Транспорт со2 кровью. Транспорт газов кровью

В венозной крови содержится около 580 мл/л СО 2 . Транспорт обеспечивается в таких формах, как: 1) растворенный СО 2 в плазме крови (5-10%); 2) в виде гидрокарбонатов (80-90%); 3) карбаминовые соединения эритроцитов (5-15%).

Небольшая часть СО 2 транспортируется в легкие в растворенном виде (0,3 мл/100 мл крови). Растворенный в крови СО 2 реагирует с водой:

CO 2 + Н 2 О = H 2 CO 3

В плазме крови эта реакция протекает медленно и не имеет особого значения. Но в эритроцитах имеется цинк-содержащий фермент - карбоангидраза - который смещает равновесие реакции вправо (в сторону образования угольной кислоты). Образование H 2 CO 3 происходит в 1000 раз быстрее, чем в плазме, кроме того, около 99,9% H 2 CO 3 диссоциирует с образованием HCO 3 - - и иона водорода (H +):

CO 2 + Н 2 О =H 2 CO 3 = HCO - 3 + H +

Образующиеся протоны (H +) нейтрализуются гемоглобиновым буфером (H + + Hb = HHb). Образующийся HCO 3 - выходит из эритроцитов в плазму, для

поддержания электронейтральности в эритроциты поступают ионы Cl - .

В эритроците CO 2 может также связываться гемоглобином с образованием HbCO 2 . Как и в первом случае, образующийся при этом H + связывается гемоглобиновым буфером.

Как сатурация гемоглобина кислородом коррелирует с PО 2 , так и общее

Рис. 17. Кривая диссоциации двуокиси углерода

Даже при выраженных нарушениях Va/Q (то есть при выраженной легочной патологии) Paco 2 , как правило, остается в пределах нормальных значений. Это является следствием того, что кривая диссоциации CO 2 (рис. 17) нарастает монотонно. Артериовенозная разница по Pco 2 в покое обычно составляет 5 мм рт. ст.и редко превышает 10 мм рт. ст. При данном значении Pco 2 деоксигенированная кровь содержит большее количество CO 2 , чем оксигенированная (эффект Холдена). В отличие от кривой насыщения Hb кислородом кривая содержания CO 2 не имеет плато и в клинически значимом диапазоне представляет собой прямую линию.

В венозной крови, притекающей к капиллярам легких, напря­жение СО 2 составляет в среднем 46 мм рт.ст., а в альвеолярном воздухе парциальное давление СО 2 равно в среднем 40 мм рт.ст., что обеспечивает диффузию СО 2 из плазмы крови в альвеолы легких по концентрационному градиенту.

Эндотелий капилляров проницаем только для молекулярного СО 2 как полярной молекулы. Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО 2 . Кроме того, в альвеолы легких диффундирует СО 2 , который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах. Молекулярный СО 2 проходит аэрогематический барьер, а затем поступает в альвеолы. В норме через 1 с происходит выравнивание концентраций СО 2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО 2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО 2 , так же как и О 2 , ограничивается скоростью перфузии капилляров легких.


Контрольные вопросы

1. Какие транспортные формы углекислого газа существуют?

2. Какая форма транспорта углекислого газа основная?

3. Почему кривая диссоциации двуокиси углерода в виде прямой линии?

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-90%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

Хотя СO2 растворяется в жидкости гораздо лучше, чем O2 , только 3−6 % общего количества продуцируемого тканями СO2 переносится плазмой крови в физически растворенном состоянии. Остальная часть вступает в химические связи.

Поступая в тканевые капилляры, СО2 гидратируется, образуя нестойкую угольную кислоту:

Направление этой обратимой реакции зависит от РCО2 в среде. Она резко ускоряется под действием фермента карбоангидразы, находящегося в эритроцитах, куда СO2 быстро диффундирует из плазмы.

Около4/5 углекислого газа транспортируется в виде гидрокарбоната НСО-3. Связыванию СO2 способствует уменьшение кислотных свойств (протонного сродства) гемоглобина в момент отдачи им кислорода - дезоксигенирование (эффект Холдена). При этом гемоглобин высвобождает связанный с ним ион калия, с которым в свою очередь, реагирует угольная кислота:

Часть ионов НСО-3 диффундирует в плазму, связывая там ионы натрия, в эритроцит же поступают в порядке сохранения ионного равновесия ионы хлора. Кроме того, также за счет уменьшения протонного сродства дезоксигенированный гемоглобин легче образует карбаминовые соединения, связывая при этом еще около 15 % переносимого кровью СO2 .

В легочных капиллярах происходит высвобождение части СO2 , который диффундирует в альвеолярный газ. Этому способствует более низкое, чем в плазме, альвеолярное РCO2 также усиление кислотных свойств гемоглобина при его оксигенации. В ходе дегидратации угольной кислоты в эритроцитах (эта реакция тоже резко ускоряется карбоангидразой) оксигемоглобин вытесняет ионы калия из гидрокарбоната. Ионы НСО-3 поступают из плазмы в эритроцит, а ионы Cl- - в обратном направлении. Таким путем каждые 100 мл крови отдают в легких 4−5 мл СО2 - то же количество, какое кровь получает в тканях (артериовенозная разница по СO2).



Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей.

Регуляция дыхания. Дыхательный центр.

Бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные α и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Эти их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, в также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гас-пинг – длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста – апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали, что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов центральной нервной системы в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантрые рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

  • 3.2. Нервно-мышечный синапс: строение, механизм проведения возбуждения, особенности проведения возбуждения в синапсе по сравнению с нервным волокном.
  • Лекция 4. Физиология мышечного сокращения
  • Лекция 5. Общая физиология центральной нервной системы
  • 5.3. Классификация синапсов цнс, медиаторы синапсов цнс и их функциональное значение. Свойства синапсов цнс.
  • Лекция 6. Структура цнс. Свойства нервных центров.
  • 6. 1. Понятие о нервном центре. Свойства нервных центров.
  • 6.2. Методы исследования функций цнс.
  • Лекция 7. Механизмы и способы торможения в цнс. Координационная деятельность цнс.
  • 7.1. Процессы торможения в цнс: механизм постсинаптического и пресинаптического торможений, посттетаническое и пессимальное торможение. Значение торможения.
  • 7.2. Координационная деятельность цнс: понятие о координации, принципы координационной деятельности цнс.
  • Лекция 8. Физиология спинного мозга и мозгового ствола.
  • 8.1. Роль спинного мозга в регуляции функций организма: вегетативные и соматические центры и их значение.
  • 8.2. Продолговатый мозг и мост: центры и соответствующие им рефлексы, их отличия от рефлексов спинного мозга.
  • 8.3 Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы.
  • Лекция 9. Физиология ретикулярной формации, промежуточного и заднего мозга.
  • 9.2. Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
  • 9.3. Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.
  • Лекция 10. Физиология переднего мозга. Физиология вегетативной нервной системы.
  • 10.1. Мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.
  • 10.2. Лимбическая система: структуры и функции.
  • 10.3. Функции новой коры, функциональное значение соматосенсорных и моторных зон коры больших полушарий.
  • Лекция 11. Физиология эндокринной системы и нейроэндокринные отношения.
  • 11. 1. Эндокринная система и гормоны. Функциональное значение гормонов.
  • 11.2. Общие принципы регуляции функций эндокринных желез. Гипоталамо-гипофизарная система. Функции аденогипофиза. Функции нейрогипофиза
  • 11.4. Щитовидная железа: регуляция образования и транспорт иодированных гормонов, роль иодированных гормонов и кальцитонина. Функции паращитовидных желез.
  • Лекция 12. Физиология системы крови. Физико-химические свойства крови.
  • 12. 1. Кровь как составная часть внутренней среды организма. Понятие о системе крови (г.Ф. Ланг). Функции крови. Количество крови в организме и методы его определения.
  • 12. 2. Состав крови. Гематокрит. Состав плазмы. Основные физико-химические константы крови.
  • Лекция 13. Физиология гемостаза.
  • 13.1. Свертывание крови: понятие, ферментативная теория (Шмидт, Моравиц), факторы свертывания, роль тромбоцитов.
  • Лекция 14. Антигенные свойства крови. Основы трансфузиологии
  • 14.2. Группы крови систем Rh: открытие, антигенный состав, значение для клиники. Краткая характеристика других систем антигенов (m, n, s, p и др.)
  • Лекция 15. Клеточные элементы крови
  • 15.2. Гемоглобин: свойства, соединения гемоглобина, количество Нв, методы его определения. Цветовой показатель. Метаболизм гемоглобина.
  • 15.3. Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.
  • 15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
  • Лекция 16. Физиология сердечной деятельности
  • Лекция 17. Внешние проявления работы сердца, способы их регистрации. Функциональные показатели деятельности ердца.
  • Лекция 18. Регуляция работы сердца.
  • 18.2. Интракардиальная регуляция деятельности сердца: миогенная регуляция, внутрисердечная нервная система.
  • 18.3. Рефлекторные механизмы регуляции сердечной деятельности. Корковые влияния. Гуморальные механизмы регуляции работы сердца.
  • Лекция 19. Законы движения крови по сосудам. Основные гемодинамические показатели
  • Лекция 20. Особенности движения крови в разных отделах сосудистого русла.
  • 20.3. Давление крови в артериях: виды, показатели, факторы, их определяющие, кривая артериального давления.
  • 21.1. Нервная регуляция сосудистого тонуса.
  • 21.2. Базальный тонус и его компоненты, доля участия его в общем тонусе сосудов. Гуморальная регуляция сосудистого тонуса. Ренин-антиотезиновая система. Локальные регуляторные механизмы
  • 21. 4. Особенности регионального кровообращения: коронарного, легочного, мозгового, печеночного, почечного, кожного.
  • 22.1. Дыхание: этапы дыхательного процесса. Понятие о внешнем дыхании. Функциональное значение легкого, воздухоносных путей и грудной клетки в процессе дыхания. Негазообменные функции легких.
  • 22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. Понятие об отрицательном давлении, его величина, происхождение, значение.
  • 22. 3. Вентиляция легких: легочные объемы и емкости
  • Лекция 23. Механизмы газообмена
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.
  • Лекция 24. Регуляция дыхания
  • 24. 1. Структурно-функциональная характеристика дыхательного центра. Роль гуморальных факторов в регуляциИ интенсивности дыхания. Рефлекторная саморегуляция вдоха и выдоха.
  • 24. 2 Особенности дыхания и его регуляция при мышечной работе, при пониженном и повышенном атмосферном давлении. Гипоксия и ее виды. Искусственное дыхание. Гипербарическая оксигенация.
  • 24.3. Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.
  • Лекция 25. Общая характеристика пищеварительной системы. Пищеварение в полости рта.
  • Лекция 26. Пищеварение в желудке и 12-п. Кишке.
  • 26.3. Печень: ее роль в пищеварении (состав желчи, ее значение, регуляция желчеобразования и желчевыделения), не пищеварительные функции печени.
  • Лекция 27. Пищеварение в тонкой и толстой кишке. Всасывание. Голод и насыщение.
  • 27. 1. Пищеварение в тонкой кишке: количество, состав пищеварительного сока тонкой кишки, регуляция ее секреции, полостное и мембранное пищеварение. Виды сокращений тонкой кишки и их регуляция.
  • 27.3. Всасывание в желудочно-кишечном тракте: интенсивность всасывания в различных отделах, механизмы всасывания и опыты, их доказывающие; регуляция всасывания.
  • 27.4. Физиологические основы голода и насыщения. Периодическая деятельность желудочно-кишечного тракта. Механизмы активного выбора пищи и биологическое значение этого факта.
  • Лекция 28. Метаболические основы физиологических функций.
  • 28. 1. Значение Обмена веществ. Обмен белков, жиров и углеводов. Витамины и их роль в организме.
  • 28. 2. Особенности и регуляция водно-солевого обмена.
  • 28. 4. Принципы исследования прихода и расхода энергии организмом.
  • 28.5. Питание: физиологические нормы питания, основные требования к составлению пищевого рациона и режиму приема пищи,
  • Лекция 29. Терморегуляция
  • 29. 1. Терморегуляция и ее виды, физические и физиологические механизмы теплопродукции и теплоотдачи.
  • 29. 2. Механизмы Терморегуляции. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Понятие о гипотермии и гипертермии.
  • Лекция 31. Гомеостатические функции почек.
  • Лекция 32. Сенсорные системы. Физиология анализаторов
  • 32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.
  • 32.2. Анализаторы (и.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.
  • 32. 3. Кодирование информации в анализаторах.
  • Лекция 33. Физиологические особенности отдельных анализаторных систем.
  • 33. 1. Зрительный анализатор
  • 33. 2. Слуховой анализатор. Механизм восприятия звука.
  • 33. 3. Вестибулярный анализатор.
  • 33.4. Кожно-кинестетический анализатор.
  • 33.5. Обонятельный и вкусовой анализаторы.
  • 33. 6. Внутренний (висцеральный) анализатор.
  • Лекция 34. Физиология высшей нервной деятельности.
  • 34. 1. Понятие о высшей нервной деятельности. Классификация условных рефлексов и их характеристика. Методы изучения внд.
  • 34. 2. Механизм образования условных рефлексов. “Замыкание” временной связи (и.П. Павлов, э.А. Асратян, п.К. Анохин).
  • 34. 4. Аналитико-синтетическая деятельность коры больших полушарий.
  • 34.5. Индивидуальные особенности высшей нервной деятельности. Типы внд.
  • Лекция 35. Особености внд человека. Физиологические механизмы сна.
  • 35.1. Особенности внд человека. Понятие о первой и второй сигнальной системах человека.
  • 35. 2. Физиологические МеХанизмы сна.
  • Лекция 36. Физиологические механизмы памяти.
  • 36.1. Физиологические механизмы усвоения и сохранения информации. Виды и механизмы памяти.
  • Лекция 37. Эмоции и мотивации. Физиологические механизмы целенаправленного поведения
  • 37.1. Эмоции: причины возникновения, значение. Информационная теория эмоций п.С. Симонова и теория эмоциональных состояний г.И. Косицкого.
  • 37.2. Функциональная система целенаправленного поведения (п.К. Анохин), ее центральные механизмы. Мотивации и их виды.
  • Лекция 38. Защитные функции организма. Ноцицептивная система.
  • 38.1. Ноцицепция: биологическое значение боли, ноцицептивная и антиноцицептивная системы.
  • Лекция 39. Физиологические механизмы трудовой деятельности и приспособления организма к изменившимся условиям.
  • 39.1. Физиологические основы трудовой деятельности. Особенности физического и умственного труда. Особенности труда в условиях современного производства, утомление и активный отдых.
  • 39. 2. Aдаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к климатическим факторам обитания.
  • 39.3. Биологические ритмы и их значение в деятельности человека и его адаптации к экстремальным условиям.
  • 39. 4. Стресс. Механизм развития общего адаптационного синдрома.
  • Лекция 40. Физиология репродукции. Плодо-материнские отношения и функциональная система мать-плод (фсмп).
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.

    Связывание кислорода гемоглобином . Транспорт О2 из альвеол в кровь и транспорт СО2 из крови в альвеолы осуществляется с помощью диффузии. Транспорт газов осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О 2 . Подсчитано, что физически растворенный О 2 может поддерживать нормальное потребление О 2 в организме (250 мл/мин), если минутный объем кровообращения составит примерно 83 л/мин в покое. Наиболее оптимальным является механизм транспорта О 2 в химически связанном виде.

    В количественном отношении формы транспортируемого газа значительно различаются, так как количество растворенного физически газа невелико. Однако следует отметить, что хотя количество физически растворенных О2 и СО 2 невелико, эта часть газов крови играет огромную роль в жизнедеятельности организма. Дело в том, что прежде чем связаться с определенными веществами крови газы должны быть доставлены к ним в физически растворенном состоянии.

    Гемоглобин (Нb) способен избирательно связывать О 2 и образовывать оксигемоглобин (НbО 2) в зоне высокой концентрации О 2 в легких и освобождать молекулярный О 2 в области пониженного содержания О 2 в тканях. При этом свойства гемоглобина не изменяются и он может выполнять свою функцию на протяжении длительного времени.

    Гемоглобин переносит О 2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О 2 НbО 2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном РО 2 в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 Нb + О2) в зависимости от метаболических потребностей клеток организма.

    Большая часть О 2 переноситcя в виде химического соединения с гемоглобином –HbO 2 . Это видно из того, что в цельной артериальной крови в покое находится 20 мл О 2 на 100 мл крови. Поскольку молекулаHbсостоит из четырех субъединиц, а каждая из них связывает по одной молекуле О 2 , то одна молекула кислорода связывает 4 моля О 2

    Следовательно, при молекулярной массе гемоглобина в 64 500 1 г гемоглобина связывает 1,39 мл О 2 . Фактически эта величина несколько меньше, так как часть молекул гемоглобина находится в неактивном виде и составляет 1,34–1,36 мл.

    Кривая диссоциации оксигемоглобина. Реакция, отражающая присоединение кислорода к гемоглобину подчиняется закону действующих масс. Это означает, что соотношение между HbиHbO 2 зависит от содержания физически растворенного кислорода. Отношение количества оксигемоглобина к общему количеству гемоглобина (в %) в крови называется насыщением гемоглобина кислородом

    Если гемоглобин полностью дезоксигенирован, то насыщение составляет 0%, если гемоглобин полностью насыщен кислородом, то насыщение составляет 100%.

    Графическая зависимость насыщения гемоглобина кислородом от напряжения О2 называется кривой диссоциации оксигемоглобина. Эта кривая имеет S-образную форму (Рис. 43). Такая форма имеет большой физиологический смысл. В области высокого напряжения кислорода, составляющего в артериальной крови около 95 мм рт. ст. (молодые люди в покое), насыщение составляет 97%.

    Рис. 42. Кривая диссоциации гемоглобина. Справа вверху - влияние температуры на кривую диссоциации

    В этой области максимального насыщения степень насыщения мало зависит от напряжения кислорода. Поэтому на­сыщенность гемоглобина кислородом сохраняется на высоком уровне даже при существенных сдвигах в напряжении кислорода. Крутой наклон кривой диссоциации означает, что в области средних и малых концентраций кислорода, даже небольшие изменения в содержании кислорода приводят к существенной отдаче его. Это облегчает отдачу кислорода тканям. В состоянии покоя в области венозного конца капилляра напряжение О 2 примерно равно 40 мм рт. ст., что соответствует 73% насыщению. Если в результате потребления кислорода его напряжение снизится всего на 5 мм рт. ст., то насыщение гемоглобина кислородом уменьшится на 7%. Высвобождающийся О 2 может быть сразу же использован для процессов окисления.

    Метаболические факторы являются основными регуляторами связывания О 2 с гемоглобином в капиллярах легких, когда уровень O 2 , рН и СО 2 в крови повышает сродство гемоглобина к О 2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О 2 и способствуют переходу оксигемоглобина в его восстановленную форму - дезоксигемоглобин. В результате О 2 по концентрацион­ному градиенту поступает из крови тканевых капилляров в ткани организма.

    Артерио-венозная разница по О 2 . Так как содержание кислорода в артериальной крови составляет 0,2 л на 1 л крови, а в венозной – 0,15 л, то артерио-венозная разница достигает 0,05 л О 2 на 1 л крови. Следовательно, в норме при прохождении крови через капилляры используется лишь 25% кислорода. Разумеется, это средняя величина. Она неодинакова в разных органах и тканях и зависит от функционального состояния организма, т.е. интенсивности метаболизма.

    Факторы, влияющие на кривую диссоциации оксигемоглобина. Кривая диссоциации обусловлена, главным образом, химическими свойствами гемоглобина. В то же время существует ряд факторов, влияющих на наклон этой кривой, но не изменяющих при этом ее S-образный характер. К таким факторам относят температуру, рН, напряжение СО 2 и некоторые другие.

    При понижении температуры наклон кривой возрастает, при повышении температуры наклон кривой уменьшается. У теплокровных этот эффект проявляется только при гипотермии и при лихорадочной реакции.

    При закислении среды сродство гемоглобина к О 2 уменьшается, так как кривая уплощается. Этот эффект носит название эффекта Бора. Величина кислотности крови тесно связана с содержанием СО 2 . Поэтому понятно, что при повышении напряжения СО 2 рН снижается и это вызывает уплощение кривой, т.е. снижение сродства гемоглобина к кислороду. Эффект Бора имеет биологический смысл, так как способствует отдаче кислорода там, где выше интенсивность метаболизма, например в работающих мышцах.

    Под кислородной емкостью крови понимают количество О 2 , которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль/л кислородная емкость крови составляет 0,19 мл О 2 в 1 мл крови (температура 0 o C и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемо­глобина, 1 г которого связывает 1,36-1,34 мл О 2 . Кровь человека содержит около 700-800 г гемоглобина и может связать таким образом почти 1 л О 2 .

    Физически растворенного в 1 мл плазмы крови О 2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О 2 в плазме крови равна 0,225 мл/л/кПа-1. С другой стороны, известно, что при напряжении О 2 в артериальной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).

    Обмен О 2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О 2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О 2 в артериальной крови, так и коэффициентом утилизации О 2 , который составляет в среднем для организма 30- 40%. Коэффициентом утилизации кислорода называется количество О 2 , отданного при прохождении крови через тканевые капил­ляры, отнесенное к кислородной емкости крови.

    Перенос углекислого газа. Поступление СО 2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО 2 , растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-90%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать. Для СО 2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О 2 , и составляет в среднем 0,231 ммоль/л-1/кПа-1 поэтому СО 2 диффундирует быстрее, чем O 2 . Это положение является верным только для диффузии молекулярного СО 2 . Большая часть СО 2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО 2 , затрачиваемое на диссоциацию этих соединений.

    Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы (О - С - О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молекулярный СО 2 . Кроме того, в альвеолы легких диффундирует СО 2 , который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.

    Углекислый газ, также как и кислород транспортируется в форме физически растворенного и химически связанного газа. Физически растворено 10% газа от общего количества, 10% образует карбаминовую связь с гемоглобином, 35% транспортируется в виде бикарбонатов в эритроците, 45% – в виде бикарбонатов в плазме.

    Диффузия СО 2 из тканей в кровь. Обмен СО 2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО 3 - через мембрану эритроцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов (рис. 43).

    Рис. 43. Участие эритроцитов в обмене О 2 и СО 2 в тканях и в легких

    Химические реакции связывания СО 2 сложнее, чем связывание О 2 . Это вызвано тем, что механизмы, ответственные за транспорт СО 2 , должны одновременно обеспечивать поддержание кислотно-основного равновесия и тем самым гомеостаза организма в целом.

    Углекислый газ, поступивший по градиенту напряжения из тканей в капилляры, в небольшом количестве остается в форме физического растворенного газа, остальная часть химически связывается. Прежде всего, гидратируется СО 2:

    СО 2 + Н 2 О → Н 2 СО 3 .

    В плазме эта реакция протекает медленно, а в эритроцитах в 10 000 раз быстрее благодаря присутствии в них фермента карбоангидразы. Затем угольная кислота, будучи слабой и нестойкой диссоциирует;

    Н 2 СО 3 → НСО 3 – + Н + .

    Ионы НСО 3 – выходят в плазму, а вместо них в эритроцит поступают анионы хлора – так сохраняется электрический заряд клетки. По мере поступления СО 2 образуются в эритроцитах и Н + . Однако это не приводит к сдвигу рН, так как оксигемоглобин более слабая кислота, чем угольная и может связать большее количество ионов Н + .

    В ходе газообмена СО 2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты начнут поступать из плазмы дополнительно ионы С1-. Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.

    Углекислый газ связывается также непосредственно аминогруппами гемоглобина, образуя карбаминогемоглобин. При поступлении крови в капилляры легких эти реакции протекают в обратном направлении и СО 2 диффундирует в альвеолы. Карбаминовый комплекс СО 2 с гемоглобином образуется в результате реакции СО 2 с радикалом NH 2 глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО 2 с Нb приводит, во-первых, к высвобождению Н + ; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство Нb к О 2 . Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение О 2 из оксигемоглобина при высокой концентрации СО 2 (эффект Бора). С другой стороны, связывание О 2 гемоглобином снижает сродство его аминогрупп к СО 2 (эффект Холдена).

    Зависимость содержания СО 2 в крови от его напряжения, выраженная графически, называется кривой связывания СО 2 . Между кривыми для связывания СО 2 и кривой диссоциации оксигемоглобина существует принципиальная разница. Она состоит в том, что для СО 2 - кривая не имеет плато насыщения.

    Процесс выведения СО 2 из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный СО 2 легче проникает через биологические мембраны, чем О 2 . По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбоната. Яды, которые ограничивают транспорт О 2 (такие как СО, метгемоглобинобразующие субстанции - нитриты, метиленовый синий, ферроцианиды и др.) не действуют на транспорт СО 2 . Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекулярного СО 2 . Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О 2 . По этой причине нарушение транспорта О 2 наступает в организме гораздо чаще и быстрее, чем нарушения газообмена СО 2 . Тем не менее при некоторых заболеваниях высокое содержание СО 2 и ацидоз могут быть причиной смерти.

    Красный пигмент гемоглобин (Нb) состоит из белковой части (глобина) и собственно пигмента (гема). Молекулы составляют четыре белковые субъединицы, каждая из которых присоединяет гем-группу с двухвалентным атомом железа, находящимся в ее центре. В легких каждый атом железа присоединяет одну молекулу кислорода. Кислород переносится в ткани, где он отделяется. Присоединение О 2 называется оксигенацией (насыщением кислородом), а его отсоединение - дезоксигенацией.

    Транспорт СО 2

    Около 10% углекислого газа (СО 2), конечного продукта окислительного метаболизма в клетках тканей, переносится кровью физически растворенным п 90% — в химически связанной форме. Большая часть углекислого газа сначала диффундирует из клеток тканей в плазму, а оттуда в эритроциты. Там молекулы СО 2 химически связываются и превращаются с помощью ферментов в намного более растворимые бикарбонат-ионы (НСО 3 -), которые переносятся в плазме крови. Образование СO 2 из НСО 3 - значительно ускоряется с помощью фермента карбоангидразы, присутствующего в эритроцитах.

    Большая часть (около 50-60%) образованных бикарбонат-ионов поступает из эритроцитов обратно в плазму в обмен на хлорид-ионы. Они переносятся в легкие и выделяются в процессе выдоха после превращения в СO 2 . Оба процесса — образование НСО 3 - и освобождение СO 2 , соответственно связаны с оксигенацией и дезоксигенацией гемоглобина. Дезоксигемоглобин — заметно более сильное основание, чем оксигемоглобин, и может присоединить больше ионов Н + (буферная функция гемоглобина), таким образом способствуя образованию НСО 3 - в капиллярах тканей. В капиллярах легких НСО 3 - опять проходит из плазмы крови в эритроциты, соединяется с Н + -ионами и превращается опять в СO 2 . Этот процесс подтверждается тем фактом, что окисленная кровь выделяет больше протонов Н + . Намного меньшая доля СО 2 (около 5-10%) связана непосредственно с гемоглобином и переносится как карбаминогемоглобин.

    Гемоглобин и угарный газ

    Оксид углерода (угарный газ, СО) является бесцветным газом без запаха, который образуется во время неполного сгорания и, как кислород, может обратимо связываться с гемоглобином. Однако сродство угарного газа к гемоглобину заметно больше, чем у кислорода. Таким образом, даже когда содержание СО во вдыхаемом воздухе составляет 0,3%, 80% гемоглобина связывается с угарным газом (НbСО). Так как угарный газ в 200-300 раз медленней, чем кислород, освобождается от связи с гемоглобином, его токсическое действие определяется тем, что гемоглобин больше не может переносить кислород. У тяжелых курильщиков, например, 5-10% гемоглобина присутствует как НbСО, в то время как при его содержании в 20% появляются симптомы острого отравления (головная боль, головокружение, тошнота), а 65% могут быть смертельным.

    Часто для оценки гемопоэза или для распознавания различных форм анемии определяют среднее содержание гемоглобина в эритроците (СГЭ). Оно вычисляется по формуле:

    Значение среднего содержания гемоглобина в эритроците лежит между 38 и 36 пикограммами (пг) (1 пг = 10ˉ¹² г). Эритроциты с нормальным СГЭ называются нормохромными (ортохромными). Если СГЭ низкое (например, из-за постоянной потери крови или дефицита железа), эритроциты называются гипохромными; если СГЭ высокое (например, при пернициозной анемии благодаря дефициту витамина В 12), они называются гиперхромными.

    Формы анемии

    Анемия определяется как дефицит (снижение количества) эритроцитов или сниженное содержание гемоглобина в крови. Диагноз анемии обычно ставится по содержанию гемоглобина, нижняя граница нормы достигает 140 г/л у мужчин и 120 г/л у женщин. Почти при всех формах анемии надежным симптомом заболевания является бледный цвет кожи и слизистых оболочек. Часто во время физических нагрузок заметно увеличивается сердечный ритм (увеличивая скорость кровообращения), а уменьшение кислорода в тканях приводит к одышке. Кроме того, встречается головокружение и легкая утомляемость.

    Кроме железодефицитной анемии и хронической потери крови, например, из-за кровоточащих язв или опухолей в желудочно-кишечном тракте (гипохромные анемии), анемия может возникать при дефиците витамина В 12 . фолиевой кислоты или эритропоэтина. Витамин В 12 и фолиевая кислота участвуют в синтезе ДНК в незрелых клетках костного мозга и, таким образом, заметно влияют на деление и созревание эритроцитов (эритропоэз). При их нехватке образуется меньше эритроцитов, но они заметно увеличены из-за повышенного содержания гемоглобина (макроциты (мегалоциты), предшественники: мегалобласты), поэтому содержание гемоглобина в крови практически не изменяется (гиперхромная, мегалобластическая, макроцитарная анемия).

    Дефицит витамина В 12 нередко возникает из-за нарушения всасывания витамина в кишечнике, реже — вследствие недостаточного приема с пищей. Эта так называемая пернициозная анемия наиболее часто является результатом хронического воспаления в слизистой кишечника с уменьшением образования желудочного сока.

    Витамин В 12 всасывается в кишечнике только в связанном виде с фактором, находящимся в желудочном соке «внутренним фактором (Кастла)», который защищает его от разрушения пищеварительным соком в желудке. Так как печень может запасать большое количество витамина В 12 , то перед тем, как ухудшение всасывания в кишечнике повлияет на образование эритроцитов, может пройти 2-5 лет. Как и в случае дефицита витамина В 12 , дефицит фолиевой кислоты, другого витамина группы В, приводит к нарушению эритропоэза в костном мозге.

    Есть две другие причины анемии. Одна из них — разрушение костного мозга (аплазия костного мозга) радиоактивным излучением (например, после аварии на атомной электростанции) или в результате токсичных реакций на лекарства (например, цитостатики) (апластическая анемия). Другая причина — это уменьшение продолжительности жизни эритроцитов в результате их разрушения или увеличенного распада (гемолитическая анемия). При сильной форме гемолитической анемии (например, следующей за неудачным переливанием крови), кроме бледности может наблюдаться изменение цвета кожи и слизистых оболочек на желтоватый. Эта желтуха (гемолитическая желтуха) вызвана увеличивающимся разрушением гемоглобина до билирубина (желтого желчного пигмента) в печени. Последнее приводит к увеличению уровня билирубина в плазме и его отложению в тканях.

    Примером анемии, возникающей в результате наследственного нарушения синтеза гемоглобина, клинически проявляющейся как гемолитическая, служит серповидноклеточная анемия. При этой болезни, которая практически встречается только у представителей негроидных популяций, имеется молекулярное нарушение, приводящее к замене нормального гемоглобина на другую форму гемоглобина (HbS). В HbS аминокислота валин заменена на глутаминовую кислоту. Эритроцит, содержащий такой неправильный гемоглобин, в дезоксигенированном состоянии принимает форму серпа. Серповидные эритроциты более жесткие и плохо проходят через капилляры.

    Наследственное нарушение у гомозигот (доля HbS в суммарном гемоглобине 70-99%) приводит к закупорке небольших сосудов и, таким образом, к постоянному повреждению органов. Пораженные этой болезнью люди обычно достигают зрелости только при интенсивном лечении (например, частичной замене крови, приеме анальгетиков, избегании гипоксии (кислородного голодания) и иногда — пересадке костного мозга). В некоторых регионах тропической Африки с высоким процентом малярии 40% популяции являются гетерозиготными носителями данного гена (когда содержание HbS менее 50%), у них таких симптомов не обнаруживается. Измененный ген обусловливает устойчивость к малярийной инфекции (селективное преимущество).

    Регуляция образования эритроцитов

    Образование эритроцитов регулируется гормоном почек эритропоэтином. Организм обладает простой, но очень эффективной системой регуляции для поддержания содержания кислорода и вместе с тем количества эритроцитов относительно постоянным. Если содержание кислорода в крови падает ниже определенного уровня, например, после большой потери крови или во время пребывания на больших высотах, постоянно стимулируется образование эритропоэтина. В результате усиливается образование эритроцитов в костном мозге, что увеличивает способность крови к переносу кислорода. Когда дефицит кислорода преодолевается увеличением числа эритроцитов, образование эритропоэтина опять уменьшается. Пациенты, нуждающиеся в диализе (искусственном очищении крови от продуктов обмена веществ), с нарушением функционирования почек (например, с хронической почечной недостаточностью) часто испытывают явный дефицит эритропоэтина и поэтому почти всегда страдают от сопутствующей анемии.

    В венозной крови содержится около 580 мл / л С02. В крови он содержится в трех формах: связанный в виде угольной кислоты и ее солей, связанный с и в растворенном виде.
    С02 образуется в тканях при окислительных процессах. В большинстве тканей Рсо2 составляет 50-60 мм рт. ст. (6,7-8 кПа). В крови, поступающей в артериальное конец капилляров, РаCO2 составляет около 40 мм рт. ст. (5,3 кПа). Наличие градиента заставляет С02 диффундировать из тканевой жидкости до капилляров. Чем активнее в тканях осуществляются процессы окисления, тем больше создается СОТ и тем больше Ртк.со2. Интенсивность окисления в различных тканях различна. В венозной крови, оттекающей от ткани, Pvco приближается к 50 мм рт. ст. (6,7 кПа). А в крови, оттекающей от почек, Pvco2 составляет около 43 мм рт. ст. Поэтому в смешанной венозной крови, поступающей в правого предсердия, в состоянии покоя Pvco2 равна 46 мм рт. ст. (6,1 кПа).
    С02 растворяется в жидкостях активнее, чем 02. При РCO2 равный 40 мм рт. ст. (5,3 кПа), в 100 мл крови растворено 2,4-2,5 мл СОГ, что составляет примерно 5% от общего количества газа, который транспортируется кровью. Кровь, проходящая через легкие, отдает далеко не весь С02. Большая часть его остается в артериальной крови, поскольку соединения, которые образуются на основе С02, участвуют в поддержании кислотно-основного равновесия крови - одного из параметров гомеостаза.
    Химически связанный С02 находится в крови в одной из трех форм:
    1) угольная кислота (Н2С03):
    2) бикарбонатный ион (НСОИ)
    3) карбогемоглобин (ННЬС02).
    В форме угольной кислоты переносится только 7% СОГ, бикарбонатных ионов - 70%, карбогемоглобин - 23%.
    С02, который проникает в кровь, сначала подвергается гидратации с образованием угольной кислоты: С02 + Н20 Н2СОз.
    Эта реакция в плазме крови происходит медленно. В эритроците, куда С02 проникает по градиенту концентрации, благодаря специальному ферменту - карбоангидразы - этот процесс ускоряется примерно в 10 000 раз. Поэтому эта реакция происходит в основном в эритроцитах. Создаваемая здесь угольная кислота быстро диссоциирует на Н + и НСО3-, чему способствует постоянное образование угольной кислоты: Н2С03 Н + + НСО3-.
    При накоплении НСО3-в эритроцитах создается его градиент с плазмой. Возможность выхода НСО3-в плазму определяется условий: выход НСО3-должен сопровождаться одновременным выходом катиона или поступлением другого аниона. Мембрана эритроцита хорошо пропускает отрицательные, но плохо - положительные ионы. Чаще образования и выход НСО3-из эритроцитов сопровождается поступлением в клетку СИ "". Это перемещение называют хлоридным сдвигом.
    В плазме крови НСО3-"взаимодействуя с катионами, создает соли угольной кислоты. В виде солей угольной кислоты транспортируется около 510 мл / л С02.
    Кроме того, СОТ может связываться с белками: частично - с белками плазмы, но главным образом - с гемоглобином эритроцитов. При этом сог взаимодействует с белковой частью гемоглобина - глобина. Гем же остается свободным и сохраняет способность гемоглобина находиться одновременно в связи как с С02, так и 02. Таким образом, одна молекула НЬ может транспортировать оба газа.
    В крови альвеолярных капилляров все процессы осуществляются в противоположном направлении. Главная из химических реакций - дегидратация - происходит в эритроцитах при участии той же карбоангидразы: Н + + НСО3 Н2С03 Н20 + С02.
    Направление реакции определяется непрерывным выходом С02 с эритроцита в плазму, а из плазмы в альвеолы. В легких в связи с постоянным его выделением происходит реакция диссоциации карбогемоглобин:
    ННЬС02 +02 ННЬ02 + С02-> НЬ02 + Н + + С02.
    Взаимосвязь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации оксигемоглобина влияет на содержание С02 в крови. Эта зависимость связана с тем, что дезоксигемоглобином является слабой кислотой, чем оксигемоглобин, и может присоединять более Н + Вследствие этого при уменьшении содержания оксигемоглобина повышается степень диссоциации Н2СОз, а следовательно, увеличивается транспорт С02 кровью. Эта зависимость называется эффектом Холдейна.
    Взаимосвязь обмена двуокиси углерода и кислорода ярко обнаруживается в тканях и легких. К тканям поступает оксигенированный кровь. Здесь под влиянием С02 усиливается диссоциация гемоглобина. Поэтому поступление кислорода в ткани способствует ускорению поглощения С02 кровью.
    В легких происходят обратные процессы. Поступление 02 снижает сродство крови к С02 и облегчает диффузию С02 в альвеолы. Это, в свою очередь, активизирует ассоциации гемоглобина с кислородом.



    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло