреция гормона;
  2. ТРГ, который регулирует пострансляционное гликозилирование субъединиц ТТГ и опять-таки его секрецию.

Высокие уровни Т 4 и Т 3 в сыворотке (тиреотоксикоз) ингибируют синтез и секрецию ТТГ, а низкие уровни тиреоидных гормонов (гипотиреоз) стимулируют эти процессы. Ингибирующее влияние на секрецию ТТГ оказывает также ряд гормонов и лекарственных средств (соматостатин, дофамин, бромкриптин и глюкокортикоиды). Снижение секреции ТТГ наблюдается при острых и хронических заболеваниях, причем после выздоровления возможен «эффект отдачи», т. е. повышение секреции этого гормона. Перечисленные выше вещества обычно лишь несколько снижают концентрацию ТТГ в сыворотке, которая остается определимой, тогда как при явном гипертиреозе концентрация ТТГ может падать ниже пределов чувствительности самых современных иммунологических методов.

Нарушения секреции ТРГ и ТТГ могут иметь место при опухолях и других заболеваниях гипоталамуса или гипофиза. Гипотиреоз, обусловленный нарушением функции гипофиза, называют «вторичным», а обусловленный патологией гипоталамуса - «третичным».

{module директ4}

Другие стимуляторы и ингибиторы функции щитовидной железы
Фолликулы щитовидной железы окружены густой сетью капилляров, на которых оканчиваются норадренергические волокна верхнего шейного ганглия, а также волокна блуждающего нерва и щитовидных ганглиев, содержащие ацетилхолинэстеразу. Парафолликулярные С-клетки секретируют кальцитонин и пептид, родственный гену кальцитонина (ПРГК). У экспериментальных животных эти и другие нейропептиды влияют на кровоток в щитовидной железе и секрецию тиреоидных гормонов. Кроме того, на рост тиреоцитов и продукцию тиреоидных гормонов влияют такие факторы роста, как инсулин, ИФР-1 и эпидермальный фактор роста, а также аутокринные факторы - простагландины и цитокины. Однако клиническое значение всех этих влияний остается неясным.


Роль гипофизарных и периферических дейодиназ

Основное количество Т 3 в тиреотрофах гипофиза и головном мозге образуется в результате дейоди-рования Т 4 под действием 5"-дейодиназы 2-го типа. При гипотиреозе активность этого фермента возрастает, что позволяет некоторое время поддерживать нормальную концентрацию Т 3 в мозговых структурах, несмотря на снижение уровня Т 4 в плазме. При гипертиреозе активность 5"-дейодиназы 2-го типа снижается, что предохраняет гипофиз и нервные клетки от избыточного действия Т 3 . В отличие от этого, активность 5"-дейодиназы 1-го типа при гипотиреозе снижается, обеспечивая сохранение Т 4 , а при гипертиреозе возрастает, ускоряя метаболизм Т 4 .

Ауторегуляция в щитовидной железе
Ауторегуляцию можно определить как способность щитовидной железы адаптировать свою функцию к изменениям доступности йода независимо от гипофизарного ТТГ. Нормальная секреция тиреоидных гормонов сохраняется при колебаниях потребления йодида от 50 мкг до нескольких миллиграмм в сутки. Некоторые эффекты дефицита или избытка йодида рассматривались выше. Основной механизм адаптации к низкому поступлению йодида в организм заключается в увеличении доли синтезируемого Т3, что повышает метаболическую эффективность тиреоидных гормонов. С другой стороны, избыток йодида ингибирует многие функции щитовидной железы, включая транспорт йодида, образование цАМФ, продукцию перекиси водорода, синтез и секрецию тиреоидных гормонов, а также связывание ТТГ и аутоантител с ТТГ-Р. Некоторые из этих эффектов могут опосредоваться образованием в щитовидной железе йодированных жирных кислот. Способность нормальной железы «ускользать» из-под ингибиторных влияний избытка йодида (эффект Вольфа-Чайкова) позволяет сохранять секрецию тиреоидных гормонов при высоком потреблении йодида. Важно отметить, что механизм эффекта Вольфа-Чайкова отличается от механизма терапевтического действия йодида при болезни Грейвса. В последнем случае высокие дозы йодида хронически угнетают эндоцитоз тиреоглобулина и активность лизосомных ферментов, тормозя секрецию тиреоидных гормонов и снижая их концентрацию в крови. Кроме того, фармакологические дозы йодида уменьшают кровоснабжение щитовидной железы, что облегчает хирургические вмешательства на ней. Однако и этот эффект сохраняется короткое время - от 10 суток до 2 недель.

Действие тиреоидных гормонов


1. Рецепторы тиреоидных гормонов и механизмы их действия

Тиреоидные гормоны реализуют свои эффекты двумя основными механизмами:

  1. геномные эффекты предполагают взаимодействие Т 3 с его ядерными рецепторами, которые регулируют активность генов;
  2. негеномные эффекты опосредуются взаимодействием Т 3 и Т 4 с некоторыми ферментами (например, кальциевой АТФазой, аденилатцикла-зой, мономерной пируваткиназой), транспортерами глюкозы и белками митохондрий.

Свободные тиреоидные гормоны с помощью специфических переносчиков или путем пассивной диффузии проходят через клеточную мембрану в цитоплазму, а затем в ядро, где Т 3 связывается со своими рецепторами. Ядерные рецепторы Т 3 принадлежат к суперсемейству ядерных белков, включающему также рецепторы глюко- и минерало-кортикоидов, эстрогенов, прогестинов, витамина D и ретиноидов.
У человека рецепторы тиреоидных гормонов (TP) кодируются двумя генами: ТРа, расположенным на хромосоме 17, и TРβ, локализованном на хромосоме 3. В результате альтернативного сплайсинга мРНК, транскрибируемых с каждого из этих генов, образуются по два разных белковых продукта:
TPα1 и ТРα2 и ТРβ1 и ТРβ2, хотя ТРα2, как полагают, лишен биологической активности. TP всех типов содержат С-концевой лиганд-связывающий и центральный ДНК-связывающий домен с двумя цинковыми пальцами, которые облегчают взаимодействие рецепторов с элементами ДНК, чувствительными к тиреоидным гормонам (ТЧЭ). ТЧЭ расположены в промоторных участках генов-мишеней и регулируют транскрипцию последних. В разных тканях и на разных стадиях развития синтезируется разное количество тех или иных ТР. Например, головной мозг содержит преимущественно ТРα, печень - ТРβ, а сердечная мышца - оба типа рецепторов. Точечные мутации гена ТРβ, нарушающие строение лиганд-связывающего домена этого рецептора, лежат в основе генерализованной резистентности к тиреоидным гормонам (ГенРТГ). ТЧЭ, с которыми взаимодействуют TP, обычно представляют собой своеобразные спаренные олигонуклеотидные последовательности (например, AGGTCA). TP могут связываться с ТЧЭ и в виде гетеродимеров с рецепторами других факторов транскрипции, таких как РХР и рецептор ретиноидных кислот. В опероне ТЧЭ расположены, как правило, перед стартовым сайтом транскрипции кодирующей области генов-мишеней. В случае генов, активируемых тиреоидными гормонами, TP в отсутствие лиганда образуют связи с корепрессорами [например, корепрессором ядерных рецепторов (NCoR) и «тушителем» эффектов рецепторов ретиноевых кислот и тиреоидных гормонов (SMRT)]. Это приводит к активации деацетилаз гистонов, меняющих местную структуру хроматина, что сопровождается репрессией базальной транскрипции. При связывании TP с Т 3 корепрессорные комплексы распадаются, и TP образуют комплексы с коактиваторами, способствующими ацетилированию гистонов. Связанные с Т 3 TP присоединяют также другие белки (в частности, белок, взаимодействующий с рецептором витамина D); образующиеся белковые комплексы мобилизуют РНК-полимеразу II и активируют транскрипцию. Экспрессия некоторых генов (например, гена пре-про-ТРГ и генов α- и β-субъединиц ТТГ) под влиянием связанных с Т 3 TP снижается, но молекулярные механизмы таких эффектов изучены хуже. Изменение синтеза отдельных РНК и белков определяет характер реакций разных тканей на действие тиреоидных гормонов.
Ряд клеточных реакций на тиреоидные гормоны возникает раньше, чем могли бы измениться процессы транскрипции в ядре; кроме того, обнаружено связывание Т 4 и Т 3 с внеядерными структурами клеток. Все это позволяет предполагать существование негеномных эффектов тиреоидных гормонов. Недавно показано, например, что они связываются с мембранным белком-интегрином αVβ3, который опосредует стимулирующее действие тиреоидных гормонов на МАП-киназный каскад и ангиогенез.

2. Физиологические эффекты тиреоидных гормонов
Влияние Т 3 на транскрипцию генов достигает своего максимума через несколько часов или суток. Эти геномные влияния изменяют ряд жизненно важных функций, включая рост тканей, созревание головного мозга, теплопродукцию и потребление кислорода, а также состояние сердца, печени, почек, скелетных мышц и кожи. К негеномным эффектам тиреоидных гормонов относят снижение активности 5"-дейодиназы 2-го типа в гипофизе и активацию транспорта глюкозы и аминокислот в некоторых тканях.

Влияние на развитие плода
Способность щитовидной железы концентрировать йодид и появление ТТГ в гипофизе наблюдаются у плода человека примерно на 11-й неделе беременности. Из-за высокого содержания в плаценте 5-дейодиназы 3-го типа (которая инактивирует большую часть материнских Т 3 и Т 4) в кровь плода поступает очень малое количество свободных материнских тиреоидных гормонов. Однако они крайне важны для ранних стадий развития головного мозга плода. После 11-й недели беременности развитие плода зависит уже в основном от его собственных тиреоидных гормонов. Некоторая способность плода к росту сохраняется и в отсутствие у него щитовидной железы, но развитие головного мозга и созревание скелета в таких условиях резко нарушаются, что проявляется кретинизмом (умственной отсталостью и карликовостью).

Влияние на потребление кислорода, теплопродукцию и образование свободных радикалов
Рост потребления O 2 под влиянием Т 3 отчасти обусловлен стимуляцией Na + , К + -АТФазы во всех тканях, за исключением головного мозга, селезенки и яичек. Это вносит свой вклад в повышение основного обмена (общего потребления 02 в покое) и чувствительности к теплу при гипертиреозе и в противоположные сдвиги при гипотиреозе.

Влияние на сердечно-сосудистую систему
Т3 стимулирует синтез Са 2+ -АТФазы саркоплазматического ретикулума, что увеличивает скорость диастолического расслабления миокарда. Под влиянием Т 3 возрастает также синтез обладающих большей сократимостью α-изоформ тяжелых цепей миозина, что определяет усиление и систолической функции миокарда. Кроме того, Т 3 влияет на экспрессию разных изоформ Na + , К + -АТФазы, усиливает синтез β-адренорецепторов и снижает концентрацию ингибиторного G-белка (Gi) в миокарде. Учащение сердечных сокращений обусловлено ускорением как деполяризации, так и реполяризации клеток синусового узла под действием Т 3 . Таким образом, тиреоидные гормоны оказывают положительное инотропное и хронотропное влияние на сердце, что - вместе с повышением его чувствительности к адренергической стимуляции - определяет тахикардию и увеличение сократимости миокарда при гипертиреозе и противоположные сдвиги при гипотиреозе. Наконец, тиреоидные гормоны снижают периферическое сосудистое сопротивление, и это способствует дальнейшему повышению минутного объема сердца при гипертиреозе.

Влияние на симпатическую нервную систему
Тиреоидные гормоны увеличивают количество β-адренорецепторов в сердце, скелетных мышцах, жировой ткани и на лимфоцитах, а также, возможно, усиливают действие катехоламинов на пострецепторном уровне. Многие клинические проявления тиреотоксикоза отражают повышенную чувствительность к катехоламинам, и β-адреноблокаторы нередко устраняют такие проявления.

Легочные эффекты
Тиреоидные гормоны способствуют сохранению реакций дыхательного центра ствола мозга на гипоксию и гиперкапнию. Поэтому при тяжелом гипотиреозе может иметь место гиповентиляция. Функция дыхательных мышц также регулируется тиреоидными гормонами.

Влияние на кроветворение
Возрастание потребности клеток в O 2 при гипертиреозе обусловливает усиленную продукцию эритропоэтина и ускорение эритропоэза. Однако из-за более быстрого разрушения эритроцитов и гемодилюции показатель гематокрита обычно не увеличивается. Под влиянием тиреоидных гормонов в эритроцитах возрастает содержание 2,3-дифосфоглицерата, что ускоряет диссоциацию оксигемоглобина и увеличивает доступность O 2 для тканей. Гипотиреоз характеризуется противоположными сдвигами.

Влияние на желудочно-кишечный тракт
Тиреоидные гормоны усиливают перистальтику кишечника, что приводит к учащению дефекаций при гипертиреозе. При гипотиреозе, напротив, прохождение пищи по кишечнику замедляется и возникает запор.

Влияние на кости
Тиреоидные гормоны стимулируют кругооборот костной ткани, ускоряя резорбцию костей и (в меньшей степени) остеогенез. Поэтому при гипертиреозе развивается гиперкальциурия и (реже) гиперкальциемия. Кроме того, хронический гипертиреоз может сопровождаться клинически значимой потерей минерального вещества костной ткани.

Нервно-мышечные эффекты
При гипертиреозе ускоряется кругооборот белка, и его содержание в скелетных мышцах снижается. Это приводит к характерной для данного заболевания проксимальной миопатии. Тиреоидные гормоны увеличивают также скорость сокращения и расслабления скелетных мышц, что клинически проявляется при гипертиреозе гиперрефлексией, а при гипотиреозе - замедлением фазы расслабления глубоких сухожильных рефлексов. Для гипертиреоза типичен также тонкий тремор пальцев рук. Выше уже отмечалось, что тиреоидные гормоны необходимы для нормального развития и функционирования ЦНС, и недостаточность щитовидной железы у плода приводит к тяжелой умственной отсталости(Своевременное выявление врожденного гипотериоза (скрининг новорожденных) помогает предотвратить развитие таких нарушений). У взрослых людей при гипертиреозе наблюдается гиперактивность и суетливость, тогда как у больных гипотиреозом - медлительность и апатия.

Влияние на липидный и углеводный обмен
При гипертиреозе ускоряется как гликогенолиз, так и глюконеогенез в печени, а также всасывание глюкозы в желудочно-кишечном тракте. Поэтому гипертиреоз затрудняет контроль гликемии у больных, одновременно страдающих сахарным диабетом. Тиреоидные гормоны ускоряют как синтез, так и распад холестерина. Последний эффект связан в основном с увеличением печеночных рецепторов липопротеинов низкой плотности (ЛПНП) и ускорением клиренса ЛПНП. При гипотиреозе уровни общего холестерина и холестерина ЛПНП, как правило, повышены. Ускоряется также липолиз, в результате чего в плазме возрастает содержание свободных жирных кислот и глицерина.

Эндокринные эффекты
Тиреоидные гормоны изменяют продукцию, регуляцию секреции и метаболический клиренс многих других гормонов. У детей с гипотиреозом нарушается секреция гормона роста, что замедляет рост тела в длину. Гипотиреоз может задерживать и половое развитие, нарушая секрецию ГнРГ и гонадотропинов. Однако при первичном гипотиреозе иногда наблюдается преждевременное половое развитие, обусловленное, вероятно, взаимодействием очень больших количеств ТТГ с рецепторами гонадотропинов. У некоторых женщин с гипотиреозом развивается гиперпролактинемия. Характерны меноррагия (длительные и тяжелые маточные кровотечения), ановуляция и бесплодие. При гипотиреозе ослабляется реакция гипоталамо-гипофизарно-надпочечниковой системы на стресс, что несколько компенсируется замедлением метаболического клиренса кортизола. Восстановление эутиреоза в таких случаях может приводить к надпочечниковой недостаточности, так как клиренс кортизола ускоряется, а его резервы остаются сниженными.
При гипертиреозе у мужчин возможно развитие гинекомастии, обусловленной ускоренной ароматизацией андрогенов с образованием эстрогенов и повышенным уровнем глобулина, связывающего половые гормоны. Может нарушаться и гонадотропная регуляция овуляции и менструального цикла, что приводит к бесплодию и аменорее. Восстановление эутиреоза, как правило, устраняет все эти эндокринные расстройства.

Щитовидная железа (ЩЖ) и гормоны, которые она продуцирует, играют исключительно важную роль в организме человека. Щитовидка является частью эндокринной системы человека, которая вместе с нервной системой осуществляют регуляцию всех органов и систем. Тиреоидные гормоны регулируют не только физическое развитие человека, но и существенно влияют на его интеллект. Доказательством этого является умственная отсталость у детей с врожденным гипотиреозом (сниженная продукция гормонов ЩЖ). Возникает вопрос, какие гормоны здесь вырабатываются, какой механизм действия гормонов щитовидной железы и биологические эффекты этих веществ?

Строение и гормоны щитовидной железы

Щитовидная железа – это непарный орган внутренней секреции (выделяет гормоны в кровь), который находится на передней поверхности шеи. Железа заключена в капсулу и состоит из двух долей (правой и левой) и перешейка, который их соединяет. В некоторых людей наблюдают дополнительную пирамидальную долю, которая отходит от перешейка. Весит железа около 20-30 грамм. Несмотря на свой маленький размер и вес, щитовидка занимает лидирующее место среди всех органов организма по интенсивности кровотока (даже головной мозг уступает ей), что свидетельствует о важности железы для организма.

Вся ткань щитовидки состоит из фолликулов (структурно-функциональная единица). Фолликулы – это округлые образования, которые по периферии состоят из клеток (тиреоцитов), а в середине заполнены коллоидом. Коллоид – это очень важное вещество. Оно вырабатывается тиреоцитами и состоит в основном из тиреоглобулина. Тиреоглобулин – это белок, который синтезируется в тиреоцитах из аминокислоты тирозина и атомов йода, и представляет собой готовый запас йодсодержимых гормонов щитовидной железы. Оба компонента тиреоглобулина не вырабатываются в организме и должны регулярно поступать с пищей, иначе может наступить дефицит гормонов и его клинические последствия.

Если организму необходимы тиреоидные гормоны, то тиреоциты обратно захватывают из коллоида синтезированный тиреоглобулин (депо готовых тиреоидных гормонов) и расщепляют его на два гормона ЩЖ:

  • Т3 (трийодтиронин), его молекула имеет 3 атома йода;
  • Т4 (тироксин), его молекула имеет 4 атома йода.

После выброса Т3 и Т4 в кровь, они соединяются со специальными транспортными белками крови и в таком виде (неактивном) транспортируются к месту назначения (чувствительные к тиреоидным гормонам ткани и клетки). Не вся порция гормонов в крови находится в связи с белками (они и проявляют гормональную активность). Это специальный защитный механизм, который придумала природа от переизбытка тиреоидных гормонов. По мере надобности в периферических тканях Т3 и Т4 отсоединяются от транспортных белков и выполняют свои функции.

Необходимо отметить, что гормональная активность тироксина и трийодтиронина значительно отличается. Т3 в 4-5 раз активнее, кроме того он плохо соединяется с транспортными белками, что усиливает его действие, в отличие от Т4. Тироксин, когда достигает чувствительных клеток, отсоединяется от белкового комплекса и от него отщепляется один атом йода, тогда он превращается в активный Т3. Таким образом, влияние гормонов щитовидной железы осуществляются на 96-97% за счет трийодтиронина.

Регулирует работу ЩЖ и выработку Т3 и Т4 гипоталамо-гипофизарная система по принципу обратной негативной связи. Если в крови недостаточное количество тиреоидных гормонов, то это улавливается гипоталамусом (часть головного мозга, где нервная и эндокринная регуляции функций организма плавно переходят друг в друга). Он синтезирует тиреотропин-релизинг гормон (ТРГ), который заставляет гипофиз (придаток головного мозга) вырабатывать тиреотропный гормон, который с током крови достигает ЩЖ и заставляет ее продуцировать Т3 и Т4. И наоборот, если в крови наблюдается избыток тиреоидных гормонов, то меньше вырабатывается ТРГ, ТТГ и соответственно Т3 и Т4.

Механизм действия тиреоидных гормонов

Как именно тиреоидные гормоны заставляют клетки делать то, что необходимо? Это очень сложный биохимический процесс, он требует вовлечения многих веществ и ферментов.

Тиреоидные гормоны относятся к тем гормональным веществам, которые осуществляют свои биологические эффекты путем соединения с рецепторами внутри клеток (так же, как и стероидные гормоны). Существует и вторая группа гормонов, которые действуют путем соединения с рецепторами на поверхности клеток (гормоны белковой природы, гипофиза, поджелудочной железы и пр.).

Отличием между ними является скорость ответа организма на стимуляцию. Так как белковым гормонам не нужно проникать внутрь ядра, то они действуют быстрее. Кроме того они активируют ферменты, которые уже синтезированы. А тиреоидные и стероидные гормоны воздействуют на клетки-мишени путем проникновения в ядро и активации синтеза нужных ферментов. Первые эффекты таких гормонов проявляются спустя 8 часов, в отличие от пептидной группы, которые осуществляют свои эффекты на протяжении доли секунд.

Весь сложный процесс того, как гормоны щитовидной железы регулируют функции организма можно отобразить в упрощенном варианте:

  • проникновение гормона внутрь клетки через клеточную мембрану;
  • соединение гормона с рецепторами в цитоплазме клетки;
  • активирование комплекса гормон-рецептор и его миграция в ядро клетки;
  • взаимодействие этого комплекса с определенным участком ДНК;
  • активация нужных генов;
  • синтез белков-ферментов, которые и осуществляют биологические действия гормона.

Биологические эффекты тиреоидных гормонов

Роль гормонов щитовидной железы трудно переоценить. Самая важная функция этих веществ – влияние на метаболизм человека (влияет на энергетический, белковый, углеводный, жировой обмен веществ).

Основные метаболические эффекты Т3 и Т4:

  • повышает поглощение кислорода клетками, что приводит к выработке энергии, необходимой клеткам для процессов жизнедеятельности (повышение температуры и основного обмена);
  • активизируют синтез белков клетками (процессы роста и развития тканей);
  • липолитический эффект (расщепляют жиры), стимулируют окисление жирных кислот, что приводит к их уменьшению в крови;
  • активируют образование эндогенного холестерина, который необходим для построения половых, стероидных гормонов и желчных кислот;
  • активация распада гликогена в печени, что приводит к повышению глюкозы в крови;
  • стимулируют секрецию инсулина.

Все биологические эффекты тиреоидных гормонов основываются на метаболических способностях.

Основные физиологические эффекты Т3 и Т4:

  • обеспечение нормальных процессов роста, дифференциации и развития органов и тканей (особенно центральной нервной системы). Это особенно важно в период внутриутробного развития. Если в это время существует недостаток гормонов, то ребенок родиться с кретинизмом (физическая и умственная отсталость);
  • быстрое заживление ран и травм;
  • активация работы симпатической нервной системы (учащение сердцебиения, потливость, сужение сосудов);
  • повышение сократимости сердца;
  • стимуляция теплообразования;
  • влияют на водный обмен;
  • повышают артериальное давление;
  • тормозят процессы образования и отложения жировых клеток, что приводит к похудению;
  • активация психических процессов человека;
  • поддержание репродуктивной функции;
  • стимулируют образование клеток крови в костном мозге.

Нормы тиреоидных гормонов в крови

Для обеспечения нормальной жизнедеятельности организма концентрация тиреоидных гормонов должна находиться в пределах нормальных значений, иначе появляются нарушения в работе органов и систем, которые связаны с недостатком (гипотиреоз) или избытком (тиреотоксикоз) гормонов ЩЖ в крови.

Референсные значения гормонов щитовидной железы:

  • ТТГ (тиреотропный гормон гипофиза) — 0,4-4,0 мЕд/л;
  • Т3 свободный — 2,6-5,7 пмоль/л;
  • Т4 свободный — 9,0-22,0 пмоль/л;
  • Т3 общий — 1.2-2.8 мМе/л;
  • Т4 общий — 60.0-160.0 нмоль/л;
  • тиреоглобулин – до 50 нг/мл.

Здоровая щитовидная железа и оптимальный баланс тиреоидных гормонов — очень важны для нормальной жизнедеятельности организма. Для того чтобы поддерживать нормальные значения гормонов в крови нужно не допускать дефицита в пище необходимых компонентов для построения тиреоидных гормонов (тирозин и йод).

Состоит из двух долей и перешейка и расположена впереди гортани. Масса щитовидной железы составляет 30 г.

Основной структурно-функциональной единицей железы являются фолликулы — округлые полости, стенка которых образована одним рядом клеток кубического эпителия. Фолликулы заполнены коллоидом и содержат гормоны тироксин и трийодтиронин , которые связаны с белком тиреоглобулином. В межфолликулярном пространстве находятся С-клетки, которые вырабатывают гормон тиреокальцитонин. Железа богато снабжена кровеносными и лимфатическими сосудами. Количество , протекающей через щитовидную железу за 1 мин, в 3-7 раз выше массы самой железы.

Биосинтез тироксина и трийодтиронина осуществляется за счет йодирования аминокислоты тирозина, поэтому в щитовидной железе происходит активное поглощение йода. Содержание йода в фолликулах в 30 раз превышает его концентрацию в крови, а при гиперфункции щитовидной железы это соотношение становится еще больше. Поглощение йода осуществляется за счет активного транспорта. После соединения тирозина, входящего в состав тиреоглобулина, с атомарным йодом образуется монойодтирозин и дийодтирозин. За счет соединения двух молекул дийодтирозина образуется тетрайодтиронин, или тироксин; конденсация моно- и дийодтирозина приводит к образованию трийодтиронина. В дальнейшем в результате действия протеаз, расщепляющих тиреоглобулин, происходит высвобождение в кровь активных гормонов.

Активность тироксина в несколько раз меньше, чем трийодтиронина, однако содержание в крови тироксина примерно в 20 раз больше, чем трийодтиронина. Тироксин при дейодировании может превращаться в трийодтиронин. На основании этих фактов предполагают, что основным гормоном щитовидной железы является трийодтиронин, а тироксин выполняет функцию его предшественника.

Синтез гормонов неразрывно связан с поступлением в организм йода. Если в регионе проживания в воде и почве имеется дефицит йода, его бывает мало и в пищевых продуктах растительного и животного происхождения. В этом случае, для того, чтобы обеспечить достаточный синтез гормона, щитовидная железа детей и взрослых увеличивается в размерах, иногда очень существенно, т.е. возникает зоб. Увеличение может быть не только компенсаторным, но и патологическим, его называют эндемический зоб. Недостаток йода в пищевом рационе лучше всего компенсируют морская капуста и другие морепродукты, йодированная соль, столовая минеральная вода, содержащая йод, хлебобулочные изделия с йодными добавками. Однако избыточное поступление йода в организм создает нагрузку на щитовидную железу и может привести к тяжелым последствиям.

Гормоны щитовидной железы

Эффекты тироксина и трийодтиронина

Основной:

  • активируют генетический аппарат клетки, стимулируют обмен веществ, потребление кислорода и интенсивность окислительных процессов

Метаболические:

  • белковый обмен: стимулируют синтез белка, но в случае, когда уровень гормонов превышает норму, преобладает катаболизм;
  • жировой обмен: стимулируют липолиз;
  • углеводный обмен: при гиперпродукции стимулируют гликогенолиз, уровень глюкозы крови повышается, активизируется ее поступление внутрь клеток, активируют инсулиназу печени

Функциональные:

  • обеспечивают развитие и дифференцировку тканей, особенно нервной;
  • усиливают эффекты симпатической нервной системы за счет повышения количества адренорецепторов и угнетения моноаминооксидазы;
  • просимпатические эффекты проявляются в увеличении частоты сердечных сокращений, систолического объема, артериального давления, частоты дыхания, перистальтики кишечника, возбудимости ЦНС, повышении температуры тела

Проявления изменения продукции тироксина и трийодтиронина

Сравнительная характеристика недостаточной продукции соматотропина и тироксина

Влияние гормонов щитовидной железы на функции организма

Характерное действие гормонов щитовидной железы (тироксина и трийодтиронина) — усиление энергетического обмена. Введение всегда сопровождается увеличением потребления кислорода, а удаление щитовидной железы — его снижением. При введении гормона повышается обмен веществ, увеличивается количество освобождаемой энергии, повышается температура тела.

Тироксин усиливает расходование . Возникают похудание и интенсивное потребление тканями глюкозы из крови. Убыль глюкозы из крови возмещается ее пополнением за счет усиленного распада гликогена в печени и мышцах. Снижаются запасы липидов в печени, уменьшается количество холестерина в крови. Увеличивается выведение из организма воды, кальция и фосфора.

Гормоны щитовидной железы вызывают повышенную возбудимость, раздражимость, бессонницу, эмоциональную неуравновешенность.

Тироксин увеличивает минутный объем крови и частоту сердечных сокращений. Тиреоидный гормон необходим для овуляции, он способствует сохранению беременности, регулирует функцию молочных желез.

Рост и развитие организма также регулируются щитовидной железой: снижение ее функции вызывает остановку роста. Тиреоидный гормон стимулирует кроветворение, увеличивает секрецию желудка, кишечника и секрецию молока.

Кроме йодсодержащих гормонов, в щитовидной железе образуется тиреокальцитонин, снижающий содержание кальция в крови. Тиреокальцитонин является антагонистом паратгормона околощитовидных желез. Тиреокальцитонин действует на костную ткань, усиливает активность остеобластов и процесс минерализации. В почках и кишечнике гормон угнетает реабсорбцию кальция и стимулирует обратное всасывание фосфатов. Реализация этих эффектов приводит к гипокальциемии.

Гипер- и гипофункция железы

Гиперфункция (гипертиреоз) служит причиной заболевания, называемого базедовой болезнью. Основные симптомы заболевания: зоб, пучеглазие, увеличение обмена веществ, частоты сердечных сокращений, повышение потливости, двигательной активности (суетливости), раздражительность (капризность, быстрая смена настроения, эмоциональная неустойчивость), быстрая утомляемость. Зоб образуется за счет диффузного увеличения щитовидной железы. Сейчас методы лечения настолько эффективны, что тяжелые случаи заболевания встречаются довольно редко.

Гипофункция (гипотиреоз) щитовидной железы, возникающая в раннем возрасте, до 3-4 лет, вызывает развитие симптомов кретинизма. Дети, страдающие кретинизмом, отстают в физическом и умственном развитии. Симптомы заболевания: карликовый рост и нарушением пропорций тела, широкая, глубоко ввалившаяся переносица, широко расставленные глаза, открытый рот и постоянно высунутый язык, так как он не помешается во рту, короткие и изогнутые конечности, тупое выражение лица. Продолжительность жизни таких людей обычно не превышает 30-40 лет. В первые 2-3 месяца жизни можно добиться последующего нормального психического развития. Если лечение начинается в годовалом возрасте, то 40% детей, подвергшихся этому заболеванию, остаются на очень низком уровне психического развития.

Гипофункция щитовидной железы у взрослых приводит к возникновению заболевания, называемого микседемой, или слизистым отеком. При этом заболевании понижается интенсивность обменных процессов (на 15-40%), температура тела, реже становится пульс, снижается АД, появляется отечность, выпадают волосы, ломаются ногти, лицо становится бледное, безжизненное, маскообразное. Больные отличаются медлительностью, сонливостью, плохой памятью. Микседема — медленно прогрессирующее заболевание, которое при отсутствии лечения приводит к полной инвалидности.

Регуляция функции щитовидной железы

Специфическим регулятором деятельности щитовидной железы является йод, сам гормон щитовидной железы и ТТГ (Тиреотропный гормон). Йод в малых дозах увеличивает секрецию ТТГ, а в больших дозах угнетает ее. Щитовидная железа находится под контролем ЦНС. Такие пищевые продукты, как капуста, брюква, турнепс, угнетают функцию щитовидной железы. Выработка тироксина и трийодтиронина резко усиливается в условиях длительного эмоционального возбуждения. Отмечено также, что секреция этих гормонов ускоряется при снижении температуры тела.

Проявления нарушений эндокринной функции щитовидной железы

При повышении функциональной активности щитовидной железы и избыточной продукции тиреоидных гормонов возникает состояние гипертиреоза (гипертиреоидизма ), характеризующееся повышением в крови уровня тиреоидных гормонов. Проявления этого состояния объясняются эффектами тирсоидных гормонов в повышенных концентрациях. Так, из-за повышения основного обмена (гиперметаболизма) у больных наблюдается небольшое повышение температуры тела (гипертермия). Уменьшается масса тела несмотря на сохраненный или повышенный аппетит. Это состояние проявляется увеличением потребности кислорода, тахикардией, увеличением сократимости миокарда, увеличением систолического АД, увеличением вентиляции легких. Повышается активность СПС, увеличивается число р-адренореценторов, развивается потливость, непереносимость тепла. Повышается возбудимость и эмоциональная лабильность, может появиться тремор конечностей и другие изменения в организме.

Повышенное образование и секрецию тиреоидных гормонов способны вызывать ряд факторов, от правильного выявления которых зависит выбор метода коррекции функции щитовидной железы. Среди них факторы, вызывающие гиперфункцию фолликулярных клеток щитовидной железы (опухоли железы, мутация G-белков) и повышение образования и секреции тиреоидных гормонов. Гиперфункция тироцитов наблюдается при избыточной стимуляции рецепторов тиротропина повышенным содержанием ТТГ, например при опухолях гипофиза, или сниженной чувствительности рецепторов тирсоидных гормонов в тиротрофах аденогипофиза. Частой причиной гиперфункции тироцитов, увеличения размеров железы является стимуляция рецепторов ТТГ антителами, вырабатываемыми к ним при аутоиммунном заболевании, названном болезнью Грейвса — Базедова (рис. 1). Временное повышение уровня тирсоидных гормонов в крови может развиться при разрушении тироцитов вследствие воспалительных процессов в железе (токсический тиреоидит Хашимото), приеме избыточного количества тиреоидных гормонов и препаратов йода.

Повышение уровня тиреоидных гормонов может проявляться тиреотоксикозом ; в этом случае говорят о гипертиреозе с тиреотоксикозом. Но тиреотоксикоз может развиться при введении в организм избыточного количества тиреоидных гормонов, в отсутствие гипертиреоза. Описано развитие тиреотоксикоза вследствие повышения чувствительности рецепторов клеток к тиреоидным гормонам. Известны и противоположные случаи, когда чувствительность клеток к тиреоидным гормонам снижена и развивается состояние резистентности к гормонам щитовидной железы.

Пониженное образование и секреция тиреоидных гормонов могут вызываться множеством причин, часть из которых является следствием нарушения механизмов регуляции функции щитовидной железы. Так, гипотиреоз (гипотиреоидизм) может развиться при снижении образования ТРГ в гипоталамусе (опухоли, кисты, облучение, энцефалиты в области гипоталамуса и др.). Такой гипотиреоз получил название третичного. Вторичный гипотиреоз развивается вследствие недостаточного образования ТГГ гипофизом (опухоли, кисты, облучение, хирургическое удаление части гипофиза, энцефалиты и др.). Первичный гипотиреоз может развиться вследствие аутоиммунного воспаления железы, при дефиците йода, селена, непомерно избыточном приеме зобогенных продуктов — гойтрогенов (некоторые сорта капусты), после облучения железы, длительном приеме ряда лекарств (препараты йода, лития, антитиреоидные средства) и др.

Рис. 1. Диффузное увеличение размеров щитовидной железы у девочки 12 лет с аутоиммунным тиреоидитом (Т. Фоли, 2002)

Недостаточная продукция тиреоидных гормонов приводит к снижению интенсивности метаболизма, потребления кислорода, вентиляции, сократимости миокарда и минутного объема крови. При тяжелом гипотиреозе может развиться состояние, получившее название микседема — слизистый отек. Он развивается из-за накопления (возможно под влиянием повышенного уровня ТТГ) мукополисахаридов и воды в базальных слоях кожи, что приводит к одутловатости лица и тестообразной консистенции кожи, а также к повышению массы тела, несмотря на снижение аппетита. У больных микседемой могут развиться психическая и двигательная заторможенность, сонливость, зябкость, снижение интеллекта, тонуса симпатического отдела АНС и другие изменения.

В осуществлении сложных процессов образования тиреоидных гормонов участвуют ионные насосы, обеспечивающие поступление йода, ряд ферментов белковой природы, среди которых ключевую роль играет тиреопероксидаза. В ряде случаев у человека может иметь место генетический дефект, ведущий к нарушению их структуры и функции, что сопровождается нарушением синтеза тиреоидных гормонов. Могут наблюдаться генетические дефекты структуры тиреоглобулина. Против тиреопероксидазы и тиреоглобулина нередко вырабатываются аутоантитела, что также сопровождается нарушением синтеза гормонов щитовидной железы. На активность процессов захвата йода и его включения в состав тиреоглобулина, можно влиять с помощью ряда фармакологических средств, регулируя синтез гормонов. Па их синтез можно влиять приемом препаратов йода.

Развитие гипотиреоза у плода и новорожденных способно привести к появлению кретинизма - физического (малый рост, нарушение пропорций тела), полового и умственного недоразвития. Эти изменения могут предотвращаться при проведении адекватной заместительной терапии тиреоидными гормонами в первые месяцы после рождения ребенка.

Строение щитовидной железы

Является по своим массе и размерам самым крупным эндокринным органом. Она обычно состоит из двух долей, соединенных перешейком, и располагается на передней поверхности шеи, будучи фиксированной к передней и боковой поверхностям трахеи и гортани соединительной тканью. Средний вес нормальной щитовидной железы у взрослых колеблется в пределах 15-30 г, однако ее размеры, форма и топография расположения широко варьируют.

Функционально активная щитовидная железа первой из эндокринных желез появляется в процессе эмбриогенеза. Закладка щитовидной железы у плода человека формируется на 16-17-й день внутриутробного развития в виде скопления энтодермальных клеток у корня языка.

На ранних этапах развития (6-8 недель) зачаток железы представляет собой пласт интенсивно пролиферирующих эпителиальных клеток. В этот период происходит быстрый рост железы, но в ней еще не образуются гормоны. Первые признаки их секреции выявляются па 10-11-й неделях (у плодов размером около 7 см), когда клетки железы уже способны поглощать йод, образовывать коллоид и синтезировать тироксин.

Под капсулой появляются единичные фолликулы, в которых формируются фолликулярные клетки.

В зачаток щитовидной железы из 5-й пары жаберных карманов врастают парафолликулярные (околофолликулярные), или С-клетки. К 12-14-й неделям развития плода вся правая доля щитовидной железы приобретает фолликулярное строение, а левая — на две недели позже. К 16-17-й неделям щитовидная железа плода уже полностью дифференцирована. Щитовидные железы плодов 21-32-недельного возраста характеризуются высокой функциональной активностью, которая продолжает нарастать до 33-35 недель.

В паренхиме железы различают три типа клеток: А, В и С. Основную массу клеток паренхимы составляют тироциты (фолликулярные, или А-клетки). Они выстилают стенку фолликулов, в полостях которых располагается коллоид. Каждый фолликул окружен густой сетью капилляров, в просвет которых всасываются секретируемые щитовидной железой тироксин и трийодтиронин.

В неизмененной щитовидной железе фолликулы равномерно распределены по всей паренхиме. При низкой функциональной активности железы тироциты, как правило, плоские, при высокой — цилиндрические (высота клеток пропорциональна степени активности осуществляемых в них процессов). Коллоид, заполняющий просветы фолликулов, представляет собой гомогенную вязкую жидкость. Основную массу коллоида составляет тиреоглобулин, секретируемый тироцитами в просвет фолликула.

В-клетки (клетки Ашкенази — Гюртля) крупнее тироцитов, имеют эозинофильную цитоплазму и округлое центрально расположенное ядро. В цитоплазме этих клеток обнаружены биогенные амины, в том числе серотонин. Впервые В-клетки появляются в возрасте 14-16 лет. В большом количестве они встречаются у людей в возрасте 50-60 лет.

Парафолликулярные, или С-клетки (в русской транскрипции К-клетки), отличаются от тироцитов отсутствием способности поглощать йод. Они обеспечивают синтез кальцитонина — гормона, участвующего в регуляции обмена кальция в организме. С-клетки крупнее тироцитов, в составе фолликулов расположены, как правило, одиночно. Их морфология характерна для клеток, синтезирующих белок на экспорт (присутствуют шероховатая эндоплазматическая сеть, комплекс Гольджи, секреторные гранулы, митохондрии). На гистологических препаратах цитоплазма С-клеток выглядит светлее цитоплазмы тироцитов, отсюда их название — светлые клетки.

Если на тканевом уровне основной структурно-функциональной единицей щитовидной железы являются фолликулы, окруженные базальными мембранами, то одной из предполагаемых органных единиц щитовидной железы могут быть микродольки, в состав которых входят фолликулы, С-клетки, гемокапилляры, тканевые базофилы. В состав микродольки входит 4-6 фолликулов, окруженных оболочкой из фибробластов.

К моменту рождения щитовидная железа функционально активна и структурно вполне дифференцирована. У новорожденных фолликулы мелкие (диаметром 60-70 мкм), по мере развития детского организма их размер увеличивается и достигает у взрослых 250 мкм. В первые две недели после рождения фолликулы интенсивно развиваются, к 6 месяцам они хорошо развиты во всей железе, а к году достигают диаметра 100 мкм. В период полового созревания отмечается усиление роста паренхимы и стромы железы, повышение ее функциональной активности, проявляющееся увеличением высоты тироцитов, возрастанием в них активности ферментов.

У взрослого человека щитовидная железа прилежит к гортани и верхней части трахеи таким образом, что перешеек располагается на уровне II-IV трахеальных полуколец.

Масса и размеры щитовидной железы в течение жизни изменяются. У здорового новорожденного масса железы варьирует от 1,5 до 2 г. К концу первого года жизни масса удваивается и медленно нарастает к периоду полового созревания до 10-14 г. Нарастание массы особенно заметно в возрасте 5-7 лет. Масса щитовидной железы в возрасте 20-60 лет колеблется от 17 до 40 г.

Щитовидная железа имеет исключительно обильное кровоснабжение по сравнению с другими органами. Объемная скорость кровотока в щитовидной железе составляет около 5 мл/г в минуту.

Щитовидная железа кровоснабжается парными верхними и нижними щитовидными артериями. Иногда в кровоснабжении участвует непарная, самая нижняя артерия (a.thyroidea ima ).

Отток венозной крови от щитовидной железы осуществляется по венам, образующим сплетения в окружности боковых долей и перешейка. Щитовидная железа имеет разветвленную сеть лимфатических сосудов, по которым лимфа опекает в глубокие шейные лимфатические узлы, затем в надключичные и латеральные шейные глубокие лимфатические узлы. Выносящие лимфатические сосуды латеральных шейных глубоких лимфатических узлов образуют на каждой стороне шеи яремный ствол, который впадает слева в грудной проток, а справа — в правый лимфатический проток.

Щитовидная железа иннервируется постганглионарными волокнами симпатической нервной системы из верхнего, среднего (главным образом) и нижнего шейных узлов симпатического ствола. Щитовидные нервы образуют сплетения вокруг сосудов, подходящих к железе. Считают, что эти нервы выполняют вазомоторную функцию. В иннервации щитовидной железы участвует также блуждающий нерв, несущий парасимпатические волокна к железе в составе верхнего и нижнего гортанных нервов. Синтез йодсодержащих гормонов щитовидной железы Т 3 и Т 4 осуществляется фолликулярными А-клетками -тироцитами. Гормоны Т 3 и Т 4 являются йодированными.

Гормоны Т 4 и Т 3 являются йодированными производными аминокислоты L-тирозина. Йод, входящий в их структуру, составляет 59-65% массы молекулы гормона. Потребность йода для нормального синтеза тиреоидных гормонов представлена в табл. 1. Последовательность процессов синтеза упрощенно представляется следующим образом. Йод в форме йодида захватывается из крови с помощью ионного насоса, накапливается в тироцитах, окисляется и включается в фенольное кольцо тирозина в составе тиреоглобулина (органификация йода). Йодирование тиреоглобулина с образованием моно- и дийодтирозинов происходит на границе между тироцитом и коллоидом. Далее осуществляется соединение (конденсация) двух молекул дийодтирозинов с образованием Т 4 или дийодтирозина и монойодтирозина с образованием T 3 . Часть тироксина подвергается в щитовидной железе дейодированию с образованием трийодтиронина.

Таблица 1. Нормы потребления йода (ВОЗ, 2005. по И. Дедов и соавт. 2007)

Йодированный тиреоглобулин вместе с присоединенными к нему Т 4 и Т 3 накапливается и хранится в фолликулах в виде коллоида, выполняя роль депо-тиреоидных гормонов. Высвобождение гормонов происходит в результате пиноцитоза фолликулярного коллоида и последующего гидролиза тиреоглобулина в фаголизосомах. Высвобожденные Т 4 и Т 3 секретируются в кровь.

Базальная суточная секреция щитовидной железой составляет около 80 мкг Т 4 и 4 мкг T 3 При этом тироциты фолликулов щитовидной железы являются единственным источником образования эндогенного Т 4 . В отличие от Т 4 , Т 3 образуется в тироцитах в небольшом количестве, а основное образование этой активной формы гормона осуществляется в клетках всех тканей организма путем дейодирования около 80% Т 4 .

Таким образом, кроме железистого депо тиреоидных гормонов в организме имеется второе — внежелезистое депо тиреоидных гормонов, представленное гормонами, связанными с транспортными белками крови. Роль этих депо заключается в предотвращении быстрого снижения уровня тиреоидных гормонов в организме, которое могло бы произойти при кратковременном снижении их синтеза, например при непродолжительном снижении поступления в организм йода. Связанная форма гормонов в крови предотвращает их быстрое выведение из организма через почки, защищает клетки от неконтролируемого поступления в них гормонов. В клетки поступают свободные гормоны в количествах, соизмеримых с их функциональными потребностями.

Тироксин, поступающий в клетки, подвергается дейодированию под действием ферментов дейодиназ, и при отщеплении одного атома йода из него образуется более активный гормон — трийодтиронин. При этом в зависимости от путей дейодирования из Т 4 может образовываться как активный Т 3 , так и неактивный реверсивный Т 3 (3,3",5"-трийод-L-тиронин — рТ 3). Эти гормоны путем последовательного дейодирования превращаются в метаболиты Т 2 , затем Т 1 и Т 0 , которые конъюгируют с глюкуроновой кислотой или сульфатом в печени и экскретируются с желчью и через почки из организма. Не только Т 3 , но и другие метаболиты тироксина также могут проявлять биологическую активность.

Механизм действия тирсоидных гормонов обусловлен прежде всего их взаимодействием с ядерными рецепторами, которыми являются негистоновые белки, располагающиеся непосредственно в ядре клеток. Существует три основных подтипа рецепторов тирсоидных гормонов: ТРβ-2, ТРβ-1 и ТРа-1. В результате взаимодействия с Т 3 рецептор активируется, комплекс гормон-рецептор вступает во взаимодействие с гормон- чувствительным участком ДНК и регулирует транскрипционную активность генов.

Выявлен ряд негеномных эффектов тирсоидных гормонов в митохондриях, плазматической мембране клеток. В частности, тиреоидные гормоны могут изменять проницаемость мембран митохондрий для протонов водорода и, разобщая процессы дыхания и фосфорилирования, снижают синтез АТФ и повышают образование тепла в организме. Они изменяют проницаемость плазматических мембран для ионов Са 2+ и оказывают влияние на многие внутриклеточные процессы, осуществляемые при участии кальция.

Основные эффекты и роль тиреоидных гормонов

Нормальное функционирование всех без исключения органов и тканей организма возможно при нормальном уровне тиреоидных гормонов, так как они влияют на рост и созревание тканей, энергообмен и обмен белков, липидов, углеводов, нуклеиновых кислот, витаминов и других веществ. Выделяют метаболические и другие физиологические эффекты тиреоидных гормонов.

Метаболические эффекты:

  • активация окислительных процессов и увеличение основного обмена, усиление поглощения кислорода тканями, повышение теплообразования и температуры тела;
  • стимуляция синтеза белка (анаболическое действие) в физиологических концентрациях;
  • усиление окисления жирных кислот и снижение их уровня в крови;
  • гипергликемия за счет активации гликогенолиза в печени.

Физиологические эффекты:

  • обеспечение нормальных процессов роста, развития, дифференцировки клеток, тканей и органов, в том числе ЦНС (миелинизация нервных волокон, дифференцирование нейронов), а также процессов физиологической регенерации тканей;
  • усиление эффектов СНС через повышение чувствительности адренорецепторов к действию Адр и НА;
  • повышение возбудимости ЦНС и активация психических процессов;
  • участие в обеспечении репродуктивной функции (способствуют синтезу ГР, ФСГ, ЛГ и реализации эффектов инсулиноподобного фактора роста — ИФР);
  • участие в формировании адаптивных реакций организма к неблагоприятным воздействиям, в частности, холода;
  • участие в развитии мышечной системы, увеличение силы и скорости мышечных сокращений.

Регуляция образования, секреции и превращений тиреоидных гормонов осуществляется сложными гормональными, нервными и другими механизмами. Их знание позволяет диагностировать причины снижения или повышения секреции тиреоидных гормонов.

Ключевую роль в регуляции секреции тиреоидных гормонов играют гормоны гипоталамо-гипофизарно-тиреоидной оси (рис. 2). Базальная секреция тиреоидных гормонов и ее изменения при различных воздействиях регулируется уровнем ТРГ гипоталамуса и ТТГ гипофиза. ТРГ стимулирует продукцию ТТГ, который оказывает стимулирующее влияние практически на все процессы в щитовидной железе и секрецию Т 4 и Т 3 . В нормальных физиологических условиях образование ТРГ и ТТГ контролируются уровнем свободных Т 4 и Т. в крови на основе механизмов отрицательной обратной связи. При этом секреция ТРГ и ТТГ угнетается высоким уровнем тиреоидных гормонов в крови, а при их низкой концентрации повышается.

Рис. 2. Схематическое изображение регуляции образования и секреции гор монов в оси гипоталамус — гипофиз — щитовидная железа

Важное значение в механизмах регуляции гормонов гипоталамо-гипофизарно-тиреоидной оси имеет состояние чувствительности рецепторов к действию гормонов на различных уровнях оси. Изменения в структуре этих рецепторов или их стимуляция аутоантителами могут быть причинами нарушения образования гормонов щитовидной железы.

Образование гормонов в самой железе зависит от поступления в нее из крови достаточного количества йодида — 1-2 мкг на 1 кг массы тела (см. рис. 2).

При недостаточном поступлении йода в организм в нем развиваются адаптационные процессы, которые направлены на максимально бережное и эффективное использование имеющегося в нем йода. Они заключаются в усилении кровотока через железу, более эффективном захвате йода щитовидной железой из крови, изменении процессов синтеза гормонов и секреции Ту Адаптационные реакции запускаются и регулируются тиротропином, уровень которого при дефиците йода возрастает. Если суточное поступление йода в организм составляет менее 20 мкг в течение продолжительного времени, то длительная стимуляция клеток щитовидной железы ведет к разрастанию ее ткани и развитию зоба.

Саморегуляторные механизмы железы в условиях дефицита йода обеспечивают его больший захват тироцитами при более низком уровне йода в крови и более эффективную реутилизацию. Если в организм доставляется в сутки около 50 мкг йода, то за счет увеличения скорости его поглощения тироцитами из крови (йод пищевого происхождения и реутилизируемый йод из продуктов метаболизма) в щитовидную железу поступает около 100 мкг йода в сутки.

Поступление из желудочно-кишечного тракта 50 мкг йода в сутки является тем порогом, при котором еще сохраняется длительная способность щитовидной железы накапливать его (включая реутилизированный йод) в количествах, когда содержание неорганического йода в железе остается на нижнем пределе нормы (около 10 мг). Ниже этого порогового поступления йода в организм за сутки, эффективность повышенной скорости захвата йода щитовидной железой оказывается недостаточной, поглощение йода и содержание его в железе уменьшаются. В этих случаях развитие нарушений функции щитовидной железы становится более вероятным.

Одновременно с включением адаптационных механизмов щитовидной железы при дефиците йода наблюдаются снижение его экскреции из организма с мочой. В итоге адаптационные экскреторные механизмы обеспечивают выведение из организма йода за сутки в количествах, эквивалентных его более низкому суточному поступлению из желудочно-кишечного тракта.

Поступление в организм подпороговых концентраций йода (менее 50 мкг за сутки) ведет к увеличению секреции ТТГ и его стимулирующего влияния на щитовидную железу. Это сопровождается ускорением йодирования тирозильных остатков тиреоглобулина, увеличением содержания монойодтнрозинов (МИТ) и снижением — дийодтирозинов (ДИТ). Отношение МИТ/ДИТ увеличивается, и, как следствие, уменьшается синтез Т 4 и возрастает синтез Т 3 . Отношение Т 3 /Т 4 возрастает в железе и крови.

При выраженном дефиците йода имеет место снижение в сыворотке уровня Т 4 , повышение уровня ТТГ и нормальное, либо повышенное содержание Т 3 . Механизмы этих изменений точно не выяснены, но скорее всего, это является результатом увеличения скорости образования и секреции Т 3 , увеличения соотношения T 3 T 4 и увеличения превращения Т 4 в Т 3 в периферических тканях.

Увеличение образования Т 3 в условиях йодного дефицита оправдано с точки зрения достижения наибольших конечных метаболических эффектов ТГ при наименьшей их «йодной» емкости. Известно, что влияние на метаболизм Т 3 примерно в 3-8 раз более сильное, чем Т 4 , но так как Т 3 содержит в своей структуре только 3 атома йода (а не 4 как Т 4), то для синтеза одной молекулы Т 3 надо только 75% йодных затрат, по сравнению с синтезом Т 4 .

При очень значительном дефиците йода и понижении функции щитовидной железы на фоне высокого уровня ТТГ, уровни Т 4 и Т 3 снижаются. В сыворотке крови появляется больше тиреоглобулина, уровень которого коррелирует с уровнем ТТГ.

Дефицит йода у детей оказывает более сильное, чем у взрослых влияние на процессы метаболизма в тироцитах щитовидной железы. В йоддефицитных районах проживания нарушения функции щитовидной железы у новорожденных и детей встречаются значительно чаще и более выражены, чем у взрослых.

При поступлении в организм человека небольшого избытка йода усиливается степень органификации йодида, синтез ТГ и их секреция. Отмечается прирост уровня ТТГ, небольшое уменьшение уровня свободного Т 4 в сыворотке при одновременном повышении содержания в ней тиреоглобулина. Более длительное избыточное потребление йода может блокировать синтез ТГ за счет ингибирования активности ферментов, вовлеченных в биосинтетические процессы. Уже к концу первого месяца отмечается увеличение размеров щитовидной железы. При хроническом избыточном поступлении избытка йода в организм может развиться гипотиреоидизм, но если поступление йода в организм нормализовалось, то размеры и функция щитовидной железы могут возвратиться к исходным значениям.

Источниками йода, которые могут быть причиной избыточного его поступления в организм, часто являются йодированная соль, комплексные поливитаминные препараты, содержащие минеральные добавки, пищевые продукты и некоторые йодсодержащие лекарства.

Щитовидная железа располагает внутренним регулирующим механизмом, который позволяет эффективно справляться с избыточным поступлением йода. Хотя поступление йода в организм может колебаться, концентрация ТГ и ТТГ в сыворотке крови может оставаться неизменной.

Считается, что максимальное количество йода, которое при поступлении в организм еще не вызывает изменения функции щитовидной железы, составляет для взрослых около 500 мкг в день, но при этом наблюдается увеличение уровня секреции ТТГ на действие тиротропин-рилизинг гормона.

Поступление йода в количествах 1,5-4,5 мг в день приводит к значительному уменьшению содержания в сыворотке, как общего так и свободного Т 4 , повышению уровня ТТГ (уровень Т 3 остается неизмененным).

Эффект подавления избытком йода функции щитовидной железы имеет место и при тиреотоксикозе, когда путем приема избыточного количества йода (по отношению к естественной суточной потребности) устраняют симптомы тиреотоксикоза и понижают сывороточный уровень ТГ. Однако при продолжительном поступлении в организм избытка йода проявления тиреотоксикоза возвращаются вновь. Полагают, что временное понижение уровня ТГ в крови при избыточном поступлении йода обусловлено прежде всего угнетением секреции гормонов.

Поступление в организм небольших избыточных количеств йода ведет к пропорциональному увеличению его захвата щитовидной железой, до некоторого насыщающего значения поглощаемого йода. При достижении этого значения захват йода железой может уменьшаться несмотря на поступление его в организм в больших количествах. В этих условиях, под влиянием ТТГ гипофиза активность щитовидной железы может изменяться в широких пределах.

Поскольку при поступлении в организм избытка йода уровень ТТГ повышается, то следовало бы ожидать не первоначального подавления, а активации функции щитовидной железы. Однако установлено, что йод ингибирует увеличение активности аденилатциклазы, подавляет синтез тиреопероксидазы, тормозит образование пероксида водорода в ответ на действие ТТГ, хотя связывание ТТГ с рецептором клеточной мембраны тироцитов не нарушается.

Уже отмечалось, что подавление функции щитовидной железы избытком йода носит временный характер и вскоре функция восстанавливается несмотря на продолжающееся поступление избыточных количеств йода в организм. Наступает адаптация или ускользание щитовидной железы из-под влияния йода. Одним из главных механизмов этой адаптации является снижение эффективности захвата и транспорта йода в тироцит. Поскольку полагают, что транспорт йода через базальную мембрану тироцита связан с функцией Na+/K+ АТФ-азы, то можно ожидать, что избыток йода может оказывать влияние на ее свойства.

Несмотря на существование механизмов адаптации щитовидной железы к недостаточному или избыточному поступлению йода для сохранения ее нормальной функции в организме должен поддерживаться йодный баланс. При нормальном уровне йода в почве и воде за сутки в организм человека с растительной пищей и в меньшей степени с водой может поступать до 500 мкг йода в форме йодида или йодата, которые превращаются в йодиды в желудке. Йодиды быстро всасываются из желудочно-кишечного тракта и распределяются во внеклеточной жидкости организма. Концентрация йодида во внеклеточных пространствах остается низкой, так как часть йодида быстро захватывается из внеклеточной жидкости щитовидной железой, а оставшийся — выводится из организма ночками. Скорость захвата йода щитовидной железой обратно пропорциональна скорости его выведения почками. Йод может экскретироваться слюнными и другими железами пищеварительного тракта, но затем снова реабсорбируется из кишечника в кровь. Около 1-2% йода эскретируется потовыми железами, а при усиленном потоотделении доля выделяемого с йотом йода может достигать 10%.

Из 500 мкг йода, всосавшегося из верхних отделов кишечника в кровь, около 115 мкг захватывается щитовидной железой и около 75 мкг йода используется в сутки на синтез ТГ, 40 мкг возвращается обратно во внеклеточную жидкость. Синтезированные Т 4 и Т 3 разрушаются в последующем в печени и других тканях, высвобождающийся при этом йод в количестве 60 мкг попадает в кровь и внеклеточную жидкость, а около 15 мкг йода, конъюгированного в печени с глюкуронидами или сульфатами, выводятся в составе желчи.

В общем объеме кровь — внеклеточная жидкость, составляющая у взрослого человека около 35% массы тела (или около 25 л), в которой растворено около 150 мкг йода. Иодид свободно фильтруется в клубочках и примерно на 70% пассивно реабсорбируется в канальцах. За сутки около 485 мкг йода выводится из организма с мочой и около 15 мкг — с фекалиями. Средняя концентрация йода в плазме крови поддерживается на уровне около 0,3 мкг/л.

При снижении поступления йода в организм уменьшается его количество в жидкостях тела, снижается выведение с мочой, а щитовидная железа может увеличить его поглощение на 80-90%. Щитовидная железа способна запасать йод в форме йодтиронинов и йодированных тирозинов в количествах, близких к 100-дневной потребности организма. За счет этих сберегающих йод механизмов и депонированного йода синтез ТГ в условиях дефицита поступления йода в организм может оставаться ненарушенным на период времени до двух месяцев. Более продолжительная йодная недостаточность в организме ведет к снижению синтеза ТГ несмотря на его максимальный захват железой из крови. Увеличение поступления в организм йода может ускорять синтез ТГ. Однако, если ежедневное потребление йода превысит 2000 мкг, накопление йода в щитовидном железе достигает уровня, когда ингибируются захват йода и биосинтез гормонов. Хроническая йодная интоксикация возникает, когда его ежедневное поступление в организм более чем в 20 раз превышает суточную потребность.

Поступающий в организм йодид выводится из него главным образом с мочой, поэтому его суммарное содержание в объеме суточной мочи является наиболее точным показателем поступления йода и может использоваться для оценки йодного баланса в целостном организме.

Таким образом, достаточное поступление экзогенного йода необходимо для синтеза ТГ в количествах, адекватных потребностям организма. При этом нормальная реализация эффектов ТГ зависит от эффективности их связывания с ядерными рецепторами клеток, в состав которых входит цинк. Следовательно, поступление в организм достаточного количества этого микроэлемента (15 мг/сут) также важно для проявления эффектов ТГ на уровне ядра клетки.

Образование в периферических тканях активных форм ТГ из тироксина происходит под действием дейодиназ, для проявления активности которых необходимо присутствие селена. Установлено, что поступление в организм взрослого человека селена в количествах 55-70 мкг в день является необходимым условием для образования в периферических тканях достаточного количества T v

Нервные механизмы регуляции функции щитовидной железы осуществляются через влияние нейромедиаторов СПС и ПСНС. СНС иннервирует своими постганглионарными волокнами сосуды железы и железистую ткань. Норадреналин повышает уровень цАМФ в тироцитах, усиливает поглощение ими йода, синтез и секрецию тиреоидных гормонов. Волокна ПСНС также подходят к фолликулам и сосудам щитовидной железы. Повышение тонуса ПСНС (или введение ацетилхолина) сопровождается увеличением уровня цГМФ в тироцитах и снижением секреции тиреоидных гормонов.

Под контролем ЦНС находится образование и секреция ТРГ мелкоклеточными нейронами гипоталамуса, а следовательно, секреция ТТГ и гормонов щитовидной железы.

Уровень гормонов щитовидной железы в клетках тканей, их превращение в активные формы и метаболиты регулируется системой дейодиназ — ферментов, активность которых зависит от присутствия в клетках селеноцистеина и поступления в организм селена. Имеется три типа дейодиназ (Д1, Д2, ДЗ), которые по-разному распределены в различных тканях организма и определяют пути превращения тироксина в активный Т 3 , или неактивный рТ 3 и другие метаболиты.

Эндокринная функция парафолликулярных К-клеток щитовидной железы

Эти клетки синтезируют и секретируют гормон кальцитонин.

Кальцитонип (тиреокальцитоиин) — пептид, состоящий из 32 аминокислотных остатков, содержание в крови составляет 5-28 пмоль/л, действует на клетки-мишени, стимулируя T-TMS-мембранные рецепторы и повышая в них уровень цАМФ и ИФЗ. Может синтезироваться в тимусе, легких, ЦНС и других органах. Роль внетиреоидного кальцитонина неизвестна.

Физиологическая роль кальцитонина — регуляция уровня кальция (Са 2+) и фосфатов (РО 3 4 -) в крови. Функция реализуется за счет нескольких механизмов:

  • угнетения функциональной активности остеокластов и подавления резорбции костной ткани. Это снижает выведение ионов Са 2+ и РО 3 4 - из костной ткани в кровь;
  • снижения реабсорбции ионов Са 2+ и РО 3 4 - из первичной мочи в почечных канальцах.

За счет этих эффектов повышение уровня кальцитонина ведет к понижению содержания ионов Са 2 и РО 3 4 - в крови.

Регуляции секреции кальцитонина осуществляется при непосредственном участии Са 2 в крови, концентрация которого в норме составляет 2,25-2,75 ммоль/л (9-11 мг%). Повышение уровня кальция в крови (гипсркальцисмия) вызывает активную секрецию кальцитонина. Понижение уровня кальция ведет к снижению секреции гормона. Стимулируют секрецию кальцитонина катехоламины, глюкагон, гастрин и холецистокинин.

Повышение уровня кальцитонина (в 50-5000 раз выше нормы) наблюдается при одной из форм рака щитовидной железы (медуллярной карциноме), развивающегося из парафоликкулярных клеток. При этом определение в крови высокого уровня кальцитонина является одним из маркеров этого заболевания.

Повышение уровня кальцитонина в крови, как и практически полное отсутствие кальцитонина после удаления щитовидной железы, может не сопровождаться нарушением обмена кальция и состояния костной системы. Эти клинические наблюдения свидетельствуют о том, что физиологическая роль кальцитонина в регуляции уровня кальция остается не до конца понятной.

Важную роль в работе всего организма играют незаменимые тиреоидные гормоны щитовидной железы.

Они являются своего рода топливом, которое обеспечивает полноценную работу всех систем и тканей организма.

При нормальной работе щитовидной железы их работа незаметна, но стоит только нарушиться балансу активных веществ эндокринной системы, то сразу же недостаток выработки тиреогормонов становится ощутимым.

Для чего нужны тиреогормоны щитовидной железы?

Физиологическое действие тиреоидных гормонов щитовидной железы весьма широко.
Оно затрагивает следующие системы организма:

  • сердечную деятельность;
  • органы дыхания;
  • синтез глюкозы, контроль производства гликогена в печени;
  • работа почек и производство гормонов коры надпочечников;
  • температурный баланс в теле человека;
  • формирование нервных волокон, адекватная передача нервных импульсов;
  • распад жира.

Без тиреоидных гормонов не возможен кислородный обмен между клетками организма, а также доставка витаминов и минералов к клеткам организма.

Механизм действия эндокринной системы

На работу щитовидной железы прямое воздействие оказывает работа гипоталамуса и гипофиза.

Механизм регулировки производства тиреогормонов в щитовидке напрямую зависит от гормона передней доли гипофиза — ТТГ, причем, влияние щитовидной железы на гипофиз происходит в двустороннем порядке благодаря нервным импульсам, передающим информацию в двух направлениях.

Система работает следующим образом:

  1. Как только появляется необходимость в усилении выработки тиреотропных гормонов в щитовидке, к гипоталамусу поступает нейронный импульс от железы.
  2. Необходимый для производства ТТГ релизинг-фактор посылается из гипоталамуса в гипофиз.
  3. В клетках передней доли гипофиза синтезируется нужное количество ТТГ.
  4. Поступающий в щитовидку тиреотропин стимулирует выработку Т3 и Т4.

Известно, что в разное время суток и при различных обстоятельствах эта система работает по-разному.

Так, максимальная концентрация ТТГ обнаруживается с вечерние часы, а релизинг-фактор гипоталамуса активен именно в ранние утренние часы после пробуждения человека.

Такой суточный ритм работы эндокринной системы называется циркадным ритмом.

Что такое гормон Т3?

Гормон трийодтиронин Т3 — это основное активное вещество щитовидной железы.

В нем содержится три молекулы йода. Он производится в меньшей концентрации, чем Т4.

В крови Т3 перемещается с помощью специального белка — тиреосвязывающего глобулина.

Как только трийодтиронин приближается к клеткам-мишеням, он высвобождается из связки с ТСГ для проникновения внутрь клеточной оболочки.

Таким образом, в крови можно наблюдать Т3 как в свободном состоянии, так и в связанном.

Чем отличается гормон Т4?

Гормон тироксин Т4 — это своего рода прогормон трийодтиронина. Он содержит в себе 4 молекулы йода.

Его концентрация всегда больше количества Т3 в 3-4 раза, но активность гораздо меньше.

Гормон Т4 является своего рода стратегическим запасом тиреогормонов, так как он легко преобразуется в трийодтиронин путем высвобождения одной молекулы йода, если в этом есть необходимость.

Организм всегда обладает определенным запасом этого гормона на 10 дней вперед.

Как происходит синтез тиреогормонов?

Тиреоидные гормоны щитовидной железы — это единственные активные вещества в организме, которые в своей структуре содержат молекулы чистого йода.

Поэтому для их производства постоянно происходит захват йода.
Синтез тиреоидных гормонов происходит в А-клетках щитовидной железы по следующему принципу:

  1. Внутри фолликулярных клеток образуется коллоидная полость, которая состоит из тиреоглобулина.
  2. Белок тиреоглобулин является основой для создания трийодтиронина и тироксина.
  3. При попадании в полость фолликула тиреотропного гормона гипофиза, начинается процесс создания тиреогормонов внутри полости.
  4. Для этого привлекаются соединения йода.
  5. Для синтеза тиреоидных гормонов требуется также аминокислота тирозина.
  6. Для транспортировки к тканям организма привлекается ТСГ — тиреосвязывающий глобулин.

Гормоны щитовидной железы влияют не только на ткани и клетки организма, но также и на другие железы внутренней секреции.

Велико их значения для синтеза половых гормонов как мужских, так и женских. Благодаря их действию регулируется менструальный цикл у женщин, что влияет на способность к зачатию ребенка и его полноценному вынашиванию.

Гипертиреоз

Повышенный уровень тиреоидных гормонов негативно сказывается на работе всех систем организма.

Щитовидная железа начинает синтезировать повышенное количество Т3 и Т4 по многим причинам.
Такое состояние называется гипертиреоз, оно зависит от следующих факторов:

  • наследственности;
  • генетических изменений в работе эндокринной железы;
  • внешних неблагоприятных факторов;
  • длительного пребывания в стрессовом состоянии;
  • возрастных гормональных изменений в организме человека.

Гипертиреоз может сопровождаться увеличением щитовидной железы.
Но наиболее частыми симптомами данного заболевания являются:

  • повышенная возбудимость, нарушение сна;
  • нарушение сердечного ритма, дыхания;
  • потеря веса при сохранении сильного аппетита;
  • нарушение зрения вплоть до катаракты и глаукомы;
  • поносы, которые могут привести к обезвоживанию организма.

При гипертиреозе увеличивается ритм всех обменных процессов, при этом повышается температура тела и потливость.

Эффект такого состояния опасен для человека, так как все ресурсы расходуются очень быстро и происходит истощение организма. К тому же возникает риск развития сердечно-сосудистых заболеваний, в частности, возникновения инфаркта.

По анализам крови можно определить гипертиреоз, если показатель ТТГ будет низким, тогда как концентрация Т3 и Т4 наоборот высоким.

Гипотиреоз

Противоположное гипертиреозу состояние гипотиреоз характеризуется пониженным уровнем тиреоидных гормонов.

Существенной причиной его развития является недостаток йода в пище человека. Особенно часто такая патология настигает женщин среднего и старшего возраста.

Гипотиреоз может стать причиной следующих недугов:

  • бесплодия;
  • сниженного либидо;
  • почечной недостаточности;
  • остеопороза;
  • инсультов и инфарктов;
  • сбоев в работе печени.

Снижение количества тиреогормонов можно определить по следующим признакам замедления метаболизма:

  • апатии и сонливости;
  • резкому набору веса при отсутствии аппетита;
  • запорам;
  • пониженной температуре тела;
  • снижению сердечных сокращений.

Такое состояние корректируется приемом гормонозаместительных препаратов.

Возможно, что лекарственные средства придется принимать всю жизнь для поддержания нормальной работы железы, но желательно знать и о других способах восстановления щитовидной железы.

Физиологическая роль гормонов коры надпочечников

Гормоны и коркового, и гормоны мозгового слоя надпочечников играют в человеческом организме большую роль. Основные гормоны, которые вырабатываются корой надпочечников – это кортизол, андрогены и альдостерон.

Если рассматривать надпочечники с анатомической точки зрения, то их можно разделить на три зоны – клубочковую, пучковую и сетчатую. В клубочковой зоне синтезируются минералокортикоиды, в пучковой – глюкокортикоиды, а сетчатая зона вырабатывает андрогены – половые гормоны. Мозговая часть устроена более просто – она состоит из нервных и железистых клеток, которые активизируясь синтезируют адреналин и норадреналин. Гормоны коры надпочечников, несмотря на то, что выполняют разные функции, синтезируются из одного и того же соединения – холестерина.

Вот почему, прежде чем абсолютно отказываться от употребления жиров, необходимо подумать о том, из чего же будут синтезироваться гормоны надпочечной зоны.

Если гормоны мозгового слоя продуцируются при активном участии нервной системы, то гормоны коркового вещества регулируются гипофизом. При этом выделяется АКТГ, и чем больше этого вещества содержится в крови, тем быстрее и активнее синтезируются гормоны. Обратная связь тоже имеет место – если уровень гормонов увеличивается, уровень, так называемого контролирующего вещества, снижается.

Гормоны сетчатой зоны

Гормоны сетчатой зоны коры надпочечников в большей степени представлены андростендионом – этот гормон тесно связан с эстрогеном и тестостероном. Физиологически он слабее тестостерона, и является мужским гормоном женского организма. От того в каком количестве он имеется в организме зависит как будут формироваться вторичные половые признаки. Недостаточное или избыточное количество андростендиона в организме женщины может вызвать сбои в организме, что может стать причиной развития некоторых заболеваний эндокринного порядка:

  • бесплодие или сложности с вынашиванием ребенка;
  • наличие у женщины мужских признаков – низкий голос, повышенное оволосение и прочие;
  • проблемы с функциональностью половых органов.

Кроме андростедиона, сетчатый слой надпочечников синтезирует дегидроэпиандростерон. Его роль заключается в продуцировании белковых молекул, с ним очень хорошо знакомы атлеты, поскольку при помощи этого гормона они наращивают мышечную массу.

Пучковая зона надпочечников

В этой зоне синтезируются стероидные гормоны – это кортизол и кортизон. Их действие заключается в следующем:

  • производство глюкозы;
  • расщепление белковых и жировых молекул;
  • снижение аллергических реакций в организме;
  • уменьшение воспалительных процессов;
  • возбуждение нервной системы;
  • влияние на кислотность желудка;
  • удержание в тканях воды;
  • если имеется физиологическая необходимость (скажем, беременность), угнетение работы иммунной системы;
  • регуляция давления в артериях;
  • повышение сопротивляемости и устойчивости к стрессам.

Гормоны клубочковой зоны

В этом отделе надпочечников продуцируется альдестерон, его роль в снижении концентрации калия в почках и в усилении всасывания жидкости и натрия. Таким образом происходит балансировка эти двух минералов в организме. Очень часто у людей со стойко высоким артериальным давлением обнаруживается повышенный уровень альдостерона.

В каком случае может произойти гормональный сбой

Роль гормонов надпочечников для организма человека очень велика, и естественно, нарушение работы надпочечников и их гормонов не только влечет за собой сбои в функционировании всего организма, но и напрямую зависит от процессов, которые в нем происходят.В частности,гормональные нарушения могут развиться при следующих патологиях:

  • инфекционные процессы;
  • туберкулезные заболевания;
  • онкология и метастазы;
  • кровоизлияния или травмы;
  • патологии аутоиммунного характера;
  • заболевания печени;
  • проблемы с почками;
  • врожденные патологии.

Что касается врожденных патологий, то речь идет о гиперплазии коры надпочечников. В этом случае синтез андрогена усиливается, и у девочек с данной патологией развиваются признаки псевдо гермафродитима, а мальчики в половом плане созревают раньше срока. Дети с такими нарушениями имеют недостаток в росте, поскольку дифференциация костной ткани прекращается.

Клиническая картина

Самыми первыми признаками плохой работы гормонов является усталость и повышенная утомляемость, в дальнейшем присоединяются другие симптомы, которые могут сменять друг друга в зависимости от того какая степень нарушения имеет место.

Нарушение функциональности сопровождается следующим:

  • отсутствие адекватной способности справляться со стрессовыми ситуациями, постоянные нервные срывы и депрессивные состояния;
  • чувство страха и тревожности;
  • сбои в сердечном ритме;
  • усиленное потовыделение;
  • нарушение сна;
  • тремор и дрожь;
  • слабость, обмороки;
  • болевые ощущения в поясничной области и головные боли.

Безусловно, хотя бы один из этих признаков может обнаружить у себя каждый человек, и естественно бежать в аптеку за лекарствами в этом случае неразумно. Каждый симптомом, взятый в отдельности, может быть ответной реакцией организма на стрессовую ситуацию, поэтому для уточнения диагноза необходимо проконсультироваться со специалистом, сдать необходимые анализы и только потом принимать решение о медикаментозной терапии.

У женщин сбои в работе надпочечников приводят к:

  • нарушению менструального цикла;
  • проблемам с мочеиспусканием;
  • избыточному весу, так как происходят нарушения в процессах метаболизма.

У мужчин может наблюдаться следующее:

  • жировые отложения в области живота;
  • плохой рост волос;
  • отсутствие полового влечения;
  • высокий тембр голоса.

Диагностические мероприятия

В настоящее время определить сбой в работе надпочечников никакой сложности не представляет. Лабораторные исследования могут определить уровень гормонов при помощи обычного анализа мочи или крови. Как правило, этого вполне достаточно, чтобы поставить правильный диагноз. В некоторых случаях врач может назначить УЗИ, КТ или МРТ интересующего эндокринного органа.

Как правило, исследования чаще всего назначаются лицам, у которых имеется задержка полового развития, привычный выкидыш или бесплодие. Кроме того, врач может исследовать деятельность надпочечников при сбоях в менструальном цикле, мышечной атрофии, остеопорозе, стойком повышении давления, ожирении или усиленной пигментации кожного покрова.

Как влиять на гормональные показатели

К нарушению функциональности надпочечников приводит голодание и стрессовые ситуации. Так как синтез кортикостероидов происходит в определенном ритме, необходимо питаться соблюдая этот ритм. Утром синтез гормонов наиболее высокий, поэтому завтрак должен быть плотным, вечером усиленной выработки гормонов не требуется, поэтому легкий ужин сможет снизить их концентрацию в крови.

Нормализовать продуцирование гормонов помогают активные физические нагрузки. Спортом лучше всего заниматься в первой половине дня, а если вы предпочитаете для спортивных нагрузок вечернее время, то в этом случае полезными будут только легкие нагрузки.

Естественно правильное питание тоже положительно сказывается на работе надпочечников – в рационе должны присутствовать все необходимые витамины и минералы. Если же ситуация запущенная, врач может назначить медикаментозное лечение, в некоторых случаях такая терапия может назначаться пожизненно, поскольку в противном случае могут развиваться тяжелые нарушения.

Принцип медикаментозной терапии основывается на восстановлении гормонального фона, поэтому пациентам выписываются гормональные препараты – синтетические аналоги недостающих гормонов. При избыточном количестве определенных гормонов также назначаются гормональные препараты, которые воздействуют на гипоталамус и гипофиз, они приостанавливают избыточную функциональность железы, и она меньше синтезирует гормонов.

Терапия включает следующее:

  • Если в организме наблюдается недостаток кортизола, выписывают гормональные препараты, а также препараты, которые восполняют натрий и другие минералы.
  • При нехватке альдостерона выписывают аналог синтетического происхождения, а если не хватает андрогена, его заменяют синтетическим производным тестостерона.
  • Чтобы надпочечники начали функционировать правильно, необходимо перестать принимать оральные контрацептивы.
  • Замерять уровень артериального давления необходимо постоянно, поскольку дисбаланс гормонов приводит к тому, что водно-солевой баланс нарушается, что собственно и приводит к повышению давления в артериях.

Самыми известными и распространенными медикаментами, которые используются в лечении гормонального дисбаланса надпочечников являются следующие:

  • Гидрокортизон;
  • Преднизолон;
  • Кортизон;
  • Дезоксикортон.

Самостоятельный прием медикаментозных средств недопустим, все препараты должен выписывать только грамотный специалист.

Профилактика заболеваний надпочечников

Зная, что такое кора надпочечников, какие гормоны в ней синтезируются и какие заболевания может вызвать дисбаланс гормонов, необходимо задуматься о профилактике болезней этих эндокринных органов. Первым делом необходимо предотвратить заболевания и нарушения, которые могут спровоцировать сбой в работе надпочечников. В большинстве случаев нарушение функциональности этих органов происходит по причине затяжных стрессов и депрессивных состояний, поэтому все врачи рекомендуют избегать негативных ситуаций, которые могут привести к стрессам.

Правильное питание и активный образ жизни – это тоже очень важная составляющая здоровья надпочечников.

Тиреоидные гормоны тироксин (Т4) и трийодтироксин (Т3) влияют на интенсивность обмена веществ и энергии, они усиливают поглощение кислорода клетками и тканями, стимулируют распад гликогена, тормозят его синтез, влияют на жировой обмен. Особенно важно влияние тиреоидных гормонов на сердечно-сосудистую систему. Увеличивая чувствительность рецепторов сердечно-сосудистой системы к катехоламинам, тиреоидные гормоны учащают ритм сердечных сокращений и способствуют повышению артериального давления. Тиреоидные гормоны необходимы для нормального развития и функционирования центральной нервной системы, их дефицит приводит к развитию кретинизма.
Тиреотоксин стимулирует обмен веществ, ускоряет биохимические реакции, оказывает влияние на все органы, поддерживает нормальный тонус нервной системы. Гормон тироксин оказывает влияние на активность адреналина и холинэстеразы, на водный обмен, регулируя реоабсорбцию жидкости в почечных канальцах, влияет на клеточную проницаемость, белковый, жировой и углеводный обмен, на уровень окислительных процессов в организме, на основной обмен, на гемопоэз.
Тиреоидные гормоны оказывают большое влияние на гормональное развитие ребенка.
При недостатке их при врожденном тиреотоксикозе является низкий рост и замедленное костное созревание. Как правило, костный возраст более медленный, чем рост организма.
Основной эффект тиреоидных гормонов осуществляется на уровне хряща, кроме этого, тироксин играет роль и в минерализации костей.

Тиреоидные гормоны плода образуются из щитовидной железы. Материнские тиреоидные гормоны не проходят через плаценту. В связи с этим развитие мозга и формирование костей у детей с врожденным атиреозом или гипотиреозом замедлены уже при рождении. Однако дети с атиреоидизмом рождаются с нормальной массой и ростом, это дает основание полагать, что во время внутриутробного роста тиреоидные гормоны не оказывают влияния на нарастание массы и роста тела.
Тиреоидные гормоны детерминируют постнатальный рост и в особенности созревание костей. Физиологические дозы вызывают эффект роста только при атиреоидизме и гицотиреоидизме, но не у здоровых детей. Для этого эффекта необходим и нормальный уровень гормона роста. При дефиците гормона роста тиреоидные гормоны могут корригировать только замедленное созревание кости, но не замедленный рост.
Регулирует секрецию гормонов щитовидной железы тирео-тропный гормон, который синтезируется в передней доле гипофиза, его синтез контролируется тиреолиберином (гормоном гипоталамуса). Выпадение функции гипоталамуса и гипофиза ведет к гипотиреозу и наоборот, чрезмерная активность тиреотропнопродуцирующих клеток гипофиза или наличие тиреотропнс секретирующих образований гипофиза приводит к гиперфункции щитовидной железы и развитию тиреотоксикоза.

Тиреотропный гормон гипофиза поступает в щитовидную железу с током крови, связывается специальными рецепторами, расположенными на поверхности фолликулярных клеток, и стимулирует их биосинтетическую и секреторную деятельность. Большая часть тироксина, поступающего в кровь, образует комплекс с определенными белками сыворотки крови, но биологической активностью обладает только свободный гормон.
Трийодтиронин связывается белками сыворотки крови в меньшей степени, чем тироксин. Функциональная активность щитовидной железы постоянна, она снижается только в старческом возрасте. В препубертатном и пубертатном периодах активность щитовидной железы у девочек выше, чем у мальчиков.
При избыточной продукции гормонов щитовидной железы могут возникнуть аутоиммунные процессы, при которых биосинтез гормонов щитовидной железы и их избыточная продукция контролируется не тиреотропиногормоном, а тиреоидстимулирующими антителами. Последние являются компонентами иммуноглобулинов сыворотки крови. Это приводит к нарушению иммунологического равновесия в организме, дефициту Т-лимфоцитов, Т-супрессоров, осуществляющих в организме функцию «иммунологического надзора». Вследствие этого выживают «запрещенные» клоны Т-лимфоцитов, появившихся в результате мутации лимфоидных клеток или их предшественников Т-химеров, последние, сенсибизированные к антигенам, взаимодействуют с В-лимфоцитами, которые превращаются в плазматические клетки, способные синтезировать тиреоидстимулирующие антитела.

Наиболее изучены длительно действующий стимулятор щитовидной железы LATS и LATS-протектор, которые конкурируют с тиреотропином за связь с рецепторами к нему и оказывают действие, аналогичное действию тиреотропина. Определяются также антитела, которые осуществляют изолированное трофическое влияние на щитовидную железу. Чрезмерная секреция тиреоидных гормонов усиливает катаболитические процессы в организме: распад белков, гликогенолиз, липолиз, распад и превращение холестерина.
В результате диссимиляции процессов, активируемых щитовидной железой, усиливается высвобождение калия и воды из тканей и их выведение из организма, появляется витаминная недостаточность, снижается масса тела. Избыток тиреоидных гормонов оказывает на центральную нервную систему вначале возбуждающее влияние, а впоследствии приводит к ослаблению как тормозных, так и возбудительных процессов и возникновению психической неустойчивости. Он способствует нарушению утилизации-энергии, снижению пластического и энергетического обеспечения миокарда, повышению чувствительности к симпатическим влияниям катехоламинов.
Недостаточная продукция гормонов гипофиза и гипоталамуса тиреотропина и тиреолиберина приводит к снижению уровня гормонов щитовидной железы в организме.

Дефицит гормонов обусловливает нарушение всех видов обмена веществ:
1) белкового - нарушается синтез и распад белка;
2) обмена гликозаминогликанов (миксидема);
3) углеводного - замедление всасывания глюкозы;
4) липидного - повышение содержания холестерина;
5) водно-солевого - задержка воды в тканях.
Угнетение окислительных процессов проявляется снижением основного обмена.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло