Влияние углеводного, жирового и белкового обмена на развитие эпилепсии. Последствия нарушения общего синтеза белка

Белковый обмен . Эпилептический процесс продолжают связывать с нарушением белкового обмена, который при эпилепсии часто изменен. Возникновение припадков связывается то с аутоинтоксикацией продуктами распада белков, то с ретенцией азота перед припадком, то с пониженным выделением мочевой кислоты. Две последние обменные аномалии, а также предприпадочную олигурию, постприпадочную полиурию, альбуминурию и цилиндрурию Вуф объясняет нарушением функции почечных сосудов и последующим реактивным их расширением. Смещение тонуса в парасимпатическом направлении вызывает падение общего содержания белков в сыворотке крови при повышении альбумин-глобулинового коэффициента и падение уровня остаточного азота, тогда как симпатикотония приводит к прямо противоположному сдвигу. Констатированное Фришем увеличение гидрофильных альбуминов перед припадком подтверждается не всеми авторами. С помощью новых методов, главным образом электрофореза, Фезнер смог подтвердить то, что Фриш установил уже в 20-х годах, а именно, что до дня припадка содержание альбуминов увеличивается, а затем снова убывает, тогда как глобулины, особенно гамма-глобулины, в этот день достигают самого низкого уровня.

Углеводный обмен . Углеводы являются самым важным энергетическим источником. Изучение дыхательного коэффициента головного мозга позволяет заключить, что для энергетического обмена веществ головного мозга белки и жиры значения, очевидно, не имеют. В нервных клетках глюкоза через глицеринальдегид, молочную, пировиноградную и уксусную кислоты расщепляется до СО2 и Н20. Углеводный обмен регулируется гипоталамусом; отсюда симпатические пути ведут к мобилизующим адреналин и повышающим количество сахара в крови надпочечникам, а парасимпатические - к инсулярному аппарату, гормон которого снижает содержание сахара в крови. Во время припадка местный углеводный обмен повышается. Недостаток глюкозы вызывает судороги и кому. Уровень сахара натощак, колеблющийся у здоровых людей между 70 и 100 мг%, при генуинной эпилепсии нередко снижен. Гипогликемии, часто обусловленные аденомами поджелудочной железы, выражаются в бледности, дрожании, потливости, головной боли, головокружении, затемнении сознания и судорогах и могут быть купированы с помощью введения декстрозы.

Жировой обмен . О значении жирового обмена для эпилептического процесса говорит действие кетогенной диеты, при которой в организм поступает много жиров и мало углеводов. Отложению жиров содействует гормон поджелудочной железы, мобилизации жира из печени - адреналин, а сгоранию жиров - гормон щитовидной железы.

Холестерин, образующийся и накапливающийся в надпочечниках, способствует дегидратации клеток, тогда как другой липоид - лецитин - обусловливает обогащение тканей хлором и водой. В надпочечниках больных эпилепсией среднее содержание холестерина на 300% выше нормы; по-видимому, больные эпилепсией нуждаются после припадка в повышенном количестве этого важного для восстановления мышечной силы вещества. Сельбах допускает, что это увеличение холестерина является последствием многочисленных неспецифических стресс-реакций. Мак Кверри видит в нем защитную реакцию против повышенной ретенции воды. Гиперхолестеринемия может, однако, свидетельствовать об обеднении клеток холестерином, что благоприятствует появлению судорог. При симпатикотонии, гипертиреозе и гипогликемической коме уровень холестерина в крови понижается, тогда как при усилении парасимпатического тонуса, при

Несмотря на то, что врожденные нарушения процесса метаболизма встречаются весьма редко, чтобы их возможно было рассматривать как причину развития эпилепсии, эпилептический приступ является частым признаком метаболических нарушений. Во время некоторых таких метаболических нарушений болезнь устраняется специальным лечением диетой и добавками.

Однако в большинстве случаев такое лечение не дает прогресса, и требуется назначать общепринятую классическую противоэпилептическую терапию, которая весьма часто становиться низкоэффективной. При этом не так часто типы эпилептических приступов являются особыми для тех или иных метаболических нарушений, и с помощью электроэнцефалографии обычно не фиксируются.

Для определения качественного диагноза, нужно иметь в виду другие симптоматические признаки и синдромы, а также не нужно исключать случаев, связанных с дополнительными методами .

Предлагается перечень наиболее значимых симптомов эпилептических приступов, обусловленных врожденными метаболическими нарушениями, нарушениями памяти, периодическими интоксикациями и весьма частыми нарушениями нейротрансмиттерных систем.

Так же не следует забывать о витамино-чувствительной эпилепсии и некоторые других метаболических нарушениях, возможно похожих по патогенезу, и важность их признаков для лечения и диагностики. И так классифицируем эпилепсию по метаболическим нарушениям: эпилепсия при врожденных нарушениях метаболизма, где приступы могут быть причиной недостатка энергозатрат, выраженными интоксикациями, периодическими нарушениями памяти, повреждениями нейротрансмиттерных систем со случаями отсутствия торможения или возбуждения, которые могут быть связаны с мальформациями сосудов мозга.

Сюда же относятся приступы связанные с энергетическим дефицитом, которые в свою очередь обусловлены гипоклемией, дефицитом в дыхательной цепочке, а так же дефицитом креатина и митохондриальными нарушениями. В свою очередь эпилептические приступы, связанные с токсическими нарушениями, обусловлены аминокислопатией, органическими ацидуриями, дефектами цикла мочевины.

В качестве примера рассмотрим нарушение метаболизма креатина, которое состоит из трех различных причин. Среди которых нарушение транспорта креатина в головной мозг вызванное нарушением сцепленного транспортера креатина, следующее — это нарушение синтеза креатина вследствие дефекта гуанидинацетат метилтрансфераза и заключительная причина это аргининглицин-амидинтрансфераза.

Однако только дефицит гуанидинацетат метилтрансфераза постоянно ассоциируется с эпилепсией, которая резистентная к общепринятой терапии.

Превентивное назначение добавок с креатином весьма часто приводит к улучшению состояния пациента. Но все же у некоторых пациентов понижение токсических составляющих гуанидинацетата путем ограничения количества употребления аргинина с добавками, которые содержат орнитин, позволило достичь возможности контролировать эпилептические приступы.

К этому следует добавить , которое имеет возможность практически полностью предотвратить появление неврологических симптомов. Современная медицина выделяет множество типов эпилептических приступов, которые в свою очередь также разнообразны.

Приступы есть симптомом для большого количества метаболических нарушений, встречающихся в эпилепсии. Весьма часто эпилептические приступы возникают только тогда, пока не назначена адекватная терапия, или же являются последствиями острого декомпенсированного нарушения метаболизма, к которым можно отнести, например, гипогликемия или гипераммониемия.

А в некоторых случаях эпилептический приступ является общим проявлением заболевания и могут вести к медикаментозно-резистентной эпилепсии, такой как например, синдром дефицита креатинина и дефицита гуанидинацетат метилтрансферазы.

В других случаях эпилепсию, вызванную метаболическими нарушениями предупреждают ранним назначением индивидуально подобранного «метаболического» лечения, которое используют после скринингового обследования пациентов, страдающих фенилкетонурией или дефицитом биотинидазы.

При таких расстройствах, как глютеновая ацидурия первого типа, «метаболическая» терапия назначается совместно со стандартными противоэпилептическими препаратами; но не следует забывать, что при многих метаболических нарушениях единственным средством для локализации эпилептических приступов будет монотерапия противоэпилептическими препаратами.

Генетика калиевых и натриевых каналов и эпилепсия

Причинами пароксизмальных состояний могут быть изменения строения и функций Na+-, Ca2 +-, Cl--, K+-каналов. Канал – одна молекула белка, она характеризуется строгой селективностью в отношении вида пропускаемого иона, имеет воротное устройство, которое управляется потенциалом на мембране (рис. 4, а). Возникновение и проведение нервных импульсов зависит от состояния ионных каналов. Последние десять лет изучаются наследственные заболевания нервной системы, получившие новое название – "каналопатия". Нарушения связывают с локализацией генов в хромосомах: 19q13.1 (Na+-канал), 12р13, 20q13.3, 8q24 (К+-канал), 7q (Cl--канал). Раскрытие молекулярной структуры каналов помогло понять особенности наследования эпилепсии.

Нервный импульс есть следствие перемещения через мембранные каналы Na+ в клетку, а K+ из клетки. Входящие по ионному градиенту положительно заряженные ионы Na+ создают деполяризующий мембрану ток, уменьшающий мембранный потенциал до нуля, а затем перезаряжающий мембрану до + 50 мВ. Так как состояние этих каналов зависит от знака заряда на мембране, положительный потенциал мембраны способствует инактивации натриевых каналов и открытию калиевых каналов. Теперь выходящие из клетки ионы K+ создают ток, перезаряжающий мембрану и восстанавливающий ее потенциал покоя. Нарушения Na+-каналов приводят к изменению деполяризации клетки, а нарушения K+-каналов – к нарушению поляризации. Открытие в 1980 г. Д. Брауном и П. Адамсом низкопороговых М-токов через неинактивирующиеся KCNQ2/KCNQ3-калиевые каналы помогло понять природу предрасположенности к эпилепсии. М-токи изменяют возбудимость клетки и предотвращают возникновение эпилептической активности нейрона. Нарушение генов KCNQ2/KCNQ3-калиевых каналов ведет к заболеванию "семейные неонатальные судороги", возникающему у ребенка на 2-3-й дни после рождения. Недавно синтезированное лекарство ретигабин помогает больным эпилепсией за счет того, что открывает KCNQ2/KCNQ3-каналы в мембранах нейронов. Это пример того, как фундаментальное изучение каналов помогает синтезировать новые лекарства против каналопатий.

Мы уже упоминали два локуса, ответственные за ФС. Новые исследования показали вовлеченность еще одной области 19q13.1, ответственной за синтез b1-субъединицы Na+-канала. Мутации в этой области определяют возникновение фебрильных судорог в сочетании с генерализованной эпилепсией. Na+-канал состоит из одной a- (образующей пору) и двух b-субъединиц, последние модулируют процесс инактивации канала, то есть работу a-субъединицы (см. рис. 4, а). Влияние на воротную систему a-субъединицы зависит от структуры экстраклеточного домена b1-субъединицы. Отвечающий за b1-субъединицу ген SCN1B был обоснованно выбран для исследований, поскольку действие основных противосудорожных средств фенитоина и карбамазепина заключается в инактивации натриевых каналов. Более того, уже было извеcтно, что мутации этого гена в мышечной клетке приводят к пароксизмальным возбуждениям (миотония, периодический паралич), а в сердечных клетках – к увеличению интервала QT в ЭКГ. Именно в области дисульфидного мостика происходит мутация, приводящая к его разрушению и изменению структуры экстраклеточного домена b1 (рис. 4, б). Перенос гена в ооцит Xenopus laevis и индукция синтеза дефектного канала позволили электрофизиологически исследовать мутантный канал и доказать, что он инактивируется медленнее (см. рис. 4, б). Очень важно, что у таких больных нет изменений в клетках сердечной мышцы и скелетной мускулатуре, а мутация наблюдается только для нейронной изоформы Na+-каналов. Данная мутация была выявлена в результате исследований австралийских генетиков. Было проведено изучение шести генераций семей (378 человек), проживающих в основном в Тасмании и имеющих семейные истории по ФС в сочетании с генерализованной эпилепсией. Эти работы открыли новый путь для изучения идиопатических форм эпилепсии, которые могут быть результатом еще неизвестных форм каналопатий.

Не менее важны нарушения синтеза белков-рецепторов к медиаторам. Аутосомное доминантное наследование ночной лобной эпилепсии связывают с хромосомой 20 (локализация гена в q13.2 – q13.3), а проявление этой формы эпилепсии – с мутацией S248F генетического кода a4-субъединицы Н-холинорецептора. Изменению подвергается "стенка" белка-канала, его трансмембранный 2-й сегмент, в котором аминокислота серин замещена на фенилаланин. Были обнаружены и нарушения в регуляции экспрессии гена b-субъединицы белка NMDA-рецептора к возбуждающему медиатору – глутамату, выброс которого клетками мозга инициирует эпилептический приступ. Если в процессе редактирования иРНК произойдет замена глютамина на аргинин в мембранном домене, возникшее нарушение альтернативного сплайсинга (подробнее см. ) уже достаточно для существенного повышения возбудимости нейронов гиппокампа.

Наследование "эпилепсии горячей воды"

В одном из постерных докладов индийских неврологов на конгрессе по эпилепсии в Осло в 1993 г. мы неожиданно увидели что-то напоминающее средневековую китайскую казнь: неподвижной крысе капали на голову горячую воду, пока не наступал тяжелый эпилептический припадок. Непредвзятое изучение этого доклада показало, что создаваемые мучения крысы вызваны желанием понять тяжелый недуг, который именно в многонаселенной Индии охватывает почти 7% всех больных эпилепсией и составляет 60 случаев на 100 тыс. заболеваний. Этот феномен близок гипертермически вызываемым судорогам, рассмотренным выше.

Случай появления эпилептического припадка при мытье головы горячей водой впервые был описан в Новой Зеландии в 1945 г. Больной человек при мытье головы (а в традициях индусов эта процедура повторяется раз в 3-15 дней) горячей водой при температуре 45-50°С испытывает ауру, галлюцинации, заканчивающиеся парциальными или генерализованными судорогами с потерей сознания (мужчины чаще, чем женщины в 2-2,5 раза). Есть возможность измерить наиболее близко температуру мозга, введя специальный электротермометр внутрь слухового канала близко к барабанной перепонке. Оказалось, что у больных температура мозга в начале мытья головы очень быстро поднимается (каждые 2 мин на 2-3°С) и очень медленно

снижается после прекращения мытья. Их мозг медленно (10-12 мин) "остывает", тогда как у здоровых добровольцев, участвующих в таких экспериментах, мозг "остывает" практически мгновенно после прекращения купания. Естественно возник вопрос: какие отклонения в терморегуляции являются причиной болезни и не определены ли они генетически? Истинную причину раскрыли исследования близнецов и данные семейного анализа. Оказалось, что в Индии до 23% всех случаев "эпилепсия горячей воды" повторяется в следующих поколениях.

ФС, как мы уже говорили, являются следствием аутосомального доминантного наследования в одном локусе хромосомы – 8q13-21. При "эпилепсии горячей воды" изменения одного локуса недостаточны для объяснения всего комплекса болезни. Появление больного фенотипа (обоего пола) может быть связано с аутосомальной рецессивной мутацией, ведущей к этому заболеванию. Наблюдения за пятью поколениями нескольких семей в Индии показало, что болезнь возникает у детей близкородственных родителей, например в браке между племянниками. В южной Индии сохранились традиции таких близкородственных браков, чем, по-видимому, и можно объяснить высокий процент больных по сравнению с другими штатами.

Последствия нарушения общего синтеза белка

Длительное и значительное понижение синтеза белка приводит к развитию дистрофических и атрофических нарушений в различных органах и тканях вследствие недостаточного обновления структурных белков. Замедляются процессы регенерации. В детском возрасте тормозятся рост, физическое и умственное разви-

тие. Снижается синтез различных ферментов и гормонов (СТГ, антидиуретический и тиреоидный гормоны, инсулин и др.), что приводит к эндокринопатиям, нарушению других видов обмена (углеводного, водно-солевого, основного). Понижается содержание белков в сыворотке крови в связи со снижением их синтеза в гепатоцитах. Вследствие этого в крови уменьшается онкотическое давление, что способствует развитию отеков. Уменьшается продукция антител и других защитных белков и, как следствие, снижается иммунологическая реактивность организма. В наиболее выраженной степени эти расстройства возникают в результате длительного нарушения усвоения белков пищи при различных хронических заболеваниях органов пищеварения, а также при длительном белковом голодании, особенно если оно сочетается с дефицитом жиров и углеводов. В последнем случае повышается использование белка в качестве источника энергии.

Причины и механизм нарушения синтеза отдельных белков. В большинстве случаев эти нарушения имеют наследственную природу. В основе их лежит отсутствие в клетках информационной РНК (иРНК), специфической матрицы для синтеза какого-либо определенного белка, или нарушение ее структуры вследствие изменения структуры гена, на котором она синтезируется. Генетические нарушения, например замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности.

К образованию аномальных белков могут привести отклонения от нормы в структуре иРНК, мутации транспортной РНК (тРНК), вследствие чего к ней присоединяется несоответствующая аминокислота, которая и будет включаться в полипептидную цепь при ее сборке (например, при образовании гемоглобина).

Процесс трансляции является сложным, совершающимся при участии ряда ферментов, и нарушение функции какого-либо из них может привести к тому, что та или другая иРНК не передаст закодированную в ней информацию.

Нарушение синтеза отдельных белков-ферментов или структурных белков лежит в основе различных наследственных болезней (гемоглобинозы, альбинизм, фенилкетонурия, галактоземия, гемофилия и многие другие - см. раздел 5.1). Нарушение какой-либо ферментативной функции чаще всего связано не с отсутствием соответствующего белка - фермента, а с образованием патологически измененного неактивного продукта.

Причины, механизм и последствия повышенного распада тканевых белков. Наряду с синтезом в клетках организма постоянно происходит деградация белков под действием протеиназ. Обновление белков за сутки у взрослого человека составляет 1-2% общего количества белка в организме и связано преимущественно с деградацией мышечных белков, при этом 75-80% освободившихся аминокислот вновь используется для синтеза.

Азотистый баланс - интегральный показатель общего уровня белкового обмена, это суточная разница между поступающим и выделяющимся из организма азотом,

У здорового взрослого человека процессы распада и синтеза белка уравновешены, т.е. имеется азотистое равновесие. При этом суточная деградация белка составляет 30-40 г.

Азотистый баланс может быть положительным или отрицательным.

Положительный азотистый баланс: поступление в организм азота превышает его выведение, т.е. синтез белка преобладает над его распадом. Отмечается при регенерации тканей, в период выздоровления после тяжелых болезней, при беременности, в детском возрасте, при гиперпродукции СТГ, при полицитемии.

При патологии распад белка может превалировать над синтезом и азота поступает в организм меньше, чем выделяется (отрицательный азотистый баланс).

Причинами отрицательного азотистого баланса являются: инфекционная лихорадка; обширные травмы, ожоги и воспалительные процессы; прогрессирующий злокачественный опухолевый рост, эндокринные заболевания (сахарный диабет, гипертиреоз, гиперкортицизм); тяжелый эмоциональный стресс; обезвоживание, белковое голодание, лучевая болезнь; гиповитаминозы А, С, В 1 , В 2 , В 6 , РР, дефицит фолиевой кислоты. В механизме усиленного распада белков при многих из перечисленных состояний лежит повышенная продукция катаболических гормонов.

Следствием отрицательного азотистого баланса являются дистрофические изменения в органах, похудание, в детском возрасте - задержка роста и умственного развития.

(учебно-методическое пособие для самостоятельной работыстудентов)

координационным методическим Советом Казанского государственного медицинского университета

ПАТОЛОГИЯ БЕЛКОВОГО ОБМЕНА (учебно-методическое пособие для самостоятельной работы студентов). Казань 2006. - 20 с.

Составители: проф. М.М.Миннебаев, Ф.И.Мухутдинова, проф. Бойчук СВ., доц. Л.Д.Зубаирова, доц. А.Ю.Теплов.

Рецензенты: проф. А.П.Цибулькин проф. Л.Н.Иванов

В связи с многообразием функций белков, их своеобразной «вездесущностью» белковый обмен является достаточно ранимым звеном в обмене веществ. Соответственно, при многих патологических процессах первичные и вторичные нарушения в различных звеньях белкового обмена занимают существенное место в их патогенезе и в конечном итоге определяют степень реализации защитно-приспособительных реакций и адаптивных механизмов.

Методпособие составлено с учетом соответствующего раздела программы патологической физиологии.

Введение

Все белки находятся в состоянии непрерывного активного метаболизма - распада и синтеза. Обменом белка обеспечивается вся пластическая сторона жизнедеятельности организма. В зависимости от возраста имеет место положительный и отрицательный азотистый баланс. В молодом возрасте преобладает положительный азотистый баланс (усиленный рост), а в зрелом и пожилом возрастах - состояние динамического азотистого равновесия, то есть стабилизирующий синтез, поддерживающий морфологическую целостность организма. В более пожилом возрасте - преобладание катаболических процессов. Регенерационный синтез, встречающийся в патологии, тоже является примером положительного азотистого баланса. За недельный период времени в печени обновляется до 50% азота, а в скелетной мускулатуре за это же время обновляется лишь 2,5%.

Патология белкового обмена - это патология соответствия процессов синтеза и распада белков. Основная патология белкового обмена - общая белковая недостаточность, которая характеризуется отрицательным азотистым балансом. Наряду с возможностью развития этой общей формы нарушения белкового обмена, такое же нарушение может иметь место и в отношении отдельных видов белков (нарушение синтеза какого-либо вида белка в целом организме или в каком-нибудь органе).

Межуточное звено в белковом обмене - нарушение обмена аминокислот. К патологии белкового обмена относится также нарушение образования и выведения конечных продуктов в белковом обмене (то есть патология собственно азотистого обмена).

Общая белковая недостаточность

Она может иметь алиментарное происхождение, или вследствие нарушения нейроэндокринных механизмов синтеза и распада, или клеточных механизмов синтеза и распада. Возникновение алиментарной общей белковой недостаточности объясняется:

1. Запасные формы белков в организме отсутствуют (как это имеет место в углеводном и жировом обменах);

    Азот животной клеткой усваивается лишь в форме аминогрупп, аминокислот;

    Углеродные скелеты независимых аминокислот имеют отличительную структуру и не могут быть синтезированы в организме. Отсюда белковый обмен зависит от поступления аминокислот извне с пищей. Обмен аминокислот взаимосвязан с обменом энергетических веществ. Продукты аминокислот также могут быть использованы как энергетический материал - это глюкогенные и кетогенные аминокислоты. С другой стороны, синтез белков всегда сопряжен с использованием энергии.

Если поступление энергетических материалов не обеспечивает потребность организма, то на энергетические нужды используются белки. Так, при поступлении лишь 25% всего необходимого энергетического материала (глюкозы, жиров), весь поступивший с пищей белок используется как энергетический материал. В этом случае анаболическая ценность белков равна нулю. Отсюда, недостаточное поступление жиров, углеводов приводит к нарушению обмена белков. Витамины В 6 , В 12 , С, А являются коферментами ферментов, осуществляющие биосинтетические процессы. Отсюда - витаминная недостаточность тоже вызывает нарушения в обмене белков.

При недостаточности поступления белков или переключение их на энергетические рельсы (как результат недостаточного поступления жиров или углеводов) происходят следующие явления:

1. Резко ограничивается интенсивность анаболических процессов активного метаболизма белковых структур и уменьшается количество выделяющегося азота;

2. Перераспределение эндогенного азота в организме. Это факторы приспособления к недостатку белка.

Избирательная белковая недостаточность (белковое голодание) - в этих условиях на первый план выступает ограничение выведения азота и перераспределение его в организме. При этом выявляется неоднородность нарушений в белковом обмене в разных органах: активность ферментов ЖКТ

резко ограничивается, а синтез катаболических процессов не нарушается. При этом белки сердечной мышцы все же страдают меньше. Активность ферментов дезаминирования падает, а ферменты трансаминирования свою активность сохраняют значительно дольше. Образование эритроцитов в костном мозгу длительное время сохраняется, а образование глобина в структуре гемоглобина нарушается очень рано. В эндокринных железах - развиваются атрофические изменения. В клинике в основном встречается неполное белковое голодание.

Причинами неполного белкового голодания (частичной недостаточности) являются: а) нарушение усвоения белков; б) непроходимость ЖКТ; в) хронические заболевания с понижением аппетита. При этом белковый обмен нарушается как в результате недостаточного их поступления, так и использования белков как энергетического материала. На этом фоне приспособительные процессы в какой-то мере компенсирует белковый дефицит, поэтому белкового истощения долго не развивается и азотистый баланс длительное время сохраняется (безусловно, хотя и на низком уровне). В результате снижения метаболизма белков, структура и функция многих органов нарушается (происходит потеря белка структур печени, кожи, скелетной мускулатуры). Следует отметить, что при этом имеет место относительное сохранение синтеза одних белков при нарушении синтеза других видов белков. Ограничивается синтез плазменных белков, антител, ферментов (в том числе пищеварительного тракта, что ведет к вторичному нарушению усвоения белков). Как результат нарушения синтеза ферментов углеводного и жирового обменов нарушаются метаболические процессы в обмене жиров и углеводов. Приспособление к неполному белковому голоданию лишь относительное (в особенности у растущих организмов). У молодых организмов приспособительное снижение

интенсивности белкового обмена (замедления метаболизма) менее совершенно, чем у взрослых. В условиях регенерации и реконвалесценции длительное время не наблюдается полного восстановления структуры и, длительно не заживают раны. Таким образом, при длительном неполном голодании может наступить выраженное белковое истощение и гибель. Неполное белковое голодание встречается часто с нарушением усвоения

белков, что имеет место при любых комбинациях изменений скорости гидролиза, продвижения пищевых масс и всасывания этих продуктов - чаще всего при различных формах нарушения секреторной функции ЖКТ, деятельности поджелудочной железы и при патологии стенки тонкого кишечника. Функция желудка в гидролизе белков заключается:

1. Эндопептидаза - пепсин - разрывает внутренние пептидные связи, в результате чего образуются полипептиды.

2. Резервирующая роль и порционное поступление пищевой массы в нижележащие отделы ЖКТ (этот процесс нарушается при ускорении перистальтики). Эти две функции желудка нарушаются при ахилических состояниях, при снижении активности пепсина (или мало секретируется пепсиногена): уменьшается набухание пищевых белков, и пепсиноген плохо активируется. В конечном итоге возникает относительная недостаточность гидролиза белков.

Нарушение усвоения белков в верхних отделах ЖКТ может быть: при недостатке панкреатического сока (панкреатит). Причем, нарушение активности трипсина может быть первичное или вторичное. Может иметь место недостаточная активность и недостаточное количество кишечного сока, так как в нем содержится энтерокиназа, активирующая превращение трипсиногена в трипсин, химотрипсиногена в химотрипсин. Недостаточная активность или количество трипсина в свою очередь приводит к нарушению действия и кишечных протеолитических ферментов - экзопептидаз кишечного сока: аминополипептидаз и дипептидаз, которые отщепляют отдельные аминокислот.

При энтероколитах, сопровождающихся снижением сокоотделения, ускоренной моторикой и нарушением всасывания слизистой тонкого кишечника, развивается комплексная недостаточность усвоения белка. Особое значение имеет ускоренная перистальтика, так как нарушается контакт химуса и кишечной стенки (этим самым нарушается пристеночное пищеварение, которое важно для отщепления аминокислот и последующего всасывания). Процесс всасывания в кишечнике активный процесс: 1. Адсорбция аминокислот на поверхности слизистой кишечника; мембрана эпителиальных клеток содержит

много липидов, что снижает отрицательный заряд слизистой. 2. Ферменты, участвующие в транспорте аминокислот (фосфоамидаза, возможно также и трансфераза) через эпителий кишечника, вероятно, имеет групповую принадлежность (то есть для разных групп аминокислот существуют разные транспортные системы, так как между аминокислотами при всасывании создаются конкурентные взаимоотношения). При энтероколитах отечное состояние слизистой, ускорение моторики и ослабление энергетического обеспечения процесса всасывания нарушают всасывание в кишечнике. Таким образом, нарушается качественная сбалансированность поступающих аминокислот (неравномерное во времени всасывание отдельных аминокислот, нарушение соотношения аминокислот в крови - дисбаланс). Развитие дисбаланса между отдельными аминокислотами при патологии усвоения возникает потому, что всасывание отдельных аминокислот идет в разное время в процессе пищеварения по мере отщепления аминокислот. Скажем, тирозин и триптофан отщепляются уже в желудке. Весь переход в аминокислоты пищевых белков осуществляется за 2 часа (за это время они уже в крови появляются), а при патологии этот период удлиняется. Из крови аминокислоты попадают в клетки, где или используются для синтеза или же дезаминируются. А для прохождения синтеза нужно, чтобы все партнеры аминокислот были одновременно вместе и в определенных соотношениях. При нарушении процессов же всасывания нарушается это соотношение и аминокислоты идут не на синтез белков, а по пути дезаминирования и деградируют. Наступает аминокислотный дисбаланс. Такое явление наступает и при питании только одним видом пищевого белка (однообразное питание). Состояние дисбаланса и нарушение синтеза может проявиться в развитии интоксикации (при перегрузке организма какими-либо отдельными видами аминокислот, они оказывают токсический эффект, или в результате избыточного дезаминирования). Отдельные аминокислоты при распаде образуют токсические продукты. В конце концов, возникает общий дефицит белка как результат недостаточного поступления его или нарушения переваривания и всасывания и т.д. Другой стороной дисбаланса является нарушение белкового обмена при избирательной

недостаточности отдельных аминокислот (имеется в виду, незаменимых) и тут преимущественно нарушается синтез белка, в составе которого данная аминокислота преобладает. Это аминокислотная недостаточность. Итак, алиментарные нарушения белкового обмена могут быть связаны с количественным недостатком, качественным однообразием, количественным дефицитом отдельных аминокислот, с количественным преобладанием отдельных аминокислот - все они объединяются в понятии дисбаланс.

Нарушения нейрогуморальных процессов также могут лежать в основе нарушения процессов синтеза и распада белка. У высокоразвитых животных регуляция синтеза белка осуществляется нервной системой и гормонами. Нервная регуляция идет двумя путями: 1. Прямого воздействия (трофическая). 2. Через опосредованные воздействия - через гормоны (изменение функции эндокринных желез, гормоны которых имеют непосредственное отношение к обмену белка).

Классификация видов белкового синтеза и гормональная



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло