Что мы знаем о мироздании, каков космос? Вселенная – это трудно постижимый человеческим разумом безграничный мир, который кажется нереальным и нематериальным. На самом деле нас окружает материя, безграничная в пространстве и во времени, способная принимать различные формы. Чтобы попытаться понять истинные масштабы космического пространства, как устроена Вселенная, строение мироздания и процессы эволюции, нам потребуется переступить порог собственного мироощущения, взглянуть на окружающий нас мир под другим ракурсом, изнутри.

Образование Вселенной: первые шаги

Космос, который мы наблюдаем в телескопы, является только частью звездной Вселенной, так называемой Мегагалактикой. Параметры космологического горизонта Хаббла колоссальные – 15-20 млрд. световых лет. Эти данные приблизительны, так как в процессе эволюции Вселенная постоянно расширяется. Расширение Вселенной происходит путем распространения химических элементов и реликтового излучения. Структура Вселенной постоянно меняется. В пространстве возникают скопления галактик, объекты и тела Вселенной — это миллиарды звезд, формирующие элементы ближнего космоса — звездные системы с планетами и со спутниками.

А где начало? Как появилась Вселенная? Предположительно возраст Вселенной составляет 20 млрд. лет. Возможно, источником космической материи стало горячее и плотное протовещество, скопление которого в определенный момент взорвалось. Образовавшиеся в результате взрыва мельчайшие частицы разлетелись во все стороны, и продолжают удаляться от эпицентра в наше время. Теория Большого взрыва, которая сейчас доминирует в научных кругах, наиболее точно подходит под описания процесса образования Вселенной. Возникшее в результате космического катаклизма вещество представляло собой разнородную массу, состоящую из мельчайших неустойчивых частиц, которые сталкиваясь и разлетаясь, стали взаимодействовать друг с другом.

Большой взрыв – теория возникновения Вселенной, объясняющая ее образование. Согласно этой теории изначально существовало некоторое количество вещества, которое в результате определенных процессов взорвалось с колоссальной силой, разбросав в окружающее пространство массу матери.

Спустя некоторое время, по космическим меркам — мгновение, по земному летоисчислению — миллионы лет, наступил этап материализации пространства. Из чего состоит Вселенная? Рассеянное вещество стало концентрироваться в сгустки, большие и малые, на месте которых впоследствии стали возникать первые элементы Вселенной, огромные газовые массивы — ясли будущих звезд. В большинстве случаев процесс формирования материальных объектов во Вселенной объясняется законами физики и термодинамики, однако существует ряд моментов, которые пока не поддаются объяснению. К примеру, почему в одной части пространства расширяющееся вещество концентрируется больше, тогда как в другой части мироздания материя сильно разрежена. Ответы на эти вопросы можно будет получить только тогда, когда станет понятен механизм образования космических объектов, больших и малых.

Сейчас же процесс образования Вселенной объясняется действием законов Вселенной. Гравитационная нестабильность и энергия в разных участках запустили процессы формирования протозвезд, которые в свою очередь под воздействием центробежных сил и гравитации образовали галактики. Другими словами, в то время как материя продолжала и продолжает расширяться, под воздействием сил тяготения начались процессы сжатия. Частицы газовых облаков стали концентрироваться вокруг мнимого центра, образуя в итоге новое уплотнение. Строительным материалом в этой гигантской стройке является молекулярный водород и гелий.

Химические элементы Вселенной — первичный строительный материал, из которого шло впоследствии формирование объектов Вселенной

Дальше начинает действовать закон термодинамики, приводятся в действие процессы распада и ионизации. Молекулы водорода и гелия распадаются на атомы, из которых под действием сил гравитации формируется ядро протозвезды. Эти процессы являются законами Вселенной и приняли форму цепной реакции, происходят во всех далеких уголках Вселенной, заполнив мироздание миллиардами, сотнями миллиардов звезд.

Эволюция Вселенной: основные моменты

На сегодняшний день в научных кругах бытует гипотеза о цикличности состояний, из которых соткана история Вселенной. Возникнув в результате взрыва протовещества скопления газа, стали яслями для звезд, которые в свою очередь сформировали многочисленные галактики. Однако достигнув определенной фазы, материя во Вселенной начинает стремиться к своему изначальному, концентрированному состоянию, т.е. за взрывом и последующим расширением вещества в пространстве следует сжатие и возврат к сверхплотному состоянию, к исходной точке. Впоследствии все повторяется, за рождением следует финал и так на протяжении многих миллиардов лет, до бесконечности.

Начало и конец мироздания в соответствии с цикличностью эволюции Вселенной

Однако опустив тему образования Вселенной, которая остается открытым вопросом, следует перейти к строению мироздания. Еще в 30-е годы XX века стало ясно, что космическое пространство поделено на районы – галактики, которые являются огромными образованиями, каждое со своим звездным населением. При этом галактики не являются статическими объектами. Скорость разлета галактик от мнимого центра Вселенной постоянно меняется, о чем свидетельствует сближение одних и удаление других друг от друга.

Все перечисленные процессы с точки зрения продолжительности земной жизни длятся очень медленно. С точки зрения науки и этих гипотез — все эволюционные процессы происходят стремительно. Условно эволюцию Вселенной можно разделить на четыре этапа – эры:

  • адронная эра;
  • лептонная эра;
  • фотонная эра;
  • звездная эра.

Космическая шкала времени и эволюции Вселенной, в соответствии с которой можно объяснить появление космических объектов

На первом этапе все вещество было сконцентрировано в одной большой ядерной капле, состоящей из частиц и античастиц, объединенных в группы – адроны (протоны и нейтроны). Соотношение частиц и античастиц составляет примерно 1:1,1. Далее наступает процесс аннигиляции частиц и античастиц. Оставшиеся протоны и нейтроны являются тем строительным материалом, из которого формируется Вселенная. Продолжительность адронной эры ничтожна, всего 0,0001 секунды — период взрывной реакции.

Далее, спустя 100 секунд, начинается процесс синтеза элементов. При температуре миллиард градусов в процессе ядерного синтеза образуются молекулы водорода и гелия. Все это время вещество продолжает расширяться в пространстве.

С этого момента начинается длительный, от 300 тыс. до 700 тыс. лет, этап рекомбинации ядер и электронов, формирующих атомы водорода и гелия. При этом наблюдается снижение температуры вещества, падает интенсивность излучения. Вселенная становится прозрачной. Образовавшийся в колоссальных количествах водород и гелий под действием сил гравитации превращает первичную Вселенную в гигантскую строительную площадку. Через миллионы лет начинается звездная эра – представляющая собой процесс образования протозвезд и первых протогалактик.

Такое деление эволюции на этапы вписывается в модель горячей Вселенной, которая объясняет многие процессы. Истинные причины Большого взрыва, механизм расширения материи остаются необъяснимыми.

Строение и структура Вселенной

С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшееся на начальной стадии формирования мироздания, объясняет различия в размерах образовавшихся галактик. Там, где должно было существовать максимальное скопление водородного газа, образовались мегагалактики. Где концентрация водорода была незначительной, появились галактики меньших размеров, подобные нашему звездному дому — Млечному Пути.

Версия, в соответствии с которой Вселенная представляет собой точку начала-конца, вокруг которой вращаются галактики на разных этапах развития

С этого момента Вселенная получает первые образования с четкими границами и физическими параметрами. Это уже не туманности, скопления звездного газа и космической пыли (продукты взрыва), протоскопления звездной материи. Это звездные страны, площадь которых огромна с точки зрения человеческого разума. Вселенная становится полна интересных космических феноменов.

С точки зрения научных обоснований и современной модели Вселенной, сначала формировались галактики в результате действия гравитационных сил. Происходило превращение материи в колоссальный вселенский водоворот. Центростремительные процессы обеспечили последующую фрагментацию газовых облаков в скопления, которые стали местом рождения первых звезд. Протогалактики с быстрым периодом вращения превратились со временем в спиральные галактики. Там, где вращение было медленным, и в основном наблюдался процесс сжатия вещества, образовались неправильные галактик, чаще эллиптические. На этом фоне во Вселенной происходили более грандиозные процессы — формирование сверхскоплений галактик, которые тесно соприкасаются своими краями друг с другом.

Сверхскопления — это многочисленные группы галактик и скоплений галактик в составе крупномасштабной структуры Вселенной. В пределах 1 млрд св. лет находится около 100 сверхскоплений

С этого момента стало ясно, что Вселенная представляет собой огромную карту, где континентами являются скопления галактик, а странами — мегагалактики и галактики, образовавшиеся миллиарды лет назад. Каждое из образований состоит из скопления звезд, туманностей, скоплений межзвездного газа и пыли. Однако все это население составляет лишь 1% от общего объема вселенских образований. Основную массу и объем галактик занимает темная материя, природу которой выяснить не представляется возможным.

Разнообразие Вселенной: классы галактик

Стараниями американского ученого астрофизика Эдвина Хаббла мы теперь имеем границы Вселенной и четкую классификацию галактик, населяющих ее. В основу классификации легли особенности структуры этих гигантских образований. Почему галактики имеют разную форму? Ответ на этот и многие другие вопросы дает классификация Хаббла, в соответствии с которой Вселенная состоит из галактик следующих классов:

  • спиральные;
  • эллиптические;
  • иррегулярные галактики.

К первым относятся наиболее распространенные образования, которыми заполнено мироздание. Характерными чертами спиральных галактик является наличие четко выраженной спирали, которая вращается вокруг яркого ядра либо стремится к галактической перемычке. Спиральные галактики с ядром обозначаются символами S, тогда как у объектов с центральной перемычкой обозначение уже SB. К этому классу относится и наша галактика Млечный Путь , в центре которой ядро разделено светящейся перемычкой.

Типичная спиральная галактика. В центре отчетливо видны ядро с перемычкой от концов которой исходят спиральные рукава.

Подобные образования разбросаны по Вселенной. Ближайшая к нам спиральная галактика Андромеда — гигант, который стремительно сближается с Млечным Путем. Наибольшей из известных нам представительниц этого класса является гигантская галактика NGC 6872. Диаметр галактического диска этого монстра составляет примерно 522 тысячи световых лет. Находится этот объект на расстоянии от нашей галактики в 212 млн. световых лет.

Следующим, распространенным классом галактических образований являются эллиптические галактики. Их обозначение в соответствии с классификацией Хаббла буква Е (elliptical). По форме эти образования эллипсоиды. Несмотря на то, что подобных объектов во Вселенной достаточно много, эллиптические галактики не отличатся выразительностью. Состоят они в основном из гладких эллипсов, которые наполнены звездными скоплениями. В отличие от галактических спиралей, эллипсы не содержат скоплений межзвездного газа и космической пыли, которые являются основными оптическими эффектами визуализации подобных объектов.

Типичный представитель этого класса, известный на сегодняшний день — эллиптическая кольцевая туманность в созвездии Лиры. Этот объект расположен от Земли на расстоянии 2100 световых лет.

Вид эллиптической галактики Центавр А в телескоп CFHT

Последний класс галактических объектов, которыми населена Вселенная — иррегулярные или неправильные галактики. Обозначение по классификации Хаббла – латинский символ I. Основная черта – это неправильная форма. Другими словами у подобных объектов нет четких симметричных форм и характерного рисунка. По своей форме такая галактика напоминает картину вселенского хаоса, где звездные скопления чередуются с облаками газа и космической пыли. В масштабах Вселенной иррегулярные галактики — явление частое.

В свою очередь неправильные галактики делятся на два подтипа:

  • иррегулярные галактики I подтипа имеют сложную неправильной формы структуру, высокую плотную поверхность, отличающуюся яркостью. Нередко такая хаотическая форма неправильных галактик является следствием разрушившихся спиралей. Типичный пример подобной галактики — Большое и Малое Магелланово Облако;
  • иррегулярные, неправильные галактики II подтипа имеют низкую поверхность, хаотическую форму и не отличаются высокой яркостью. Вследствие снижения яркости, подобные образования трудно обнаружить на просторах Вселенной.

Большое Магелланово Облако является самой ближайшей к нам неправильной галактикой. Оба образования в свою очередь являются спутниками Млечного Пути и могут быть в скором времени(через 1-2 млрд. лет) поглощены более крупным объектом.

Неправильная галактика Большое Магелланово облако — спутник нашей галактики Млечный Путь

Несмотря на то, что Эдвин Хаббл достаточно точно расставил галактики по классам, данная классификация не является идеальной. Больше результатов мы могли бы достичь, включи в процесс познания Вселенной теорию относительности Эйнштейна. Вселенная представлена богатством разнообразных форм и структур, каждая из которых имеет свои характерные свойства и особенности. Недавно астрономы сумели обнаружить новые галактические образования, которые по описанию являются промежуточными объектами, между спиральными и эллиптическими галактиками.

Млечный Путь — самая известная нам часть Вселенной

Две спиральные ветви, симметрично расположенные вокруг центра, составляют основное тело галактики. Спирали в свою очередь состоят из рукавов, которые плавно перетекают друг в друга. На стыке рукавов Стрельца и Лебедя расположилось наше Солнце, находящееся от центра галактики Млечный Путь на расстоянии 2,62·10¹⁷км. Спирали и рукава спиральных галактик – это скопления звезд, плотность которых увеличивается по мере приближения к галактическому центру. Остальную массу и объем галактических спиралей составляет темная материя, и только малая часть приходится на межзвездный газ и космическую пыль.

Положение Солнца в рукавах Млечного Пути, место нашей галактики во Вселенной

Толщина спиралей составляет примерно 2 тыс. световых лет. Весь это слоеный пирог находится в постоянном движении, вращаясь с огромной скоростью 200-300 км/с. Чем ближе к центру галактики, тем выше скорость вращения. Солнцу и нашей Солнечной системе потребуется 250 млн. лет, чтобы совершить полный оборот вокруг центра Млечного Пути.

Наша галактика состоит из триллиона звезд, больших и малых, сверхтяжелых и средней величины. Самое плотное скопление звезд Млечного Пути — рукав Стрельца. Именно в этой области наблюдается максимальная яркость нашей галактики. Противоположная часть галактического круга наоборот, менее яркая и плохо различима при визуальном наблюдении.

Центральная часть Млечного Пути представлена ядром, размеры которого предположительно составляют 1000-2000 парсек. В этой самой яркой области галактики сосредоточено максимальное количество звезд, которые имеют различные классы, свои пути развития и эволюции. В основном это старые сверхтяжелые звезды, находящиеся на финальной стадии Главной последовательности. Подтверждением наличия стареющего центра галактики Млечный Путь является наличие в этой области большого числа нейтронных звезд и черные дыры. Действительно – центр спирального диска любой спиральной галактики — сверхмассивная черная дыра, которая словно гигантский пылесос всасывает в себя небесные объекты и реальную материю.

Сверхмассивная черная дыра, находящаяся в центральной части Млечного Пути – место гибели всех галактических объектов

Что касается звездных скоплений, то ученым сегодня удалось классифицировать два вида скоплений: шарообразные и рассеянные. Помимо звездных скоплений спирали и рукава Млечного Пути, как и любой другой спиральной галактики, состоят из рассеянной материи и темной энергии. Являясь последствием Большого взрыва, материя пребывает в сильно разреженном состоянии, которое представлено разреженным межзвездным газом и частицами пыли. Видимая часть материи представляет собой туманности, которые в свою очередь делятся на два типа: планетарные и диффузные туманности. Видимая часть спектра туманностей объясняется преломлением света звезд, которые излучают свет внутри спирали по всем направлениями.

В этом космическом супе и существует наша Солнечная система. Нет, мы не единственные в этом огромном мире. Как и у Солнца , многие звезды имеют свои планетарные системы. Весь вопрос в том, как обнаружить далекие планеты, если расстояния даже в пределах нашей галактики превышают продолжительность существования любой разумной цивилизации. Время во Вселенной измеряется другими критериями. Планеты со своими спутниками, самые мелкие объекты во Вселенной. Количество подобных объектов не поддается исчислению. Каждая из тех звезд, которые находятся в видимом диапазоне, могут иметь собственные звездные системы. В наших силах увидеть только самые ближайшие к нам существующие планеты. Что происходит по соседству, какие миры существуют в других рукавах Млечного Пути и какие планеты существуют в других галактиках, остается загадкой.

Kepler-16 b - экзопланета у двойной звезды Kepler-16 в созвездии Лебедь

Заключение

Имея только поверхностное представление о том, как появилась и как эволюционирует Вселенная, человек сделал лишь маленький шаг на пути постижения и осмысливания масштабов мироздания. Грандиозные размеры и масштабы, с которыми ученым приходится сегодня иметь дело, говорят о том, что человеческая цивилизация — лишь мгновение в этом пучке материи, пространства и времени.

Модель Вселенной в соответствии с понятием присутствия материи в пространстве с учетом времени

Изучение Вселенной идет от Коперника и до наших дней. Сначала ученые отталкивались от гелиоцентрической модели. На деле оказалось, что космос не имеет реального центра и все вращение, движение и перемещение происходит по законам Вселенной. Несмотря на то, что существует научное объяснение происходящим процессам, вселенские объекты распределены на классы, виды и типы, ни одно тело в космосе не похоже на другое. Размеры небесных тел примерны, так же как и их масса. Расположение галактик, звезд и планет условно. Все дело в том, что во Вселенной нет системы координат. Наблюдая за космосом, мы делаем проекцию на весь видимый горизонт, считая нашу Землю нулевой точкой отсчета. На самом деле мы только микроскопическая частичка, затерявшаяся в бесконечных просторах Вселенной.

Вселенная – это субстанция, в которой все объекты существуют в тесной привязке к пространству и времени

Аналогично привязки к размерам, следует рассматривать время во Вселенной, как главную составляющую. Зарождение и возраст космических объектов позволяет составить картину рождения мира, выделить этапы эволюции мироздания. Система, с которой мы имеем дело, тесно связана временными рамками. Все процессы, протекающие в космосе, имеют циклы — начало, формирование, трансформацию и финал, сопровождающийся гибелью материального объекта и перехода материи в другое состояние.

Что мы знаем о мироздании, каков космос? Вселенная – это трудно постижимый человеческим разумом безграничный мир, который кажется нереальным и нематериальным. На самом деле нас окружает материя, безграничная в пространстве и во времени, способная принимать различные формы. Чтобы попытаться понять истинные масштабы космического пространства, как устроена Вселенная, строение мироздания и процессы эволюции, нам потребуется переступить порог собственного мироощущения, взглянуть на окружающий нас мир под другим ракурсом, изнутри.

Образование Вселенной: первые шаги

Космос, который мы наблюдаем в телескопы, является только частью звездной Вселенной, так называемой Мегагалактикой. Параметры космологического горизонта Хаббла колоссальные – 15-20 млрд. световых лет. Эти данные приблизительны, так как в процессе эволюции Вселенная постоянно расширяется. Расширение Вселенной происходит путем распространения химических элементов и реликтового излучения. Структура Вселенной постоянно меняется. В пространстве возникают скопления галактик, объекты и тела Вселенной — это миллиарды звезд, формирующие элементы ближнего космоса — звездные системы с планетами и со спутниками.

А где начало? Как появилась Вселенная? Предположительно возраст Вселенной составляет 20 млрд. лет. Возможно, источником космической материи стало горячее и плотное протовещество, скопление которого в определенный момент взорвалось. Образовавшиеся в результате взрыва мельчайшие частицы разлетелись во все стороны, и продолжают удаляться от эпицентра в наше время. Теория Большого взрыва, которая сейчас доминирует в научных кругах, наиболее точно подходит под описания процесса образования Вселенной. Возникшее в результате космического катаклизма вещество представляло собой разнородную массу, состоящую из мельчайших неустойчивых частиц, которые сталкиваясь и разлетаясь, стали взаимодействовать друг с другом.

Большой взрыв – теория возникновения Вселенной, объясняющая ее образование. Согласно этой теории изначально существовало некоторое количество вещества, которое в результате определенных процессов взорвалось с колоссальной силой, разбросав в окружающее пространство массу матери.

Спустя некоторое время, по космическим меркам — мгновение, по земному летоисчислению — миллионы лет, наступил этап материализации пространства. Из чего состоит Вселенная? Рассеянное вещество стало концентрироваться в сгустки, большие и малые, на месте которых впоследствии стали возникать первые элементы Вселенной, огромные газовые массивы — ясли будущих звезд. В большинстве случаев процесс формирования материальных объектов во Вселенной объясняется законами физики и термодинамики, однако существует ряд моментов, которые пока не поддаются объяснению. К примеру, почему в одной части пространства расширяющееся вещество концентрируется больше, тогда как в другой части мироздания материя сильно разрежена. Ответы на эти вопросы можно будет получить только тогда, когда станет понятен механизм образования космических объектов, больших и малых.

Сейчас же процесс образования Вселенной объясняется действием законов Вселенной. Гравитационная нестабильность и энергия в разных участках запустили процессы формирования протозвезд, которые в свою очередь под воздействием центробежных сил и гравитации образовали галактики. Другими словами, в то время как материя продолжала и продолжает расширяться, под воздействием сил тяготения начались процессы сжатия. Частицы газовых облаков стали концентрироваться вокруг мнимого центра, образуя в итоге новое уплотнение. Строительным материалом в этой гигантской стройке является молекулярный водород и гелий.

Химические элементы Вселенной — первичный строительный материал, из которого шло впоследствии формирование объектов Вселенной

Дальше начинает действовать закон термодинамики, приводятся в действие процессы распада и ионизации. Молекулы водорода и гелия распадаются на атомы, из которых под действием сил гравитации формируется ядро протозвезды. Эти процессы являются законами Вселенной и приняли форму цепной реакции, происходят во всех далеких уголках Вселенной, заполнив мироздание миллиардами, сотнями миллиардов звезд.

Эволюция Вселенной: основные моменты

На сегодняшний день в научных кругах бытует гипотеза о цикличности состояний, из которых соткана история Вселенной. Возникнув в результате взрыва протовещества скопления газа, стали яслями для звезд, которые в свою очередь сформировали многочисленные галактики. Однако достигнув определенной фазы, материя во Вселенной начинает стремиться к своему изначальному, концентрированному состоянию, т.е. за взрывом и последующим расширением вещества в пространстве следует сжатие и возврат к сверхплотному состоянию, к исходной точке. Впоследствии все повторяется, за рождением следует финал и так на протяжении многих миллиардов лет, до бесконечности.

Начало и конец мироздания в соответствии с цикличностью эволюции Вселенной

Однако опустив тему образования Вселенной, которая остается открытым вопросом, следует перейти к строению мироздания. Еще в 30-е годы XX века стало ясно, что космическое пространство поделено на районы – галактики, которые являются огромными образованиями, каждое со своим звездным населением. При этом галактики не являются статическими объектами. Скорость разлета галактик от мнимого центра Вселенной постоянно меняется, о чем свидетельствует сближение одних и удаление других друг от друга.

Все перечисленные процессы с точки зрения продолжительности земной жизни длятся очень медленно. С точки зрения науки и этих гипотез — все эволюционные процессы происходят стремительно. Условно эволюцию Вселенной можно разделить на четыре этапа – эры:

  • адронная эра;
  • лептонная эра;
  • фотонная эра;
  • звездная эра.

Космическая шкала времени и эволюции Вселенной, в соответствии с которой можно объяснить появление космических объектов

На первом этапе все вещество было сконцентрировано в одной большой ядерной капле, состоящей из частиц и античастиц, объединенных в группы – адроны (протоны и нейтроны). Соотношение частиц и античастиц составляет примерно 1:1,1. Далее наступает процесс аннигиляции частиц и античастиц. Оставшиеся протоны и нейтроны являются тем строительным материалом, из которого формируется Вселенная. Продолжительность адронной эры ничтожна, всего 0,0001 секунды — период взрывной реакции.

Далее, спустя 100 секунд, начинается процесс синтеза элементов. При температуре миллиард градусов в процессе ядерного синтеза образуются молекулы водорода и гелия. Все это время вещество продолжает расширяться в пространстве.

С этого момента начинается длительный, от 300 тыс. до 700 тыс. лет, этап рекомбинации ядер и электронов, формирующих атомы водорода и гелия. При этом наблюдается снижение температуры вещества, падает интенсивность излучения. Вселенная становится прозрачной. Образовавшийся в колоссальных количествах водород и гелий под действием сил гравитации превращает первичную Вселенную в гигантскую строительную площадку. Через миллионы лет начинается звездная эра – представляющая собой процесс образования протозвезд и первых протогалактик.

Такое деление эволюции на этапы вписывается в модель горячей Вселенной, которая объясняет многие процессы. Истинные причины Большого взрыва, механизм расширения материи остаются необъяснимыми.

Строение и структура Вселенной

С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшееся на начальной стадии формирования мироздания, объясняет различия в размерах образовавшихся галактик. Там, где должно было существовать максимальное скопление водородного газа, образовались мегагалактики. Где концентрация водорода была незначительной, появились галактики меньших размеров, подобные нашему звездному дому — Млечному Пути.

Версия, в соответствии с которой Вселенная представляет собой точку начала-конца, вокруг которой вращаются галактики на разных этапах развития

С этого момента Вселенная получает первые образования с четкими границами и физическими параметрами. Это уже не туманности, скопления звездного газа и космической пыли (продукты взрыва), протоскопления звездной материи. Это звездные страны, площадь которых огромна с точки зрения человеческого разума. Вселенная становится полна интересных космических феноменов.

С точки зрения научных обоснований и современной модели Вселенной, сначала формировались галактики в результате действия гравитационных сил. Происходило превращение материи в колоссальный вселенский водоворот. Центростремительные процессы обеспечили последующую фрагментацию газовых облаков в скопления, которые стали местом рождения первых звезд. Протогалактики с быстрым периодом вращения превратились со временем в спиральные галактики. Там, где вращение было медленным, и в основном наблюдался процесс сжатия вещества, образовались неправильные галактик, чаще эллиптические. На этом фоне во Вселенной происходили более грандиозные процессы — формирование сверхскоплений галактик, которые тесно соприкасаются своими краями друг с другом.

Сверхскопления — это многочисленные группы галактик и скоплений галактик в составе крупномасштабной структуры Вселенной. В пределах 1 млрд св. лет находится около 100 сверхскоплений

С этого момента стало ясно, что Вселенная представляет собой огромную карту, где континентами являются скопления галактик, а странами — мегагалактики и галактики, образовавшиеся миллиарды лет назад. Каждое из образований состоит из скопления звезд, туманностей, скоплений межзвездного газа и пыли. Однако все это население составляет лишь 1% от общего объема вселенских образований. Основную массу и объем галактик занимает темная материя, природу которой выяснить не представляется возможным.

Разнообразие Вселенной: классы галактик

Стараниями американского ученого астрофизика Эдвина Хаббла мы теперь имеем границы Вселенной и четкую классификацию галактик, населяющих ее. В основу классификации легли особенности структуры этих гигантских образований. Почему галактики имеют разную форму? Ответ на этот и многие другие вопросы дает классификация Хаббла, в соответствии с которой Вселенная состоит из галактик следующих классов:

  • спиральные;
  • эллиптические;
  • иррегулярные галактики.

К первым относятся наиболее распространенные образования, которыми заполнено мироздание. Характерными чертами спиральных галактик является наличие четко выраженной спирали, которая вращается вокруг яркого ядра либо стремится к галактической перемычке. Спиральные галактики с ядром обозначаются символами S, тогда как у объектов с центральной перемычкой обозначение уже SB. К этому классу относится и наша галактика Млечный Путь , в центре которой ядро разделено светящейся перемычкой.

Типичная спиральная галактика. В центре отчетливо видны ядро с перемычкой от концов которой исходят спиральные рукава.

Подобные образования разбросаны по Вселенной. Ближайшая к нам спиральная галактика Андромеда — гигант, который стремительно сближается с Млечным Путем. Наибольшей из известных нам представительниц этого класса является гигантская галактика NGC 6872. Диаметр галактического диска этого монстра составляет примерно 522 тысячи световых лет. Находится этот объект на расстоянии от нашей галактики в 212 млн. световых лет.

Следующим, распространенным классом галактических образований являются эллиптические галактики. Их обозначение в соответствии с классификацией Хаббла буква Е (elliptical). По форме эти образования эллипсоиды. Несмотря на то, что подобных объектов во Вселенной достаточно много, эллиптические галактики не отличатся выразительностью. Состоят они в основном из гладких эллипсов, которые наполнены звездными скоплениями. В отличие от галактических спиралей, эллипсы не содержат скоплений межзвездного газа и космической пыли, которые являются основными оптическими эффектами визуализации подобных объектов.

Типичный представитель этого класса, известный на сегодняшний день — эллиптическая кольцевая туманность в созвездии Лиры. Этот объект расположен от Земли на расстоянии 2100 световых лет.

Вид эллиптической галактики Центавр А в телескоп CFHT

Последний класс галактических объектов, которыми населена Вселенная — иррегулярные или неправильные галактики. Обозначение по классификации Хаббла – латинский символ I. Основная черта – это неправильная форма. Другими словами у подобных объектов нет четких симметричных форм и характерного рисунка. По своей форме такая галактика напоминает картину вселенского хаоса, где звездные скопления чередуются с облаками газа и космической пыли. В масштабах Вселенной иррегулярные галактики — явление частое.

В свою очередь неправильные галактики делятся на два подтипа:

  • иррегулярные галактики I подтипа имеют сложную неправильной формы структуру, высокую плотную поверхность, отличающуюся яркостью. Нередко такая хаотическая форма неправильных галактик является следствием разрушившихся спиралей. Типичный пример подобной галактики — Большое и Малое Магелланово Облако;
  • иррегулярные, неправильные галактики II подтипа имеют низкую поверхность, хаотическую форму и не отличаются высокой яркостью. Вследствие снижения яркости, подобные образования трудно обнаружить на просторах Вселенной.

Большое Магелланово Облако является самой ближайшей к нам неправильной галактикой. Оба образования в свою очередь являются спутниками Млечного Пути и могут быть в скором времени(через 1-2 млрд. лет) поглощены более крупным объектом.

Неправильная галактика Большое Магелланово облако — спутник нашей галактики Млечный Путь

Несмотря на то, что Эдвин Хаббл достаточно точно расставил галактики по классам, данная классификация не является идеальной. Больше результатов мы могли бы достичь, включи в процесс познания Вселенной теорию относительности Эйнштейна. Вселенная представлена богатством разнообразных форм и структур, каждая из которых имеет свои характерные свойства и особенности. Недавно астрономы сумели обнаружить новые галактические образования, которые по описанию являются промежуточными объектами, между спиральными и эллиптическими галактиками.

Млечный Путь — самая известная нам часть Вселенной

Две спиральные ветви, симметрично расположенные вокруг центра, составляют основное тело галактики. Спирали в свою очередь состоят из рукавов, которые плавно перетекают друг в друга. На стыке рукавов Стрельца и Лебедя расположилось наше Солнце, находящееся от центра галактики Млечный Путь на расстоянии 2,62·10¹⁷км. Спирали и рукава спиральных галактик – это скопления звезд, плотность которых увеличивается по мере приближения к галактическому центру. Остальную массу и объем галактических спиралей составляет темная материя, и только малая часть приходится на межзвездный газ и космическую пыль.

Положение Солнца в рукавах Млечного Пути, место нашей галактики во Вселенной

Толщина спиралей составляет примерно 2 тыс. световых лет. Весь это слоеный пирог находится в постоянном движении, вращаясь с огромной скоростью 200-300 км/с. Чем ближе к центру галактики, тем выше скорость вращения. Солнцу и нашей Солнечной системе потребуется 250 млн. лет, чтобы совершить полный оборот вокруг центра Млечного Пути.

Наша галактика состоит из триллиона звезд, больших и малых, сверхтяжелых и средней величины. Самое плотное скопление звезд Млечного Пути — рукав Стрельца. Именно в этой области наблюдается максимальная яркость нашей галактики. Противоположная часть галактического круга наоборот, менее яркая и плохо различима при визуальном наблюдении.

Центральная часть Млечного Пути представлена ядром, размеры которого предположительно составляют 1000-2000 парсек. В этой самой яркой области галактики сосредоточено максимальное количество звезд, которые имеют различные классы, свои пути развития и эволюции. В основном это старые сверхтяжелые звезды, находящиеся на финальной стадии Главной последовательности. Подтверждением наличия стареющего центра галактики Млечный Путь является наличие в этой области большого числа нейтронных звезд и черные дыры. Действительно – центр спирального диска любой спиральной галактики — сверхмассивная черная дыра, которая словно гигантский пылесос всасывает в себя небесные объекты и реальную материю.

Сверхмассивная черная дыра, находящаяся в центральной части Млечного Пути – место гибели всех галактических объектов

Что касается звездных скоплений, то ученым сегодня удалось классифицировать два вида скоплений: шарообразные и рассеянные. Помимо звездных скоплений спирали и рукава Млечного Пути, как и любой другой спиральной галактики, состоят из рассеянной материи и темной энергии. Являясь последствием Большого взрыва, материя пребывает в сильно разреженном состоянии, которое представлено разреженным межзвездным газом и частицами пыли. Видимая часть материи представляет собой туманности, которые в свою очередь делятся на два типа: планетарные и диффузные туманности. Видимая часть спектра туманностей объясняется преломлением света звезд, которые излучают свет внутри спирали по всем направлениями.

В этом космическом супе и существует наша Солнечная система. Нет, мы не единственные в этом огромном мире. Как и у Солнца , многие звезды имеют свои планетарные системы. Весь вопрос в том, как обнаружить далекие планеты, если расстояния даже в пределах нашей галактики превышают продолжительность существования любой разумной цивилизации. Время во Вселенной измеряется другими критериями. Планеты со своими спутниками, самые мелкие объекты во Вселенной. Количество подобных объектов не поддается исчислению. Каждая из тех звезд, которые находятся в видимом диапазоне, могут иметь собственные звездные системы. В наших силах увидеть только самые ближайшие к нам существующие планеты. Что происходит по соседству, какие миры существуют в других рукавах Млечного Пути и какие планеты существуют в других галактиках, остается загадкой.

Kepler-16 b - экзопланета у двойной звезды Kepler-16 в созвездии Лебедь

Заключение

Имея только поверхностное представление о том, как появилась и как эволюционирует Вселенная, человек сделал лишь маленький шаг на пути постижения и осмысливания масштабов мироздания. Грандиозные размеры и масштабы, с которыми ученым приходится сегодня иметь дело, говорят о том, что человеческая цивилизация — лишь мгновение в этом пучке материи, пространства и времени.

Модель Вселенной в соответствии с понятием присутствия материи в пространстве с учетом времени

Изучение Вселенной идет от Коперника и до наших дней. Сначала ученые отталкивались от гелиоцентрической модели. На деле оказалось, что космос не имеет реального центра и все вращение, движение и перемещение происходит по законам Вселенной. Несмотря на то, что существует научное объяснение происходящим процессам, вселенские объекты распределены на классы, виды и типы, ни одно тело в космосе не похоже на другое. Размеры небесных тел примерны, так же как и их масса. Расположение галактик, звезд и планет условно. Все дело в том, что во Вселенной нет системы координат. Наблюдая за космосом, мы делаем проекцию на весь видимый горизонт, считая нашу Землю нулевой точкой отсчета. На самом деле мы только микроскопическая частичка, затерявшаяся в бесконечных просторах Вселенной.

Вселенная – это субстанция, в которой все объекты существуют в тесной привязке к пространству и времени

Аналогично привязки к размерам, следует рассматривать время во Вселенной, как главную составляющую. Зарождение и возраст космических объектов позволяет составить картину рождения мира, выделить этапы эволюции мироздания. Система, с которой мы имеем дело, тесно связана временными рамками. Все процессы, протекающие в космосе, имеют циклы — начало, формирование, трансформацию и финал, сопровождающийся гибелью материального объекта и перехода материи в другое состояние.

Так как, сила удерживающие планеты возле Солнца и сила, принуждающая тела к падению на звёзды и планеты являются наблюдаемым фактом, то, прежде всего, следует разобраться в сути этой силы. На основания того факта, что за века ни один исследователь не смог даже предположить каким образом осуществляется процесс тяготения масс друг к другу, следует сделать вывод, что такого процесса, просто, нет во Вселенной. Ибо нельзя даже предположить, как проходит процесс лишь тот, которого нет.

Если тяготения нет, то остаётся лишь один вариант,- есть сила, действующая на тела извне, которая удерживает и планеты возле Солнца и принуждают к падению тел на звёзды и планеты.

Что же это за сила, давящая извне?

Если предположить, что в пространстве во всех направлениях движутся некие невидимые глазом корпускулы, а звёзды, планеты, атомы, встречающиеся на их пути, являются для их движения непреодолимой преградой, тогда звёзды, планеты, атомы должны под силой ударов этих корпускул со всех сторон принимать шарообразную форму, что и наблюдается в действительности. Коль эти корпускулы не проходят сквозь звёзды, планеты, атомы, то и соседние с ними объекты будут получать меньшее количество ударов с их стороны, чем со стороны свободного пространства. Этой большей силой со стороны свободного пространства объекты и принуждаются к падению на звёзды и планеты. Тогда два соседних тела под действием больших сил со стороны свободного пространства, чем со стороны соседнего тела и должны двигаться друг к другу, что и наблюдается в эксперименте Кавендиша по определению «гравитационной постоянной». Тогда становится понятной и сила, принуждающая планеты вращаться по орбитам вокруг Солнца:

Любое вращающееся тело обладает центробежной силой, что повсеместно подтверждается практикой. Корпускулы, осуществляющие центростремительную силу, порождают противодействующую силу, - силу центробежную. Сила противодействующая, естественно, всегда равна силе действующей. С какой силой корпускулы давят на планеты в направлении Солнца, с такой же силой планеты давят на корпускулы в направлении от Солнца. Равенство этих сил не позволяет планетам не удалиться от Солнца, не падать на него, в результате чего планеты и вращаются вокруг Солнца.

Из рассмотренных процессов следует вывод о том, что все процессы, которые людьми объяснялись силами процесса тяготения масс друг к другу, осуществляются силами давления на тела корпускулами извне. Что же это за среда, состоящая из корпускул материи, движущихся во все стороны? Надо полагать, что эта и есть та среда, которую издавна называли эфиром, которую ошибочно отвергли мудрецы прошедшего столетия.

3. Что собой представляет эфир?

Эфир состоит из двух разновеликих, предельно жёстких, неделимых, шарообразных корпускул. Меньшие корпускулы на несколько порядков меньше больших корпускул. Меньшая и большая корпускулы при соударении несколько деформируется, но тут же силой восстановления своей формы отбрасывается друг от друга. При соударении у корпускул нет остаточной деформации, а потому и нет потери количества движения. По этой причине меньшая корпускула движется от большей корпускулы с той же скоростью, с какой она двигалась и к ней. При этих условиях меньшие корпускулы вечно мечутся между большими корпускулами, удерживая большие корпускулы, на расстоянии друг от друга, обеспечивая упругость структуре эфира. Эта упругая решётчатая структура занимает всё пространство между звёздами, планетами и атомами. Во Вселенной нет пространства объёмом и с напёрсток, через который не проходило бы в единицу времени миллионы компонентов эфира. Так как размеры этих компонентов в миллионы раз меньше расстояния между ними, то становится понятным, что пространство между большими компонентами в структуре эфира, практически пустое.

Утверждение о неизменности количества движения компонентов эфира официальные представители науки отвергают на том основании, что фактов сохранения количества движения при столкновениях тел ни в макромире, ни в микромире нет. Правильно, нет, и не может быть потому, что наблюдаемые тела являются телами составными, они представляют собой скопления атомов, а каждый атом представляет собой вихрь, состоящий из миллиардов больших компонентов эфира, движущихся через центр атома и вокруг него и меньших компонентов эфира, мечущихся между большими компонентами эфира. При соударении тел изменяется положение атомов в структуре тела, меняется форма тел, атомы теряют часть компонентов из своего состава, а то атомы и вовсе выбиваются из структуры тел, всё это и представляет собой остаточную деформацию, на которую тратится энергия. Компоненты же эфира – монолитные, неделимые, неуничтожимые, предельно жёсткие корпускулы, представляющие собой бесструктурные наименьшие порции материи. Такие корпускулы не имеют и не могут иметь остаточной деформации, а потому не могут иметь и потери количества движения при соударениях. Компоненты эфира не могут быть и наблюдаемыми потому, что они настолько малы, что не могут отражать потоки света, а потому не могут быть наблюдаемыми в принципе.

Что собой представляют наблюдаемая материя?

Звёзды, планеты, скопления атомов являются объектами более крупными, чем элементы светового потока, по причине чего они отражают свет, который и позволяет их наблюдать.

Звёзды, планеты, атомы являются преградой на пути движения меньших компонентов эфира. Вследствие этого обстоятельства большие компоненты эфира, находящиеся возле звёзд, планет, атомов, испытывают на себе меньшее количество ударов меньшими компонентами эфира с их стороны, чем со стороны пространства, с которого нет препятствий движению меньших компонентов эфира. Это так потому, что меньшим компонентам эфира, движущимся к ним из области расположенной за звёздами, планетами, атомами преграждается путь их телами. Большее количество ударов осуществляет и большую силу. Этой большей силой извне в направлении звёзд, планет, атомов большие корпускулы эфира и весь эфир в целом и движется из огромного пространства к ним и внедряется в них. В процессе движения из больших объёмов пространства в относительно малые центральные объёмы звёзд, планет, атомов пространственный разрежённый эфир, естественно, сжимается до сверхплотного состояния. На подходе к центрам звёзд, планет, атомов поток эфира, сливается в единый поток и вливается в центральные области звёзд, планет, атомов. Количество ударов меньших компонентов по большим компонентам эфира, по мере продвижения потока эфира в их центральные области, выравнивается, а в центре звезды, планеты, атома становится равным со всех сторон. При равном давлении со всех сторон. Это-то равное давление со всех сторон и принуждает поток эфира, обладающий определённым количеством движения, менять поступательное движение на вращательное движение через центры звёзд, планет, атомов и вокруг них. Такой центробежный вихрь эфира, сжатый до сверхплотного состояния, имеет вход потока эфира в центр звезд, планет, атомов который наблюдается как северный магнитный полюс звезд, планет, атомов, имеется и выход потока, который наблюдается как южный магнитный полюс звезд, планет, атомов. В целом такие вихри эфира представляет собой магнитные диполи, которые и имеются в качестве сверхплотных ядер звёзд, планет, атомов. Внешние потоки эфира магнитных диполей, выходящие из звезды, планеты, атома в пространство, наблюдаются в качестве их магнитных полей.

Магнитные диполи звёзд, планет не имеющие достаточно мощных параметров для привлечения к себе потока эфира способного своим давлением удерживать их от распада. Их поверхностные потоки распадается на микро диполи, представляющие собой атомы. Из атомов центростремительные потоки эфира формирует оболочки вокруг диполей звезд и планет. Между оболочками диполя звезды, планеты и поверхностными слоями диполей формируются зоны мечущихся меньших компонентов эфира, которые своим давлением на диполи создают дополнительное давление необходимое для удержания их от распада. Такие образования и представляют собой звезды и планеты, которые растут в массе во времени за счёт постоянного поглощения пространственного эфира.

Атомы же, в отличие от звёзд и планет, сколько поглощают компонентов эфира, столько и излучают их в магнитное поле звезды или планеты, элементом которого атомы и являются. Процессы излучение и поглощения компонентов эфира атомами наблюдаются в качестве внутренних колебаний атомов. Посредством объединения магнитных шлейфов соседних атомов строятся структуры молекул, кристаллов и металлических решёток.

Как формируются планетные системы?

Пространственный эфир, вливаясь в магнитный диполь звезды, увеличивает его массу. В этом процессе наступает момент несоответствия массы диполя с массой его оболочек. Оболочки не могут удерживать от распада, возросший в массе магнитный диполь звезды. Вследствие чего из диполя вырывается в пространство мощная струя сверх сжатого эфира. У этой сверхплотной струи, как и у всякого плотного образования, мгновенно формируется собственный центростремительный поток эфира, силой которого струя сворачивается в самостоятельный магнитный диполь, распадающийся на атомы. По мере образования достаточно мощной оболочки, диполь прекращает распадаться на атомы. Такое новое образование, преодолевая давление центростремительного потока звезды, удаляется от неё до тех пор, пока сила извержения из звезды не становится равной силе ударов меньших компонентов эфира в направлении звезды. По достижению равенства этих сил данное образование прекращает удаляться от звезды и, переходя на орбитальное движение вокруг звезды, обретает статус планеты. В продолжение роста магнитного диполя звезды наступает очередное несоответствие массы диполя с массой его оболочек. Вследствие чего из звезды вновь извергается струя сверх плотного эфира. Каждая следующая извергаемая струя по массе больше предшествующей струи потому, что она извергается уже из звезды большей массы. Из струи большей массы образуется и планеты большей массы. Планете большей массы и сопротивление оказывает уже более мощный центростремительный поток эфира звезды, выросшей в массе. Вследствие этих обстоятельств большая звезда выходит на меньшую орбиту. После ряда таких извержений из звезды формируется стройная планетная система. На большей орбите находится меньшая по массе планета, а на каждой более внутренней орбите находится планета большей массы. По мере роста массы звезды мощность центростремительного её потока становится столь мощным, что извержения столь мощных струй сверх плотного эфира, из которых могли бы формироваться планеты, становится невозможным. По причине чего магнитный диполь звезды переходит из стадии разворачивания своей магнитной системы в стадию её свёртывания. Планета, находящаяся на внешней орбите, под растущим давлением центростремительного потока звезды, всё более меняет свою круговую орбиту на эллиптическую орбиту, и в конечном итоге, центростремительный поток срывает планету со своей орбиты и она падает вовнутрь планетной системы. Таким образом, планеты одна за другой падают вовнутрь планетной системы. Какие-то планеты при падении захватываются центростремительными потоками планет гигантов и становятся их спутниками, какие-то благополучно выходят на меньшие орбиты. При переходе на меньшие орбиты планеты гиганты сливаются, формируясь в орбитальную звезду. В конечном итоге растущий в мощности центростремительный поток центральной звезды возвращает все планеты в материнское лоно. У звезды, поглотившей планеты образуются мощные оболочки, тогда звезда и наблюдается как звезда «красный гигант». Но оболочки, быстро растущей мощью центростремительного потока, разрушаются, и остаётся голый магнитный диполь, наблюдаемый как звезда карлик. Звёзды карлики центростремительным потоком галактики собираются в центре галактики, где сливаясь, они формируют квазаг.

Квазары.

Квазаг поглощает не только массу звёзд карликов и пространственный эфир, но аккумулирует в себе и их количество движения, что выражается в росте скорости его вращения вокруг собственной оси. По мере роста скорости вращения квазаг под действием центробежной силы меняет свою шарообразную форму на форму тора, а затем тор растущей центробежной силой, разрывается на несколько магнитных диполей, вращающихся вокруг единого центра. Полушария диполей, обращённые к центру вращения, экранируются диполями от ударов меньших компонентов эфира, по причине чего из них истекают струи сверхплотного эфира в цент вращающейся системы. Струи сверх плотного эфира энергией распада на разрежённый пространственный эфир разрываются на фрагменты, которые выносятся энергией распада по обе стороны вращающейся системы, наблюдаемой в качестве квазара, - эпицентра очередной сверх галактики. ****** Таким образом, происходит очередной переход от процессов сжатия и собирания материи к процессу её распада и разбрасывания в пространстве. И тут же начинается очередной процесс собирания и сжатие материи в каждую звезду, планету. Атомы, по сути, являются агентами звёзд и планет по сбору пространственного эфира.

В заключение следует привести простой и ясный математический аппарат, дающий возможность определять силу давления движущегося эфира на тела в эфире находящиеся и определять все параметры и тел и их движения.

Людьми было выделено определённое количества массы, на которую поле Земли действует с силой в 982 дины, то есть силой, которой сообщается в поле Земли ускорение единице массы в 982 см./сек.2. Это-то количество массы и было принято за единицу массы. Но удары меньших компонентов эфира не могут наноситься по массам! Удары наносятся по площади сечения больших компонентов эфира, которые составляют массу тела. Было выделено такое количество больших компонентов эфира, площадь сечения которых составляла единицу площади, - 1 см.2. Масса в процессе давления эфира на тела принимают лишь косвенное участие. Величина силы давления эфира на тела всегда по модулю равна величине ускорения тел в данной области поля. Это так потому, что единица силы дина сообщает ускорение единице массы тела в 1см./сек.2. Поскольку у поверхности Земли ускорение тел, падающих на Землю равно 982 см./сек2., то, следовательно, на единицу площади у поверхности Земли оказываются удары меньшими компонентами эфира силой в 982 дины. Если это так, то и через единицу площади поверхности Земли проходит меньших компонентов в Землю, потенциальная сила которых равна 982 динам. Эти величины предоставляют и возможность рассчитать полную силу центростремительного потока, движущегося в Землю. На величину этой силы укажет результат умножения величины силы центростремительного потока Земли, проходящего через единицу площади поверхности Земли на величину полной площади поверхности планеты:

F = f * S = 982 дин/см 2 * 4р (6,378е+8) 2 см 2 = 5е+21 дин

В эксперименте Кавендиша по определению «гравитационной постоянной» была определена величина 6,673е-8. С точки зрения логики процессов давления центростремительного потока на объекты, эта величина является силой ударов меньших компонентов эфира по 1см.2 площади сечения больших компонентов эфира, которые содержаться в пробном теле эксперимента Кавендиша - 6,673е-8 дин/см.2. Меньшие компоненты эфира, создающие эту силу, являются лишь той частью центростремительного потока, который создаётся массой в один грамм, которая проходит ко второму пробному телу в 1 г., находящимся на расстоянии 1 см. Эта часть компонентов проходит к массе 1 г. на расстоянии одного сантиметра, через 1 см.2 сферы. Сфера же с радиусом 1 см. имеет площадь 12,56 см.2, следовательно, на полную силу центростремительного потока, создаваемой массой 1 г. укажет результат умножения этой силы на площадь сферы с радиусом 1 см.2:

F = f * S = 6,673е-8 дин/см 2 * 4 pr 2 = 8,385е-7дин

Деление полной силы центростремительного потока какого-либо объекта, на силу центростремительного потока одного грамма, даст, естественно, в результате величину массы объекта, который формирует данный центростремительный поток. Отсюда масса Земли:

M = F / f = 5е+21 дин / 8,385е-7дин = 5,963е+27 г.

Если величину полной силы центростремительного потока разделить на площадь сферы, то результат деления укажет на величину силы центростремительного потока на расстоянии равном радиусу этой сферы. Если, например, необходимо вычислить силу центростремительного потока Земли на расстоянии Луны, то необходимо силу центростремительного потока Земли разделить на площадь сферы, радиус которой равен расстоянию от Земли до Луны:

f = F / S =5е+21 дин/ 4р (3.84е+10 см.) 2 = 0,271 дин/см.2

Если понимать, что каждый объект имеет свой центростремительный поток эфира, оказывающий силу, действующую на тела в нём находящиеся, то проявляется простой математический аппарат, позволяющий рассчитывать величины масс, ускорений тел и силы, действующие на тела.

Естественно, аналогичные расчеты можно провести по любому объекту, у которого известен хоть один параметр, толи масса, толи ускорение, толи сила центростремительного потока эфира, потому как эти величины имеют строгую связь между собой.



Во вселенной все повторяется. Структура вселенной

Эволюция Вселенной - от рождения до... будущего.

“История мидян темна и непонятна. Ученые делят ее, тем не менее, на три периода:
первый, о котором ровно ничего неизвестно. Второй, который последовал за первым.
И, наконец, третий период, о котором известно столько же, сколько о первых двух”.
А. Аверченко. “Всемирная история”

Эволюция Вселенной - основные этапы.
(Важно: как возникла Вселенная - до сих пор ученые не знают, поэтому далее рассматривается процесс эволюции, или развития,Вселенной).

  1. В период времени от 0 до 10 -35 с - рассматривается теория раздувающейся (инфляционной) Вселенная, согласно которой Вселенной мгновенно раздулась до огромных размеров, а затем обратно сжалась. Образно говоря, роды Вселенной происходили в вакууме. Точнее сказать, Вселенная рождалась из вакуумоподобного состояния; законы квантовой механики позволяют считать, что пустое пространство (вакуум) в действительности заполнено частицами (материей) и античастицами (антиматерией), которые постоянно создаются, живут какое-то время, встречаются снова и аннигилируют.
    Инфляция мешает нам - она совершенно стерла все, что было во Вселенной до ее начала! Но для осуществления инфляции была необходима энергия (чтобы «раздуть» Вселенную!), откуда ее взять? Сегодня ученые предполагают, что во время инфляции «работает» сам экспоненциально расширяющийся космос с невероятным количеством скрытой в нем потенциальной энергии. Можно представить, что в инфляционный период Вселенная раздувается от «нулевых» размеров и до каких-то (возможно и очень-очень больших), но спустя примерно t=10 -35 с - 10 -34 с начинается новый период развития Вселенной – начинает работать иак называемая Стандартная модель, или модель Большого Взрыва (Big Bang).
  2. 10 -34 с - Инфляция заканчивается, в небольшой области (наша будущая Вселенная!) находится вещество и излучение. В этот момент температура Вселенной составляет не менее 10 15 К, но не более 10 29 К (для сравнения, самая высокая температура, Т=10 11 К, на сегодня возможна при вспышке Сверхновой). Вселенная, вся ее материя и энергия, сосредоточены в объеме, сопоставимым с размером одного протона (!). Возможно, в это время действует единый тип взаимодействий и проявляются новые элементарные частицы - скалярные Х-бозоны.
    После инфляционного периода расширение продолжается, но с намного меньшей скоростью: Вселенная не остается постоянной, энергия распределяется на больший объем, поэтому температура Вселенной падает, Вселенная охлаждается.
  3. 10 -33 с - разделение кварков и лептонов на частицы и античастицы. Дисимметрия между числом частиц и античастиц (антич.<частиц ~10 -10). Таким образом, вещество во Вселенной преобладает над антивеществом.
  4. 10 -10 c - T=10 15 K. Разделение сильного и слабого взаимодействий.
  5. 1 сек. Т=10 10 К. Вселенная остыла. Остались только фотоны (кванты света), нейтрино и антинейтрино, электроны и позитроны и маленькая примесь нуклонов.

Процессы рождения и аннигиляции элементарных частиц.

Отметим, что при эволюции Вселенной происходят процессы взаимного преобразования вещества в излучение и наоборот. Проиллюстрируем это тезис на примере процессов рождения и аннигиляции элементарных части. Процессы рождения пар электрон-позитрон при столкновении гамма-квантов и аннигиляции пар электрон-позитрон с превращением в фотоны: g + g -> e + + e -
e + + e - -> g + g
Для рождения пары электрон-позитрон надо затратить энергию около 1 Мэв, значит, такие процессы могут идти при температуре выше десяти миллиардов градусов (напомним, что температура Солнца около 10 8 К)

Звезды, Галактики и другие структуры Вселенной.

Как развивалась Вселенная дальше? "Распад" Вселенной (возвращение к "первоначальному равновесному" состоянию) или усложнение структуры Вселенной?
Но по какому пути пошло дальнейшее развитие Вселенной? Можно говорить о прохождении Вселенной точки бифуркации: был возможен либо “распад” Вселенной (и возвращение к “первоначальному равновесному” состоянию типа «кваркового супа»), либо дальнейшее усложнении структуры Вселенной. Наши сегодняшние представления о Вселенной свидетельствуют о переходе к более сложным и разномасштабным структурам, находящимся в сугубо неравновесных состояниях. В такой диссипативной системе возможны процессы самоорганизации.
Во Вселенной произошел скачок, и возникли разномасштабные структуры. Скачкообразный переход в новое состояние с разными подсистемами - от звезд и планет до сверхскопления Галактик. Однородная и изотропная модель Вселенной - это первое приближение, справедливое лишь в достаточно больших масштабах, превышающих 300-500 млн. световых лет. В меньших масштабах вещество распределено очень неоднородно: звезды собраны в галактики, галактики - в скопления.

Ячеистая структура Вселенной.

Размер этих ячеек около 100-200 млн. световых лет. Сжатые облака, находящиеся на стенках ячеек - это место, где в дальнейшем образуются галактики.

Образование звезд.

Вселенная представляла газовое облако. Под действием гравитации - части облака сжимаются и одновременно разогреваются. При достижении высокой температуры в центре сжатия начинают протекать термоядерные реакции с участием водорода - родилась звезда. Водород - в гелий, и в желтых карликах типа нашего Солнца больше ничего не происходит. В массивных звездах (красные гиганты) водород быстро сгорает, звезда сжимается и разогревается до температур несколько сотен миллионов градусов. Сложные термоядерные реакции - например, три ядра гелия объединяются и образуют возбужденное ядро углерода. Затем углерод с гелием образуют кислород и так далее вплоть до образования атомов железа.
Дальнейшая судьба звезды обусловлена тем, что ее железное ядро сжимается (коллапсирует) до размеров 10-20 км, при этом в зависимости от первоначальной массы звезда превращаясь в нейтронную звезду или черную дыру. В то время как ядро звезды все больше разогревается, ее внешняя оболочка, состоящая из водорода, расширяется и охлаждается. Силы тяготения могут так сжать ядро, что оно взорвется, внешние области звезды резко разогреваются, и мы видим вспышку Сверхновой. При этом в пространство со скоростью около 10 тыс.км/с выбрасывается огромное количество синтезированных химических элементов, и теперь во Вселенной существуют газопылевые облака.
Более тяжелые элементы требуют участия в реакциях заряженных частиц и нейтронов, а самые тяжелые элементы образуются при взрыве звезды - вспышка Сверхновой. Во Вселенной существуют газопылевые облака, из которых возможно образование звезд следующих поколений.

Видео - образование звезд.

Астрономические приборы


Оптический телескоп

Радиотелескоп «Аресибо» в Пуэрто-Рико – один из самых больших в мире. Расположенный на высоте 497 метров над уровнем моря, радиотелескоп ведет свои наблюдения за окружающими нас объектами Солнечной системы, начиная с 1960-х годов.



Галактики

Галактики - это стационарные звездные системы, удерживаемые за счет гравитационного взаимодействия. В нашей Галактике (Млечный путь) примерно 10 11 звезд. Галактики, как и звезды, образуют группы и скопления. Средняя плотность видимого вещества оказывается одинаковой: (3х10 -31 г/см 3 ) .


Наша галактика – Млечный путь. Вид из Национального парка Улудаг в Турции.
Полоска Млечного пути протянулась по небу над размытыми огоньками искусственного света ночных деревень и городов, лежащих внизу
(все фотографии галактик взяты с сайта http://www.astronews.ru/) .

Спиральная галактика NGC 3370 находится на расстоянии 100 миллионов световых лет от Солнца и видна на небе в созвездии Льва. По размерам и структуре она похожа на наш Млечный Путь. Это превосходное изображение большой и красивой спиральной галактики, развернутой к нам своей плоскостью, получено на космическом телескопе Хаббл

Большое Магелланово Облако - карликовая галактика, расположенная на расстоянии около 50 килопарсек от нашей Галактики.
Это расстояние вдвое превышает диаметр нашей Галактики.

В 160 миллионах световых лет от нас находятся взаимодействующие галактики NGC 6769, 6770 и 6771, занимающие площадь на небосклоне всего лишь 2 угловые минуты.

Объекты Вселенной

Нейтронные звезды

Нейтронные звезды (состоящие, в основном, из нейтронов) - очень компактные космические объекты размером около 10 км, с огромным магнитным полем (10 13 гаусс). Нейтронные звезды обнаружены в виде пульсаров (пульсирующие источники радио- и рентгеновского излучений), а также барстеров (вспышечные источники рентгеновского излучения).

Черная дыра

В черной дыре большая масса вещества заключена в малом объеме (например, чтобы Солнце стало черной дырой, его диаметр должен уменьшится до 6 км). По современным представлениям, массивные звезды, заканчивая свою эволюцию, могут сколлапсировать в черную дыру.
Помимо черных дыр, ученые обсуждают возможность существования «кротовых нор» - областей сильно искривленного пространства, но в отличие от черной дыры ее поле не настолько сильное, чтобы оттуда нельзя было выйти. Такие «норы» могут соединять отдаленные области пространства и находиться вне нашего пространства, в неком суперпространстве. Есть предположения, что эти «норы» могут соединять нас с другими вселенными. Правда, далеко не все специалисты считают, что такие объекты реально существуют, но физические законы не запрещают их наличие.

Квазары - квазизвезды - ядра галактик и представляют собой сверхмассивные черные дыры.

Будущее Вселенной.

Physicists have a good tradition,
every 13.7 billion years they get
together and build a "Large Hadron Collider."

Будет ли разлет галактик продолжаться всегда или расширение сменится сжатием? Для этого необходимо рассчитать, хватит ли сил гравитации остановить расширение (расширение идет по инерции, действуют лишь силы тяготения). Рассчитанное критическое значение плотности составляет
r кр =10 -28 г/см 3 , а экспериментальное значение r =3x10 -29 г/см 3 , т.е меньше критического значения.

Но... оказалось, что все не так просто, поскольку мы не знаем точно плотность (массу) Вселенной.

Как определить массу, а следовательно и плотность Вселенной?

Темные тайны Вселенной.

"Тёмной" материей ученые называют вещество, оказывающее ощутимое гравитационное воздействие на крупные космические объекты. При этом никакого излучения от этого вещества не регистрируется, оттуда и термин "тёмная".
Темной материи должно быть примерно в шесть раз больше обычного вещества. Поэтому ученые считают, что галактики и галактические скопления окружены гигантскими гало темной материи, которая состоит из частиц, очень слабо взаимодействующих с обычным веществом.
Считается, что темная материя состоит из особых гипотетических cлабовзаимодействующих массивных частиц–вимпов (WIMP – weakly interacting massive particle). Вимпы полностью невидимы, поскольку нечувствительны к электромагнитным взаимодействиям, главным в нашей повседневной жизни.
Темная энергия. Вселенная все время преподносит сюрпризы: оказалось, что помимо темной материи, существует и темная энергия. И эта новая, загадочная темная энергия неожиданно связана с будущим развитием Вселенной

Сегодня ученые говорят о новейшей революция в космологии.

В 1998 г. при наблюдении поведения очень отдаленных сверхновых типа Ia (с примерно одинаковой светимостью, в 4 млрд раз превышающей светимость Солнца), расположенных на расстояниях более 5 млрд световых лет, астрономы получили неожиданный результат. Оказалось, что изучаемый космический объект удаляется от нас все быстрее и быстрее, как будто что-то отталкивает его от нас, хотя гравитация должна была замедлять движение сверхновой.
Сегодня можно считать установленным, что скорость расширения нашего Мира не падает, а увеличивается.
Для объяснения этого эффекта ученые ввели понятие антигравитации, которая связана с наличием некоего поля космического вакуума. Энергию вакуума принято называть темной энергией, и она не излучает, не отражает и не поглощает света, ее невозможно увидеть – действительно, «темная энергия» в том смысле, что все скрыто во мраке. Темная энергия проявляет себя только тем, что создает… антитяготение и на ее долю приходится приблизительно 70% полной энергии мира (!!!).

Итак, из чего сделана Вселенная? В древности считали (Аристотель), что все в мире состоит из четырех стихий - огня, воды, воздуха и земли. Сегодня ученые говорят о четырех видах энергии:
1. Энергия космического вакуума, на которую приходится приблизительно 70% всей энергии Вселенной.
2. Темное вещество, с которым связано примерно 25% всей энергии Вселенной.
3. Энергия, связанная с «обычным» веществом, дает 4% всей энергии Вселенной. (Обычное вещество - это протоны, нейтроны и электроны; это вещество принято называть барионным (хотя электроны к барионам, т.е. тяжелым частицам, и не относятся). Число барионов во Вселенной неизменно: одна частица на кубический метр пространства.
4. Энергия различных видов излучений, вклад которых весьма мал - 0.01%. Излучение - это фотоны и нейтрино (а возможно, и гравитоны); в ходе космологического расширения излучение охладилось до очень низких температур - около 3 К (фотоны) и 2 К (нейтрино). Полное число фотонов и нейтрино неизменно и составляет приблизительно одну тысячу в каждом кубическом сантиметре пространства. Излучение почти идеально равномерно заполняет весь объем Вселенной,

Современные наблюдательные данные позволяют говорить, что на протяжении первых 7 млрд лет после Большого взрыва гравитирующая материя (как «обычная», так и темная) превалировала над темной энергией и Вселенная расширялась с замедлением скорости. Однако по мере расширения Вселенной плотность барионной и темной материи уменьшалась, а плотность темной энергии не изменялась, так что в конце концов антигравитация победила и сегодня она управляет миром.

Вывод- Вселенная будет расширяться неограниченно долго

Возникает естественный вопрос – как долго это будет продолжаться? Однозначно ответить на вопрос сегодня, по-видимому, невозможно. Если темная энергия не превратится во что-либо другое, расширение Вселенной будет продолжаться вечно. В противном случае расширение может смениться на сжатие. Тогда все будет определяться тем, выше или ниже критической величины окажется плотность вещества во Вселенной. Однако сегодня рассматриваются и другие подходы к эволюции Вселенной.
Сравнительно недавно физики предложили новую и весьма экзотическую модель вечно пульсирующей Вселенной.
Вернемся к вопросу: "Как образовалась Вселенная?"

Итак, ученые выдвигают теории, что развитие Вселенной началось с "первоначального вещества" с плотностью 10 36 г/см 3 с температурой 10 28 К. "Частицы" в этом первоначальном сгустке обладают огромной кинетической энергией, и вещество начинает расширяться, при этом температура и плотность Вселенной непрерывно уменьшаются. «Частицы» в горячем первоначальном сгустке обладают огромной кинетической энергией, и вещество начинает расширяться, при этом температура и плотность Вселенной непрерывно уменьшаются. Спустя малую долю секунды после рождения Вселенная как горячий суп из элементарных частиц - кварков и лептонов (кварковый суп). Вселенная расширялась и поэтому охлаждалась, благодаря самоорганизации в ней возникали новые структурные образования: нейтроны и протоны, атомные ядра, атомы, звезды, галактики, скопления галактик и, наконец, сверхскопления. В наблюдаемой нами части Вселенной содержится 100 млрд галактик, в каждой из них около 100 млрд звезд. Жизнью галактик управляет загадочная темная материя, которая с помощью гравитации удерживает звезды галактик вместе. А Вселенной как целым «дирижирует» еще более загадочная темная энергия, которая все быстрее и быстрее «расталкивает» Вселенную, что приведет к ее неминуемой гибели (!?).

Возможность зарождения Вселенной из "ничего". В целом Вселенная электронейтральна, поэтому она могла родиться из нулевого заряда. Простая аналогия: Энергия "ничего" равна нулю, но и энергия замкнутой Вселенной равна нулю, поэтому Вселенная возникла из "ничего".

Спасибо, что ознакомились с еще одной интересноой темой. Теперь стало ясно, что можно залезть по этим ступеням к вершинам знаний.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло