Отделы нервной системы человека. Строение нервной системы

Отделы нервной системы

Все части нервной системы взаимосвязаны. Но для удобства рассмотрения мы разделим ее на два основных отдела, каждый из которых включает два подотдела (рис. 2.8).

К центральной нервной системе относятся все нейроны головного и спинного мозга. К периферической нервной системе относятся все нервы, соединяющие головной мозг и спинной мозг с другими частями тела. Периферическая нервная система делится далее на соматическую систему и автономную систему (последнюю называют также вегетативной).

Чувствительные нервы соматической системы передают в центральную нервную систему информацию о внешних стимулах, поступающую от кожи, мышц и суставов; из нее мы узнаем о боли, давлении, колебаниях температуры и пр. Двигательные нервы соматической системы передают импульсы от центральной нервной системы к мышцам тела, инициируя движение. Эти нервы контролируют все мышцы, участвующие в произвольных движениях, а также непроизвольных регуляциях позы и равновесия.

Нервы автономной системы идут к внутренним органам и от них, регулируя дыхание, сердечный ритм, пищеварение и др. Автономная система, играющая ведущую роль в эмоциях, будет рассмотрена ниже в этой главе.

Большинство нервных волокон, соединяющих различные части тела с головным мозгом, собираются вместе в спинном мозге, где их защищают кости позвоночника. Спинной мозг чрезвычайно компактен и едва достигает диаметра мизинца. Некоторые простейшие реакции на стимулы, или рефлексы, выполняются на уровне спинного мозга. Это, например, коленный рефлекс - распрямление ноги в ответ на легкое постукивание по сухожилию на коленной чашечке. Доктора часто используют этот тест для определения состояния спинномозговых рефлексов. Естественная функция этого рефлекса - обеспечивать распрямление ноги, когда колено стремится согнуться под действием силы тяжести, так чтобы тело оставалось стоячим. Когда по коленному сухожилию ударяют, прикрепленная к нему мышца растягивается и сигнал от находящихся в ней чувствительных клеток передается по сенсорным нейронам в спинной мозг. В нем сенсорные нейроны синаптически контактируют непосредственно с моторными нейронами, которые посылают импульсы назад в ту же самую мышцу, заставляя ее сокращаться, а ногу - распрямляться. Хотя эта реакция может осуществляться одним спинным мозгом без всякого вмешательства головного мозга, она модифицируется сообщениями от высших нервных центров. Если непосредственно перед ударом по колену вы сожмете кулаки, то выпрямляющее движение будет преувеличено. Если вы упредите доктора и захотите сознательно притормозить этот рефлекс, то у вас это может получиться. Основной механизм встроен в спинной мозг, но на его работу могут влиять высшие мозговые центры.

Организация мозга

Возможны различные способы теоретического описания мозга. Один из таких способов представлен на рис. 2.9.

Рис. 2.9.

Задний отдел головного мозга включает все структуры, локализованные в задней части мозга. Средний отдел расположен в средней части мозга, а фронтальный отдел включает структуры, локализованные в передней части мозга.

Согласно данному подходу, мозг разделен на три зоны, в соответствии с их локализацией: 1) задний отдел, включающий все структуры, локализованные в задней, или затылочной, части головного мозга, ближайшей к спинному мозгу; 2) средний (срединный отдел), расположенный в центральной части мозга и 3) передний (фронтальный) отдел, локализованный в передней, или фронтальной, части мозга. Канадский исследователь Пол Маклин предложил другую модель организации мозга, основанную на функциях структур мозга, а не на их локализации. Согласно Маклину, мозг состоит из трех концентрических слоев: а) центрального ствола, б) лимбической системы, и в) больших полушарий (называемых в совокупности большим мозгом). Взаимное расположение этих слоев показано на рис. 2.10; для сравнения компоненты поперечного сечения мозга более подробно показаны на рис. 2.11.

Рис. 2.10.

Центральный ствол и лимбическая система показаны целиком, а из больших полушарий показано только правое. Мозжечок контролирует баланс и мышечную координацию; таламус служит коммутатором для сообщений, поступающих от органов чувств; гипоталамус (его нет на рисунке, но он находится под таламусом) регулирует эндокринные функции и такие жизненно важные процессы, как обмен веществ и температура тела. Лимбическая система имеет отношение к эмоциям и действиям, направленным на удовлетворение основных потребностей. Кора больших полушарий мозга (наружный слой клеток, покрывающих большой мозг) является центром высших психических функций; здесь регистрируются ощущения, инициируются произвольные действия, принимаются решения и вырабатываются планы.

Рис. 2.11.

Схематически показаны основные структуры центральной нервной системы (у спинного мозга показана только верхняя часть).

Центральный ствол мозга

Центральный ствол, известный также как ствол головного мозга, контролирует непроизвольное поведение, в частности кашель, чихание и отрыжку, а также такие «примитивные» формы поведения, находящиеся под произвольным контролем, как дыхание, рвота, сон, прием пищи и воды, температурная регуляция и сексуальное поведение. Ствол головного мозга включает все структуры заднего и среднего отделов мозга и две структуры переднего отдела, гипоталамус и таламус. Это означает, что центральный ствол простирается от заднего до переднего отдела головного мозга. В этой главе мы ограничим наше обсуждение пятью структурами ствола - продолговатый мозг, мозжечок, таламус, гипоталамус и ретикулярная формация, - ответственными за регуляцию наиболее важных примитивных форм поведения, необходимых для выживания. В таблице 2.1 перечислены функции этих пяти структур, а также функции коры головного мозга, мозолистого тела и гиппокампа.

Таблица 2.1.

Первое небольшое утолщение спинного мозга там, где он входит в череп, - это продолговатый мозг: он контролирует дыхание и некоторые рефлексы, помогающие организму сохранять вертикальное положение. Кроме того, в этом месте основные нервные пути, выходящие из спинного мозга, перекрещиваются, в результате чего правая сторона мозга оказывается связанной с левой стороной тела, а левая сторона мозга - с правой стороной тела.

Мозжечок. Извилистая структура, прилегающая сзади к стволу мозга немного над продолговатым мозгом, называется мозжечком. Он отвечает преимущественно за координацию движений. Определенные движения могут инициироваться на более высоких уровнях, но их тонкая координация зависит от мозжечка. Повреждение мозжечка приводит к порывистым, нескоординированным движениям.

До недавнего времени большинство ученых полагали, что мозжечок занят исключительно точным контролем и координацией движений тела. Однако некоторые новые любопытные данные указывают на существование прямых нервных связей между мозжечком и передними отделами головного мозга, отвечающими за речь, планирование и мышление (Middleton & Strick, 1994). Такие нервные связи у человека гораздо обширнее, чем у обезьян и других животных. Эти и другие данные позволяют предположить, что мозжечок может участвовать в контроле и координации высших психических функций ничуть не меньше, чем в обеспечении ловкости телодвижений.

Таламус. Непосредственно над продолговатым мозгом и под большими полушариями располагаются две яйцеобразные группы ядер нервных клеток, образующие таламус. Одна область таламуса действует как релейная станция; она направляет в головной мозг информацию, поступающую от зрительных, слуховых, тактильных и вкусовых рецепторов. Другая область таламуса играет важную роль в контроле сна и бодрствования.

Гипоталамус гораздо меньше таламуса и расположен точно под ним. Центры гипоталамуса опосредуют еду, питье и сексуальное поведение. Гипоталамус регулирует эндокринные функции и поддерживает гомеостаз. Гомеостазом называется нормальный уровень функциональных характеристик здорового организма, таких как температура тела, сердечный ритм и кровяное давление. Во время стресса гомеостаз нарушается, и тогда в ход запускаются процессы, направленные на восстановление равновесия. Например, когда нам жарко, мы потеем, когда холодно - дрожим. Оба этих процесса восстанавливают нормальную температуру и контролируются гипоталамусом.

Гипоталамус играет также важную роль в эмоциях и реакциях человека на стрессовую ситуацию. Умеренная электрическая стимуляция определенных участков гипоталамуса вызывает приятные ощущения, а стимуляция соседних с ними участков - неприятные. Воздействуя на гипофиз, расположенный как раз под ним (рис. 2.11), гипоталамус управляет эндокринной системой и, соответственно, выработкой гормонов. Этот контроль особенно важен, когда для того, чтобы справиться с неожиданностями, организму надо мобилизовать сложный набор физиологических процессов (реакция «дерись или беги»). За его особую роль в мобилизации организма к действию гипоталамус назвали «стрессовым центром».

Ретикулярная формация. Нервная сеть, протянувшаяся от нижней части ствола мозга до таламуса и проходящая через некоторые другие образования центрального ствола, называется ретикулярной формацией. Она играет важную роль в управлении состоянием возбудимости. Когда через электроды, имплантированные в ретикулярную формацию кошки или собаки, подается определенное напряжение, животное впадает в сон; при стимуляции его напряжением с более быстро меняющимся характером волн животное просыпается.

От ретикулярной формации зависит также способность концентрировать внимание на определенных стимулах. Нервные волокна от всех чувствительных рецепторов проходят через ретикулярную систему. Эта система, по-видимому, работает как фильтр, позволяя одним сенсорным сообщениям пройти в кору мозга (стать доступными сознанию) и блокируя другие. Таким образом, в любой момент на состояние сознания влияет процесс фильтрации, протекающий в ретикулярной формации.

Лимбическая система

Вокруг центрального ствола мозга расположено несколько образований, которые все вместе называют лимбической системой. Эта система имеет тесные связи с гипоталамусом и, видимо, осуществляет дополнительный контроль над некоторыми формами инстинктивного поведения, управляемыми гипоталамусом и продолговатым мозгом (вернитесь к рис. 2.10). Животные, имеющие только неразвитую лимбическую систему (например, рыбы и рептилии), способны к разным видам активности - питанию, нападению, бегству от опасности и спариванию, - реализуемым посредством поведенческих стереотипов. У млекопитающих лимбическая система, видимо, тормозит некоторые инстинктивные схемы поведения, позволяя организму быть более гибким и адаптивным к меняющемуся окружению.

Гиппокамп - часть лимбической системы - играет особую роль в процессах памяти. Случаи повреждения гиппокампа или хирургического его удаления показывают, что эта структура является решающей для запоминания новых событий и хранения их в долговременной памяти, но не необходимой для воспроизведения старых воспоминаний. После операции по удалению гиппокампа пациент без труда узнает старых друзей и помнит свое прошлое, он может читать и пользоваться ранее приобретенными навыками. Однако он сможет очень мало (если вообще что-нибудь) вспомнить о том, что происходило в течение примерно года до операции. События или людей, встреченных после операции, он не будет помнить вообще. Такой пациент не сможет, например, узнать нового человека, с которым он провел много часов ранее в этот же день. Он будет неделю за неделей собирать одну и ту же разрезную головоломку и никогда не вспомнит, что уже собирал ее раньше, и будет снова и снова читать ту же газету, не помня ее содержания (Squire & Zola, 1996).

Лимбическая система участвует также в эмоциональном поведении. Обезьяны с поражениями некоторых участков лимбической системы яростно реагируют даже на малейшую провокацию, из чего следует, что разрушенный участок оказывал тормозящее действие. Обезьяны с повреждениями других участков лимбической системы уже не проявляют агрессивного поведения и не показывают враждебности, даже когда на них нападают. Они просто игнорируют нападающего и держат себя так, будто ничего не случилось.

Рассмотрение мозга как состоящего из трех концентрических структур - центрального ствола, лимбической системы и большого мозга (о нем речь в следующем разделе) - не должно давать повод думать, что они независимы друг от друга. Здесь можно привести аналогию с сетью взаимосвязанных компьютеров: каждый выполняет свои особые функции, но надо работать вместе, чтобы получить наиболее эффективный результат. Точно так же для анализа информации, поступающей от органов чувств, требуется один тип вычислений и принимаемых решений (к ним хорошо приспособлен большой мозг); он отличается от того, который контролирует последовательность рефлекторных актов (лимбическая система). Для более точной настройки мышц (при письме, например, или игре на музыкальном инструменте) требуется другая управляющая система, опосредуемая в данном случае мозжечком. Все эти виды активности объединены в единую систему, которая сохраняет целостность организма.

Большой мозг

У человека большой мозг, состоящий из двух полушарий головного мозга, развит сильнее, чем у любого другого существа. Его внешний слой называют корой мозга; по-латыни cortex значит «древесная кора». На препарате мозга кора выглядит серой, поскольку она состоит преимущественно из тел нервных клеток и нервных волокон, не покрытых миелином, - отсюда термин «серое вещество». Внутренняя часть большого мозга, находящаяся под корой, состоит в основном из аксонов с миелиновым покрытием и выглядит белой.

Каждая из сенсорных систем (например, зрительная, слуховая, осязательная) поставляет информацию в определенные участки коры. Движения частей тела (моторные реакции) контролируются своим участком коры. Остальная ее часть, не являющаяся ни сенсорной, ни моторной, состоит из ассоциативных зон. Эти зоны связаны с другими аспектами поведения - памятью, мышлением, речью - и занимают большую часть мозговой коры.

Прежде чем рассмотреть некоторые из этих участков, введем некоторые ориентиры для описания основных зон больших полушарий мозга. Полушария в основном симметричны и глубоко разделены между собой спереди назад. Поэтому первым пунктом нашей классификации будет деление мозга на правое и левое полушария. Каждое полушарие делится на четыре доли: лобную, теменную, затылочную и височную. Границы долей показаны на рис. 2.12. Лобную долю отделяет от теменной центральная борозда, идущая почти от вершины головы в стороны к ушам. Граница между теменной и затылочной долями менее четкая; для наших целей достаточно будет сказать, что теменная доля находится в верхней части мозга позади центральной борозды, а затылочная доля - в задней части мозга. Височную долю отделяет глубокая борозда сбоку мозга, которая называется латеральной.

Рис. 2.12.

В каждом полушарии есть несколько больших долей, разделяемых бороздами. Помимо этих видимых снаружи долей в коре есть большая внутренняя складка, называемая «островок» и находящаяся глубоко в латеральной борозде, а) вид сбоку; б) вид сверху; в) поперечное сечение коры мозга; обратите внимание на разницу между серым веществом, лежащим на поверхности (изображено более темным), и более глубоко лежащим белым веществом; г) фотография мозга человека.

Первичная моторная зона. Первичная моторная зона контролирует произвольные движения тела; она находится как раз перед центральной бороздой (рис. 2.13). Электрическая стимуляция определенных участков моторной коры вызывает движения соответствующих частей тела; если эти же участки моторной коры повреждены, движения нарушаются. Тело представлено в моторной коре примерно в перевернутом виде. Например, движения пальцев ноги управляются участком, расположенным сверху, а движения языка и рта управляются нижней частью моторной зоны. Движениями правой части тела управляет моторная кора левого полушария; движениями левой части - моторная кора правого полушария.

Рис. 2.13.

Большая часть коры ответственна за генерацию движений и анализ сенсорных сигналов. Соответствующие зоны (включая моторную, соматосенсорную, зрительную, слуховую и обонятельную) имеются на обоих полушариях. Некоторые функции представлены только на одной стороне мозга. Например, зона Брока и зона Вернике, участвующие в порождении и понимании речи, а также угловая извилина, соотносящая зрительную и слуховую формы слова, имеются только на левой стороне человеческого мозга.

Первичная соматосенсорная зона. В теменной зоне, отделенной от моторной зоны центральной бороздой, находится участок, электрическая стимуляция которого вызывает сенсорные ощущения где-то на противоположной стороне тела. Они похожи на то, как если бы какая-нибудь часть тела двигалась или до нее дотрагивались. Этот участок называют первичной соматосенсорной зоной (зоной телесных ощущений). Здесь представлены ощущения холода, прикосновения, боли и ощущения движений тела.

Большинство нервных волокон в составе путей, идущих к соматосенсорной и моторной зонам и от них, переходят на противоположную сторону тела. Поэтому сенсорные импульсы с правой стороны тела идут к левой соматосенсорной коре, а мышцами правой ноги и правой руки управляет левая моторная кора.

Видимо, можно считать общим правилом, что объем соматосенсорной или моторной зоны, связанной с определенной частью тела, прямо определяется ее чувствительностью и частотой использования последней. Например, среди четвероногих млекопитающих у собаки передние лапы представлены только на очень небольшом участке коры, а у енота, широко пользующегося своими передними лапами для изучения окружения и манипулирования им, соответствующая зона значительно шире и в ней есть участки для каждого пальца лапы. У крысы, получающей много информации об окружении посредством чувствительных усиков, имеется отдельный участок коры для каждого усика.

Первичная зрительная зона. В задней части каждой затылочной доли есть участок коры, называемый первичной зрительной зоной. На рис. 2.14 показаны волокна зрительного нерва и нервные пути, идущие от каждого глаза к зрительной коре. Обратите внимание, что некоторые зрительные волокна идут от правого глаза к правому полушарию, а некоторые пересекают мозг в так называемой зрительной хиазме и идут в противоположное полушарие; то же происходит с волокнами левого глаза. Волокна от правых сторон обоих глаз идут в правое полушарие мозга, а волокна от левых сторон обоих глаз идут в левое полушарие. Следовательно, повреждение зрительной зоны в одном полушарии (скажем, в левом) приведет к появлению слепых областей в левой стороне обоих глаз, что вызовет потерю видимости правой стороны окружения. Этот факт иногда помогает установить местоположение опухоли мозга и других аномалий.

Рис. 2.14.

Нервные волокна от внутренних, или носовых, половин сетчатки пересекаются в зрительной хиазме и идут в противоположные стороны мозга. Поэтому стимулы, попадающие на правую сторону каждой сетчатки, передаются в правое полушарие, а стимулы, приходящиеся на левую сторону каждой сетчатки, передаются в левое полушарие.

Первичная слуховая зона. Первичная слуховая зона находится на поверхности височных долей обоих полушарий и участвует в анализе сложных слуховых сигналов. Она играет особую роль во временном структурировании звуков, таких как человеческая речь. Оба уха представлены в слуховых зонах обоих полушарий, но связи с противоположной стороной более сильные.

Ассоциативные зоны. В коре мозга есть много обширных зон, которые не связаны непосредственно с сенсорными или моторными процессами. Они называются ассоциативными зонами. Передние ассоциативные зоны (части лобных долей, расположенные впереди моторной зоны) играют важную роль в мыслительных процессах, происходящих при решении задач. У обезьян, например, повреждение лобных долей нарушает их способность решать задачи с отсроченной ответной реакцией. В таких задачах на глазах у обезьяны еду помещают в одну из двух чашек и накрывают их одинаковыми предметами. Затем между обезьяной и чашками помещают непрозрачный экран, через определенное время его убирают и предоставляют обезьяне выбрать одну из этих чашек. Обычно обезьяна помнит нужную чашку после задержки в несколько минут, но обезьяны с поврежденными лобными долями не могут решить эту задачу, если задержка превышает несколько секунд (French & Harlow, 1962). Нормальные обезьяны имеют нейроны в фронтальной доле, которые активизируют потенциал действия во время задержки, таким образом опосредуя свою память на события (Goldman-Rakie, 1996).

Задние ассоциативные зоны расположены рядом с первичными сенсорными зонами и делятся на подзоны, каждая из которых обслуживает определенный вид ощущений. Например, нижняя часть височной доли связана со зрительным восприятием. Повреждение этой зоны нарушает способность узнавать и различать формы предметов. Причем оно не ухудшает остроту зрения, как было бы при повреждении первичной зрительной коры в затылочной доле; человек «видит» формы и может проследить их контур, но не может определить, что это за форма, или отличить ее от другой (Goodglass & Butters, 1988).

Изображения живого мозга

Чтобы получать изображения живого мозга, не причиняя пациенту повреждений и страданий, было разработано несколько методик. Когда они были еще несовершенны, точная локализация и идентификация большинства видов мозговых травм могла производиться только путем нейрохирургического исследования и сложной неврологической диагностики или путем аутопсии - после смерти пациента. Новые методы основываются на сложной компьютерной технике, ставшей реальностью совсем недавно.

Один из таких методов - компьютерная аксиальная томография (сокращенно КАТ или просто КТ). Через голову пациента пропускают узкий пучок рентгеновских лучей и измеряют интенсивность прошедшего насквозь излучения. Принципиально новым в этом методе было проведение замеров интенсивности при сотнях тысяч различных ориентации (или осей) рентгеновского луча относительно головы. Результаты измерений поступают в компьютер, где путем соответствующих вычислений воссоздается картина поперечных сечений мозга, которую можно сфотографировать или показать на телеэкране. Слой сечения можно выбирать на любой глубине и под любым углом. Название «компьютерная аксиальная томография» объясняется решающей ролью компьютера, множеством осей, по которым делаются замеры, и конечным изображением, показывающим слой поперечного сечения мозга (по-гречески tomo значит «ломтик» или «сечение»).

Более новый и совершенный метод позволяет создавать изображения при помощи магнитного резонанса. В сканерах этого типа используются сильные магнитные поля, импульсы в диапазоне радиочастот и компьютеры, формирующие само изображение. Пациента помещают в пончикообразный туннель, который окружен большим магнитом, создающим сильное магнитное поле. Когда исследуемый анатомический орган помещают в сильное магнитное поле и воздействуют на него радиочастотным импульсом, ткани этого органа начинают излучать сигнал, который можно измерить. Как и в КАТ, здесь делаются сотни тысяч замеров, которые затем преобразуются компьютером в двумерное изображение данного анатомического органа. Специалисты обычно называют этот метод ядерным магнитным резонансом (ЯМР), поскольку в нем измеряются изменения энергетического уровня ядер атомов водорода, вызванные радиочастотными импульсами. Однако многие врачи предпочитают опускать слово «ядерный» и говорить просто «магнитно-резонансное изображение», опасаясь, что публика примет упоминание ядер атомов за атомную радиацию.

При диагностике заболеваний головного и спинного мозга ЯМР дает большую точность, чем КАТ-сканер. Например, на изображениях поперечного сечения мозга, полученных методом ЯМР, видны симптомы рассеянного склероза, не обнаруживаемые КАТ-сканерами; ранее для диагностики этого заболевания требовалась госпитализация и проведение анализов с впрыскиванием специального красителя в канал спинного мозга. ЯМР полезен также для обнаружения нарушений в спинном мозге и в основании головного мозга, таких как смещение межпозвоночных дисков, опухоли и врожденные пороки.

КАТ и ЯМР позволяют увидеть анатомические детали мозга, однако зачастую желательно иметь данные о степени нервной активности в различных участках мозга. Такую информацию позволяет получить метод компьютерного сканирования, который называется позитронно-эмиссионной томографией (сокращенно ПЭТ). Этот метод основан на том факте, что метаболические процессы в каждой клетке организма требуют затрат энергии. В качестве основного источника энергии нейроны мозга используют глюкозу, вбирая ее из кровотока. Если в глюкозу добавить немного радиоактивного красителя, то каждая молекула станет чуть-чуть радиоактивной (иначе говоря, помеченной). Этот состав безвреден, и спустя 5 минут после впрыскивания его в кровь помеченная радиацией глюкоза начинает потребляться клетками мозга так же, как и обычная. ПЭТ-сканер - это прежде всего высокочувствительный детектор радиоактивности (он работает не как рентгеновская установка, которая излучает рентгеновские лучи, а как счетчик Гейгера, который измеряет радиоактивность). Наиболее активным нейронам мозга требуется больше глюкозы, и следовательно, они станут более радиоактивны. ПЭТ-сканер измеряет величину радиоактивности и посылает информацию в компьютер, создающий цветное изображение поперечного сечения мозга, где различные цвета отображают различные уровни нервной активности. Радиоактивность, измеряемая этим методом, создается потоком (эмиссией) положительно заряженных частиц, называемых позитронами - отсюда название «позитронно-эмиссионная томография».

Сравнение результатов ПЭТ-сканирования нормальных индивидуумов и пациентов с неврологическими нарушениями показывает, что этот метод позволяет выявлять многие заболевания мозга (эпилепсию, тромбы в сосудах, опухоли мозга и т. д.). В психологических исследованиях ПЭТ-сканер использовался для сравнения состояний мозга у шизофреников и позволил обнаружить различия в уровнях метаболизма некоторых участков коры (Andreasen, 1988). ПЭТ использовали также в исследованиях участков мозга, активированных при выполнении различных видов деятельности - слушании музыки, решении математических задач и ведении разговора; цель заключалась в том, чтобы установить, какие мозговые структуры вовлечены в соответствующие высшие психические функции (Posner, 1993).

На изображении, полученном с помощью ПЭТ, видны три зоны в левом полушарии, активные во время решения речевой задачи.

Красным цветом показаны зоны с наибольшей активностью, синим - с наименьшей.

Сканеры, использующие КАТ, ЯМР и ПЭТ, оказались бесценными инструментами для изучения связи между мозгом и поведением. Эти орудия являются примером того, как технические достижения в одной научной области позволяют другой области также сделать рывок вперед (Raichle, 1994; Pechura & Martin, 1991). Например, ПЭТ-сканирование может быть использовано для изучения различий в нейронной активности между двумя полушариями мозга. Эти различия в активности полушарий получили название асимметрии мозга.

Асимметрии мозга

На первый взгляд, две половины человеческого мозга кажутся зеркальным отражением друг друга. Но при более внимательном рассмотрении открывается их асимметрия. Когда после вскрытия измеряют мозг, левое полушарие почти всегда оказывается больше правого. Кроме того, в правом полушарии содержится много длинных нервных волокон, соединяющих далеко расположенные друг от друга участки мозга, а в левом полушарии множество коротких волокон образуют большое количество связей в ограниченном участке (Hillige, 1993).

Еще в 1861 году французский врач Поль Брока исследовал мозг пациента, страдавшего потерей речи, и обнаружил в левом полушарии повреждение в лобной доле как раз над латеральной бороздой. Эта область, известная как зона Брока (рис. 2.13), участвует в порождении речи. Разрушение соответствующего участка в правом полушарии обычно не приводит к нарушениям речи. Зоны, участвующие в понимании речи и обеспечивающие способность писать и понимать написанное, обычно также расположены в левом полушарии. Так, у человека, получившего в результате инсульта повреждение левого полушария, нарушения речи проявятся с большей вероятностью, чем у того, кто получил повреждения, локализованные в правом полушарии. У очень немногих левшей речевые центры расположены в правом полушарии, но у подавляющего их большинства они находятся там же, где и у правшей, - в левом полушарии.

Хотя роль левого полушария в речевых функциях стала известна в сравнительно недалеком прошлом, только недавно появилась возможность узнавать, что же может делать каждое полушарие само по себе. В норме мозг работает как единое целое; информация из одного полушария тут же передается в другое по широкому пучку соединяющих их нервных волокон, который называется мозолистым телом. При некоторых формах эпилепсии этот соединительный мост может вызывать проблемы из-за того, что инициация судороги одним полушарием переходит в другое и вызывает в нем массированный разряд нейронов. Стремясь предотвратить такую генерализацию судорог у некоторых тяжелобольных эпилептиков, нейрохирурги стали применять хирургическое рассечение мозолистого тела. Для некоторых пациентов такая операция оказывается удачной и уменьшает судороги. При этом отсутствуют нежелательные последствия: в повседневной жизни такие пациенты действуют не хуже людей с соединенными полушариями. Потребовались специальные тесты, чтобы выяснить, как разделение двух полушарий влияет на умственную деятельность. Прежде чем описать нижеследующие эксперименты, дадим немного дополнительной информации.

Испытуемые с расщепленным мозгом. Как мы видели, двигательные нервы при выходе из мозга переходят на другую сторону, так что левое полушарие мозга контролирует правую сторону тела, а правое контролирует левую. Мы также отмечали, что зона порождения речи (зона Брока) находится в левом полушарии. Когда взгляд направлен прямо перед собой, предметы, находящиеся слева от точки фиксации, проецируются на оба глаза и информация от них попадает в правую сторону мозга, а информация о предметах справа от точки фиксации попадает в левую сторону мозга (рис. 2.15). В результате каждое полушарие «видит» ту половину поля зрения, в которой обычно действует «его» рука; например, левое полушарие видит правую руку в правой части зрительного поля. В норме информация о стимулах, поступающая в одно полушарие мозга, тут же через мозолистое тело транслируются в другое, так что мозг действует как единое целое. Посмотрим теперь, что происходит у человека с расщепленным мозгом, т. е. когда у него рассечено мозолистое тело и полушария не могут общаться между собой.

Рис. 2.15.

Если вы смотрите прямо перед собой, то стимулы, находящиеся слева от точки фиксации взгляда, поступают в правое полушарие, а стимулы, находящиеся справа от нее, - в левое. Левое полушарие контролирует движения правой руки, а правое - движения левой. Большая часть входных слуховых сигналов идет в противоположное полушарие, но некоторая их часть попадает и на ту же сторону, на которой находится услышавшее их ухо. Левое полушарие контролирует устную и письменную речь и математические вычисления. Правое полушарие обеспечивает понимание только простого языка; его главная функция связана с пространственным конструированием и чувством структуры.

Роджер Сперри первым провел работы в этой области и в 1981 году был награжден Нобелевской премией за исследования в области нейронауки. В одном из его экспериментов испытуемый (подвергшийся операции по рассечению мозга) находился перед экраном, закрывавшим его руки (рис. 2.16а). Испытуемый фиксировал взгляд на пятне в центре экрана, а в левой части экрана на очень короткое время (0,1 с) предъявлялось слово «орех». Напомним, что такой зрительный сигнал идет в правую часть мозга, которая управляет левой стороной тела. Левой рукой испытуемый мог легко выбрать орех из кучи предметов, недоступных наблюдению. Но он не мог сказать экспериментатору, какое слово появлялось на экране, поскольку речью управляет левое полушарие, а зрительный образ слова «орех» в это полушарие не передавался. Пациент с расщепленным мозгом, видимо, не осознавал, что делает его левая рука, когда его спрашивали об этом. Поскольку сенсорный сигнал от левой руки идет в правое полушарие, левое полушарие не получало никакой информации о том, что чувствует или делает левая рука. Вся информация шла в правое полушарие, получившее исходный зрительный сигнал слова «орех».

Рис. 2.16.

А) Испытуемый с расщепленным мозгом правильно находит объект, ощупывая предметы левой рукой, когда название объекта предъявлялось правому полушарию, но не может назвать этот объект или описать, что он делает.

Б) На экране появляется слово «шляпная лента» (hatband) так, что «шляпная» (hat) попадает в правое полушарие, а «лента» (band) - в левое. Испытуемый отвечает, что видит слово «лента», но понятия не имеет, какая именно.

В) Предварительно обоим полушариям предъявляется список названий знакомых предметов (включая слова «книга» и «чашка»). Затем слово из этого списка («книга») предъявляется правому полушарию. По команде пациент левой рукой пишет слово «книга», но не может ответить, что написала его левая рука, и говорит наугад: «чашка».

Важно, чтобы слово появлялось на экране не более чем на 0,1 с. Если это продолжается дольше, пациент успевает перевести взгляд и тогда это слово попадает и в левое полушарие. Если испытуемый с расщепленным мозгом может свободно переводить взгляд, информация поступает в оба полушария, и это одна из причин, по которой рассечение мозолистого тела практически не сказывается на повседневной деятельности такого пациента.

Дальнейшие эксперименты показали, что пациент с расщепленным мозгом может давать речевой отчет только о том, что происходит в левом полушарии. На рис. 2.16б показана еще одна экспериментальная ситуация. Слово «шляпная лента» проецируется так, что «шляпная» приходится на правое полушарие, а «лента» - на левое. На вопрос, какое слово он видит, пациент отвечает «лента». Когда его спрашивают, что за лента, он начинает строить всякие догадки: «клейкая лента», «пестрая лента», «лента шоссе» и пр. - и только случайно догадывается, что это «шляпная лента». Эксперименты с другими комбинациями слов показали сходные результаты. Воспринимаемое правым полушарием не передается для осознания в левое полушарие. При рассеченном мозолистом теле каждое полушарие безразлично к опыту другого.

Если испытуемому с расщепленным мозгом завязать глаза и в левую руку положить знакомый ему предмет (расческу, зубную щетку, брелок для ключей), он сможет узнать его; он сможет, например, соответствующими жестами продемонстрировать его использование. Но то, что испытуемый знает, он не сможет выразить в речи. Если во время манипулирования этим объектом его спросить, что происходит, он ничего не скажет. Так будет, пока блокированы все сенсорные сигналы от этого предмета к левому (речевому) полушарию. Но если испытуемый случайно коснется этого предмета правой рукой или предмет издаст характерный звук (например, позвякивание брелока для ключей), речевое полушарие сработает и будет дан верный ответ.

Хотя правое полушарие не участвует в акте говорения, некоторые языковые возможности у него есть. Оно способно узнать значение слова «орех», что мы видели в первом примере, и оно «умеет» немного писать.

В эксперименте, проиллюстрированном на рис. 2.16в, испытуемому с расщепленным мозгом сначала показывают список обычных предметов, таких как чашка, нож, книга и зеркальце. Показывают достаточно долго, чтобы слова спроецировались в оба полушария. Затем список убирают, и одно из этих слов (например, «книга») на короткое время предъявляется в левой стороне экрана, так чтобы попасть в правое полушарие. Теперь, если испытуемого просят написать, что он видел, его левая рука пишет слово «книга». Когда его спрашивают, что он написал, он этого не знает и называет слово наугад из первоначального списка. Он знает, что что-то написал, поскольку ощущает движения тела во время письма. Но из-за того, что между правым полушарием, которое видело и писало слово, и левым полушарием, которое контролирует речь, нет связи, испытуемый не может сказать, что он написал (Sperry, 1970, 1968; см. также: Hellige, 1990, Gazzaniga, 1995).

Специализация полушарий. Исследования, проведенные на испытуемых с расщепленным мозгом, показывают, что полушария работают по-разному. Левое полушарие управляет нашей способностью выражать себя в речи. Оно может выполнять сложные логические операции и обладает навыками математических вычислений. Правое полушарие понимает только самую простую речь. Оно может, например, реагировать на простые существительные, выбирая из набора предметов, скажем, орех или расческу, но не понимает более абстрактные языковые формы. На простые команды, например «моргнуть», «кивнуть головой», «тряхнуть головой» или «улыбнуться», оно, как правило, не отвечает.

Однако у правого полушария высокоразвиты чувства пространства и структуры. Оно превосходит левое в создании геометрических рисунков и рисунков с перспективой. Оно гораздо лучше левого может собирать цветные блоки по сложному чертежу. Когда испытуемых с расщепленным мозгом просят правой рукой собрать блоки согласно картинке, они делают множество ошибок. Иногда им трудно удержать свою левую руку от автоматической поправки ошибок, сделанных правой.

Исследования нормальных испытуемых, пожалуй, подтверждают наличие различий в специализации полушарий. Например, если вербальную информацию (слова или бессмысленные слоги) предъявлять короткими вспышками левому полушарию (т. е. в правой части поля зрения), то она опознается быстрее и точнее, чем при предъявлении ее правому. Наоборот, распознавание лиц, эмоциональных выражений лиц, наклона линий или расположения точек быстрее происходит при предъявлении их правому полушарию (Hellige, 1990). Электроэнцефалограммы (ЭЭГ) показывают, что электрическая активность левого полушария возрастает при решении вербальных задач, а активность правого - при решении пространственных (Springer & Deutsch, 1989; Kosslyn, 1988).

Из нашего обсуждения не следует делать вывод, что полушария работают независимо друг от друга. Как раз наоборот. Специализация полушарий разная, но они всегда работают совместно. Именно благодаря их взаимодействию становятся возможными психические процессы, гораздо более сложные и сильнее отличающиеся от тех, которые составляют специальный вклад каждого полушария в отдельности. Как отмечал Леви:

«Эти различия видны из сопоставления вкладов, вносимых каждым полушарием во все виды когнитивной деятельности. Когда человек читает рассказ, правое полушарие может играть особую роль в декодировании зрительной информации, формировании целостной структуры рассказа, оценке юмора и эмоционального содержания, извлечении смысла из прошлых ассоциаций и понимании метафор. В то же время левое полушарие играет особую роль в понимании синтаксиса, переводе письменных слов в их фонетические репрезентации и извлечении значения из сложных отношении между словесными понятиями и синтаксическими формами. Но нет такой деятельности, которую осуществляло бы или в которую вносило бы вклад только одно полушарие» (Levy, 1985, р. 44).

Речь и мозг

Очень многое о мозговых механизмах речи стало известно благодаря наблюдениям за пациентами с поврежденным мозгом. Повреждение может возникнуть в результате опухоли, проникающего ранения головы или разрыва кровеносных сосудов. Речевые нарушения, возникшие в результате повреждения мозга, обозначаются термином «афазия».

Как уже говорилось, в 1860 году Брока заметил, что повреждение определенного участка левой лобной доли связано с нарушением речи, называемым экспрессивной афазией (expressive aphasia). [Наиболее полная классификация различных форм афазии была разработана А. Р. Лурия (см.: Психологический словарь / Под ред. В. П. Зинченко, Б. Г. Мещерякова. М.: Педагогика-Пресс, 1996). - Прим. ред.] У пациентов с поврежденной зоной Брока были трудности с правильным произношением слов, их речь была медленной и затрудненной. Их речь часто осмысленна, но содержит только ключевые слова. Как правило, существительные имеют форму единственного числа, а прилагательные, наречия, артикли и связки опускаются. Однако у таких людей нет трудностей с пониманием устной и письменной речи.

В 1874 году немецкий исследователь Карл Вернике сообщил, что повреждение другой части коры (тоже в левом полушарии, но в височной доле) связано с нарушением речи, называемым рецептивной афазией (receptive aphasia). Люди с повреждением этого участка - зоны Вернике - не могут понимать слова; они слышат слова, но не знают их значения.

Они без труда составляют последовательности слов, правильно их артикулируют, но неверно употребляют слова, и речь их, как правило, бессмысленна.

Проанализировав эти нарушения, Вернике предложил модель порождения и понимания речи. Хотя возраст модели насчитывает 100 лет, в общих чертах она все еще верна. Взяв ее за основу, Норман Гешвинд разработал теорию, которая известна как модель Вернике-Гешвинда (Geschwind, 1979). Согласно этой модели, в зоне Брока хранятся коды артикуляции, определяющие последовательность мышечных операций, необходимых для произнесения слова. При передаче этих кодов в моторную зону они активируют мышцы губ, языка и гортани в последовательности, нужной для произнесения слова.

С другой стороны, в зоне Вернике хранятся слуховые коды и значения слов. Чтобы произнести слово, надо активировать его слуховой код в зоне Вернике и передать по пучку волокон в зону Брока, где он активирует соответствующий код артикуляции. В свою очередь код артикуляции передается в моторную зону для произнесения слова.

Чтобы понять кем-то сказанное слово, оно должно быть передано из слуховой зоны в зону Вернике, где для произнесенного слова имеется его эквивалент - слуховой код, который в свою очередь активирует значение слова. При предъявлении написанного слова оно сначала регистрируется зрительной зоной, а затем передается в угловую извилину, через которую зрительная форма слова ассоциируется с его слуховым кодом в зоне Вернике; когда найден слуховой код слова, находится и его значение. Таким образом, значения слов хранятся вместе со своими акустическими кодами в зоне Вернике. В зоне Брока хранятся коды артикуляции, а через угловую извилину к написанному слову подбирается его слуховой код; однако ни одна из этих двух зон не содержит информации только о значении слова. [Значение хранится вместе с акустическим кодом. - Прим. ред.] Значение слова воспроизводится только тогда, когда в зоне Вернике активируется его акустический код.

Эта модель объясняет многие нарушения речи при афазии. Повреждение, ограниченное зоной Брока, вызывает нарушение порождения речи, но меньше влияет на понимание письменной и устной речи. Повреждение зоны Вернике приводит к нарушению всех компонентов понимания речи, но не мешает человеку четко произносить слова (поскольку зона Брока не затронута), хотя речь при этом будет бессмысленной. Согласно модели, индивиды с поврежденной угловой извилиной не смогут читать, но смогут понимать устную речь и говорить сами. И наконец, если повреждена только слуховая зона, человек сможет нормально говорить и читать, но не сможет понимать устную речь.

Модель Вернике-Гешвинда применима не ко всем имеющимся данным. Например, когда в ходе нейрохирургической операции речевые зоны мозга подвергаются электростимуляции, функции восприятия и производства речи могут прерываться при воздействии только на одно место зоны. Отсюда следует, что в некоторых участках мозга могут находиться механизмы, занятые и порождением, и пониманием речи. Мы еще далеки от совершенной модели речи у человека, но по крайней мере знаем, что некоторые речевые функции имеют четкую мозговую локализацию (Hellige, 1994; Geschwind & Galaburda, 1987).

Спинной мозг.( medulla spinalis )

Представляет собой уплощённый цилиндрический тяж длиной 42 – 45 см, диаметром 1см, массой 34 – 38 г. Находится в костном позвоночном канале. Начинается от продолговатого мозга (т.е. переходит в ГМ), внизу заканчивается на уровне 1 – 2 поясничных позвонков конусом (от него идут нити – «конский хвост»), до 2 копчикового позвонка. Имеются утолщения – шейное и пояснично-крестцовое. Спинной мозг делится на 31 сегмент. От каждого сегмента отходят 2 передних (аксоны двигательных нейронов) и 2 задних (аксоны чувствительных нейронов) корешка . Корешки каждой стороны, соединяясь, образуют смешанный нерв.

На поперечном разрезе СМ можно выделить 2 вещества.

а) Серое вещество занимает центр вокруг канала и имеет форму буквы Н (или бабочки). В нем – тела нейронов, дендриты и синапсы.

б) Белое вещество окружает серое и состоит из пучков нервных волокон. Они соединяют сегменты между собой и ГМ со СМ.

в) Спинномозговой канал , расположен по центру и заполненспинномозговой жидкостью .

Функции спинного мозга:

I.Рефлекторная.

а) Через серое вещество проходят дуги рефлексов, управляющих скелетной мускулатурой (спинальные рефлексы).

б) Здесь расположены центры некоторых простых рефлексов – регуляция просвета сосудов, потоотделения, мочеиспускания, дефекации и др.

II. Проводниковая – осуществление связи с ГМ.

а) Нервные импульсы по восходящим путям идут в ГМ.

б) Импульсы из ГМ идут по нисходящим путям в СМ, а оттуда к органам.

Спинной мозг новорожденного является наиболее зрелой частью ЦНС, но всё же окончательное его развитие заканчивается к 20 годам (за этот период он увеличивается в 8 раз).

Головной мозг ( encephalon ).

Передний отдел ЦНС, расположенный в полости черепа, главный регулятор всех жизненных функций организма и материальный субстрат его ВНД.

В процессе эмбриогенеза закладываются три мозговых пузыря, в дальнейшем из них и образуются отделы ГМ:

1.Продолговатый мозг.

2. Мозжечок и варолиев мост

3. Средний мозг.

4. Промежуточный мозг .

5. Конечный (передний) мозг .

Б
елое вещество
ГМ представляет собой проводящие пути, соединяющие части мозга между собой.Серое вещество расположено внутри белого в виде ядер и покрывает поверхность мозжечка и больших полушарий в виде коры. Внутри ГМ находятся полости, заполненныемозговой жидкостью (состав и функции те же, что успинномозговой жидкости )– желудочки мозга . Всего их четыре (четвёртый значительно редуцирован), они соединены между собой и со спинномозговым каналом каналами, каналы образуют так называемыймозговой (сильвиев) водопровод.

Отделы ГМ.

I.Продолговатый мозг (medulla oblogata ).

Самый задний участок ГМ, непосредственное продолжение спинного мозга. Длина = 25 мм, форма усеченный конус, обращённый основанием вверх. На его спинной поверхности – ромбовидное углубление (остатки четвёртого желудочка ).

В толще продолговатого мозга расположены ядра серого вещества – это центры простых, но жизненно важных рефлексов – дыхание, сердечно-сосудистый центр, центры управления пищеварительными функциями, центр управления речью, глотания, кашля, чихания, слюноотделения и т.д., таким образом, при повреждении этого мозга наступает смерть. Кроме этогопродолговатый мозг выполняет проводниковую функцию и здесь имеется сетевидное образование, нейроны которого посылают импульсы в СМ для поддержания его в деятельном состоянии.

II.Мозжечок (cerebellum ).

Состоит из двух полушарий, имеет кору серого цвета с грубыми извилинами (своеобразная уменьшенная копия всего ГМ), анатомически выделен от остальных частей мозга.

Серое вещество содержит крупные грушевидные нейроны (клетки Пуркинье), от них отходит множество дендритов. Эти клетки получают импульсы, связанные с мышечной активностью из множества разнообразных источников – рецепторы вестибулярного аппарата, суставов, сухожилий, мышц и от моторных центров КБП.

Мозжечок интегрирует эту информацию и обеспечивает координированную работу всех мышц, участвующих в том или ином движении или поддержании определённой позы. При повреждениимозжечка – резкие и плохо управляемые движения. Мозжечок абсолютно необходим для координации быстрых мышечных движений (бег, разговор, печатанье).

Все функции мозжечка осуществляются без участия сознания, но на ранних этапах тренировки необходим элемент научения (т.е. участие КБП) и волевые усилия. Например, при обучении плаванью, езде на машине и т. д. После выработки навыка мозжечок берёт на себя функцию рефлекторного контроля. Белое вещество мозжечка выполняет проводниковую функцию.

III.Средний мозг (mesencephalon ).

Связывает все отделы мозга между собой, меньше других отделов претерпел эволюционные изменения. Все нервные пути ГМ проходят через эту область. Выделяют крышу среднего мозга иножки мозга. Крышу мозга образует –четверохолмие , где находятся центры зрительных и слуховых рефлексов. Например, движение головы и глаз, поворот головы к источнику звука.

В центре среднего мозга расположены многочисленные центры или ядра, управляющие разнообразными бессознательными движениями – наклоны или повороты головы или туловища. Из них особо выделяют –красное ядро – оно управляет и регулирует тонус скелетных мышц.

IV. Промежуточный мозг (diencephalon ).

Расположен выше среднего мозга под мозолистым телом. Состоит из множества ядер, расположенных вокруг 3-го желудочка. Получает импульсы от всех рецепторов тела. Основными и важными частями его являются –таламус игипоталамус . Здесь же расположены железы– гипофиз иэпифиз.

а) Таламус.

Парное образование серого цвета, яйцевидной формы. В нем оканчиваются аксоны всех сенсорных нейронов (кроме обоняния) и от мозжечка. Получаемая информация перерабатывается, получает соответствующую эмоциональную окраску и направляет всоответствующие зоны КБП.

Таламус посредник , в котором сходятся все раздражения от внешнего мира, видоизменяются и направляются к подкорковым и корковым центрам – следовательно, организм адекватно приспосабливаются к постоянно меняющимся условиям среды.

Кроме того, таламус отвечает за питание клеток мозга, повышает возбудимость клеток КБП.Таламус – высший центр болевой активности.

б) Гипоталамус.

Состоит из 32 пар отдельных участков – ядер, обильно снабжен кровеносными сосудами. Через продолговатый и спинной мозг передает информацию на эффекторы и участвует в регуляции: сердечного ритма, кровяного давления, дыхания и перистальтики. Здесь также расположены специальные центры регулирующие: голод (при повреждении заболевание булемия – волчий аппетит), жажду, сон, температуру тела, водный и углеводный обмены и т.д.

Кроме этого здесь расположены центры, участвующие в сложных поведенческих реакциях – пищевые, агрессии и полового поведения. Также гипоталамус «следит» за концентрацией метаболитов и гормонов в крови, т.е. вместе с гипофизом регулирует секрецию ЖВС и поддерживает гомеостаз организма.

Таким образом, гипоталамус является центром, объединяющим нервные и эндокринные регуляторные механизмы регуляции функций внутренних органов.

V. Конечный мозг ( telencephalon ).

Образует два полушария (левое и правое), которые покрывают сверху большую часть ГМ. Состоит из коры и лежащего под ней белого вещества. Полушария отделены друг от друга продольной щелью, в глубине которой видно соединяющее их широкое мозолистое тело (из белого вещества).

Площадь коры = 1500 см 2 (220 тыс. мм 2). Такая площадь обусловлена развитием большого кол-ва борозд и извилин (в них 70% коры). Борозды делят кору на 5 долей – лобная, теменная, затылочная, височная и островковая.

Кора имеет малую толщину (1,5 – 3 мм) и имеет очень сложное строение. В ней насчитывают шесть основных слоёв, которые отличаются строением, формой и размерами нейронов (пирамидальные клетки Беца ). Их общее кол-во около 10 – 14 млрд., расположены они столбиками.

В белом веществе расположены три желудочка и базальные ганглии (центры безусловные рефлексов).

В КБП различают отдельные области (зоны) трех типов:

1. Сенсорные – входные участки коры, которые получают информацию от всех рецепторов организма.

а) Зрительная зона – в затылочной доле.

б) Слуховая зона – в височной доле.

в) Кожно-мышечная чувствительность – в теменной доле.

г) Вкусовая и обонятельная – диффузно на внутренней поверхности КБП и в височной доле.

2. Ассоциативные зоны – названы так по следующим причинам:

а) Они связывают вновь поступающую информацию с полученной ранее и хранящейся в блоках памяти – следовательно, новые стимулы «узнаются».

б) Информация от одних рецепторов сопоставляется с информацией от других рецепторов.

в) Сенсорные сигналы интерпретируются, «осмысливаются» и при надобности используются для «вычисления» наиболее подходящей реакции, которая вычисляется и передается в двигательную зону. Таким образом, эти зоны участвуют в процессах запоминания, научения мышления и т.д. – то есть того что называется «интеллектом».

3. Моторные зоны – выходные зоны коры. В них возникают двигательные импульсы идущие по нисходящим путям белого вещества.

4. Префронтальные зоны – их функции неясны (они не отвечают на раздражение – «немые» области). Предполагают, что они ответственны за индивидуальные особенности или личность. Взаимосвязи между зонами позволяют КБП контролировать все произвольные и некоторые непроизвольные формы деятельности, включаявысшую нервную деятельность.

Правое и левое полушарие функционально различаются между собой (функциональная асимметрия полушарий ). Правши – у них доминирует левое полушарие, мыслят формулами, таблицами, логическими рассуждениями. Левши – у них доминирует правое полушарие, мыслят образами, картинами.

Принципы координации нервных процессов .

Координация нервных процессов, без которой были бы невозможны согласованная деятельность всех органов организма и его адекватные реакции на воздействия внешней среды, основывается на следующих принципах:

1.Конвергенция нервных процессов . К одному нейрону могут приходить импульсы из разных участков нервной системы, это обусловлено широкой межнейронной связью.

2. Иррадиация . Возбуждение или торможение, возникнув в одном нервном центре, могут распространяться на другие нервные центры.

3. Индукция нервных процессов . В каждом нервном центре один процесс легко переходит в свою противоположность. Если возбуждение сменяется на торможение, то индукция « – », наоборот – «+» индукция.

4. Концентрация нервных процессов . Противоположно индукции, процессы возбуждения и торможения концентрируются в каком-либо участке нервной системы.

5. Принцип доминанты . Это возникновение временно господствующего очага возбуждения. При наличии доминанты раздражения, поступающие, в другие участки нервной системы только усиливаютдоминантный (господствующий) очаг. Принцип открыт А.А.Ухтомским.

Таким образом, в мозгу непрерывно происходит смена, перекомбинация ,изменение мозаики из очагов возбуждения и торможения.

Методы исследования функций ГМ.

1. Электроэнцефалография . Изучение активности мозга с помощью электрофизиологических методов. На коже головы испытуемого укрепляют специальные электроды, которые регистрируют электрические импульсы, отражающие активность нейронов мозга. Импульсы записываются, обнаружены следующие основные электрических волн:

а) альфа-волны. Когда человек расслаблен и глаза закрыты.

б) бета-волны. Имеют частый ритм (хорошо выявлены под наркозом). Их отсутствие – показатель клинической смерти.

в) гамма-волны. Имеют наименьшую частоту и максимальную амплитуду, регистрируются во время сна.

ЭЭГ имеет большое диагностическое значение, т.к. позволяет определить локализацию очагов нарушения.

2. Энцефалоскопия. Это регистрация колебаний яркости свечения точек мозга.

3. Метод регистрации медленных электрических потенциалов (МЭП). Позволяют определить электрические колебания, протекающих в мозге.

Местные операции под местной анестезией. Испытуемый описывает ощущения при раздражении различных участков мозга током.

4. Фармакологический метод. Изучение влияния фармакологических веществ на мозг.

5. Кибернетический метод . Математическое моделирование процессов в мозге.

6. Вживление в мозг микроэлектродов .

Основные принципы работы головного мозга .

И.П.Павлов сформулировал три основных принципа работы ГМ:

I.Принцип структурности . Психическая функция любой степени сложности осуществляется отделами головного мозга.

II.Принцип детерминизма . Любой психический процесс – ощущение, воображение, память, мышление, сознание, воля, чувства и др. – есть отражение материальных событий, происходящих в окружающем мире и в организме. Именно эти материальные явления в итоге определяют поведение. Кроме физиологических потребностей у человека есть и социальные (общение, труд и др.)

III.Принцип анализа и синтеза . Сложные предметы и явления действительности воспринимаются обычно не целиком, а по отдельным признакам. Раздражители, воздействуя на рецепторы соответствующих органов чувств, вызывают потоки нервных импульсов. Они поступают в мозг и там синтезируются, в результате чего возникает целостный субъективный образ. Эти образы составляют своеобразную модель окружающей обстановки и дают возможность ориентироваться в ней.

Возрастные особенности ГМ.

Основные части ГМ выделяются уже к 3-му месяцу эмбриогенеза, а к 5-му месяцу уже хорошо заметны основные борозды больших полушарий.

К моменту рождения общая масса ГМ составляет примерно 388г у девочек и 391г у мальчиков. По отношению к массе тела мозг новорожденного больше, чем у взрослого. 1/8 у новорожденного, а у взрослого – 1/40.

Наиболее интенсивно ГМ человека развивается в первые два года постнатального развития. Затем темпы его развития немного снижаются, но продолжают оставаться высокими до 6 – 7 лет, к этому моменту масса мозга достигает уже 4/5 массы взрослого мозга.

Окончательное созревание ГМ заканчивается только к 17 – 20 годам. К этому возрасту, масса мозга увеличивается по сравнению с новорожденными в 4 – 5 раз и составляет в среднем у мужчин 1400г, а у женщин – 1260г. У некоторых выдающихся людей (И.С.Тургенев, Д.Байрон, О.Кромвель и др.) масса мозга= от 2000 до 2500г. Следует отметить, что абсолютная масса мозга не определяет непосредственно умственные способности человека (например, мозг талантливого французского писателя А.Франса весил около 1000г). Установлено, что интеллект человека снижается только в том случае, если масса мозга уменьшается до 900г и менее.

Изменение размеров, формы и массы мозга сопровождаются изменением его внутренней структуры. Усложняется строение нейронов, форма межнейронных связей, становится четко разграниченным белое и серое вещество, формируются проводящие пути ГМ,

Развитие ГМ идет гетерохронно. Прежде всего, созревают те структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают, прежде всего, стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы приближаются о своему развитию к мозгу взрослого человека уже к 2 – 4 годам постнатального развития. Интересно отметить, что число межнейронных связей находится в прямой зависимости от процессов обучения: чем интенсивнее идет обучение, тем большее число синапсов образуется.

Можно полагать, что эффективность работы мозга зависит от его внутренней организации и непременным атрибутом талантливого человека является богатство синаптических связей его мозга.

Периферическая нервная система .

Образована нервами, выходящими из ЦНС и нервными узлами и сплетениями, расположенными главным образом вблизи головного и спинного мозга, а также рядом с внутренними органами или в стенках этих органов. Выделяют соматический ивегетативный отделы.

Соматическая нервная система.

Образована чувствительными нервами, идущими к ЦНС от различных рецепторов и двигательными нервами, иннервирующими (т.е. обеспечивающими нервное управление) скелетную мускулатуру.

Характерные особенности этих нервов – они на всем пути нигде не прерываются, имеют относительно большой диаметр, скорость проведения нервного импульса= 30 – 120 м/с.

Из головного мозга выходят 12 пар черепно-мозговых нервов всех трёх типов: сенсорные – 3 пары (обоняние, зрение, слух); двигательные – 5 пар; смешанные – 4 пары. Эти нервы иннервируют рецепторы и эффекторы головы.

Спинномозговые нервы, их 31 пара формируется из корешков отходящих от сегментов СМ – 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1 копчиковый. Каждому сегменту соответствует определённый участок тела – метамер. На 1 метамер – 3 соседних сегмента. Спинномозговые нервы – являются смешанными нервами и обеспечивают управление скелетной мускулатурой.

Вегетативная (автономная) нервная система.

Координирует и регулирует деятельность всех внутренних органов, обмен веществ и гомеостаз организма. Автономность её относительна, т.к. все вегетативные функции находятся под контролем ЦНС (в первую очередь КБП).

Характерные особенности нервов ВНС – нервы тоньше, чем у соматической; нервы на своём пути от ЦНС к органу прерываются узлами (ганглиями). В ганглиях – переключение на несколько (до 10 и более) нейронов – мультипликация.

1. Симпатическая нервная система . Представляет собой 2 цепочки ганглиев по обе стороны грудного и поясничного отдела позвоночника. Предузловое волокно короткое, послеузловое длинное.

2. Парасимпатическая нервная система . Отходит длинными предузловыми волокнами от ствола ГМ и крестцового отдела СМ, ганглии расположены во внутренних органах или возле них – послеузловое волокно короткое.

Как правило, влияние симпатической и парасимпатической нервной системы носит антагонистический характер. Так, например, симпатическая усиливает и учащает сердечные сокращения, а парасимпатическая – ослабляет и замедляет. Однако этот антагонизм имеет, относительный характер и в некоторых ситуациях оба отдела ВНС могут действовать однонаправленно.

Самый крупный нерв парасимпатической системыблуждающий нерв , он иннервирует почти все органы грудной и брюшной полости –сердце, лёгкие ,печень, желудок, поджелудочную железу, кишечник, мочевой пузырь .

Контроль над ВНС через гипоталамические структуры осуществляет КБП, особенно её лобные и височные отделы.

Деятельность ВНС происходит вне сферы сознания, но сказывается на общем самочувствии и эмоциональной реактивности. При патологических повреждениях нервных центров ВНС может наблюдаться раздражительность, расстройство сна, неадекватность поведения, расторможенность инстинктивных форм поведения (повышенный аппетит, агрессивность, гиперсексуальность).

Рецепторы.

Это клетки или небольшие группы клеток, которые воспринимают раздражения (т.е. изменения внешней среды) и трансформируют их в процесс нервного возбуждения. Представляют собой видоизменённые эпителиальные клетки, на которых оканчиваются дендриты сенсорных нейронов. Рецепторами могут быть сами нейроны или окончания нервов.

Различают 3 основные группы рецепторов:

1. Экстерорецепторы – воспринимают изменения внешней среды.

2. Интерорецепторы – располагаются внутри тела и раздражаются изменением гомеостаза внутренней среды организма.

3. Проприорецепторы – расположены в скелетных мышцах, они посылают информацию о состоянии мышц и сухожилий.

Кроме того, по природе раздражителя, который воспринимается рецепторами, их, делят на: хеморецепторы (вкус, обоняние); механорецепторы (осязание, боль, слух); фоторецепторы (зрение); терморецепторы (холод и тепло).

Свойства рецептора :

а) Лабильность. Рецептор реагирует только на адекватный раздражитель.

б) Порог раздражения . Существует определенный минимум (порог) силы раздражения, чтобы возник нервный импульс

в) Адаптация, т.е. приспособление к действию постоянных раздражителей. Чем сильнее раздражитель, тем быстрее наступает адаптация.

Чтобы справляться с такими различными обязанностями, нервная система человека должна иметь соответствующую структуру.

В нервной системе человека выделяют:

- центральную нервную систему;
- периферическую нервную систему.

Назначение периферической нервной системы - соединять центральную нервную систему с сенсорными рецепторами тела и мышц. Она включает вегетативную (автономную) и соматическую нервные системы.

Соматическая нервная система предназначена для осуществления произвольных, сознательных сенсорных и моторных функций. Ее задача состоит в передаче сенсорных сигналов, вызываемых внешними раздражителями, в центральную нервную систему и управлении движениями, соответствующими этим сигналам.

Вегетативная нервная система - это своеобразный «автопилот», автоматически поддерживающий режимы работы кровеносных сосудов сердца, органов дыхания, пищеварения, мочеотделения и желез внутренней секреции. Деятельность вегетативной нервной системы подчинена мозговым центрам нервной системы человека.

Нервная система человека:
- Отделы нервной системы
1) Центральный
- Головной мозг
- Спинной мозг
2) Периферический
- Соматическая система
- Вегетативная (автономная) система
1) Симпатическая система
2) Парасимпатическая система

В вегетативной системе выделяют симпатическую и парасимпатическую нервные системы.

Симпатическая нервная система - это оружие самообороны человека. В ситуациях, требующих быстрой реакции (особенно в ситуациях опасности), симпатическая нервная система:
- тормозит деятельность системы пищеварения как неактуальную в данный момент (в частности, уменьшает кровообращение желудка);
- увеличивает содержание адреналина и глюкозы в крови, расширяя тем самым кровеносные сосуды сердца, мозга и скелетной мускулатуры;
- мобилизует работу сердца, повышая артериальное давление крови и скорость ее свертываемости во избежание возможных больших кровопотерь;
- расширяет зрачки и глазные щели, формируя соответствующую мимику.

Парасимпатическая нервная система включается в работу, когда напряженная ситуация спадает и наступает время покоя и расслабления. Все процессы, вызванные действием симпатической системы, восстанавливаются. Нормальное функционирование этих систем характеризуется их динамическим равновесием. Нарушение этого равновесия наступает при перевозбуждении какой-то из систем. При продолжительных и частых состояниях перевозбуждения симпатической системы возникает угроза хронического повышения артериального давления (гипертония), стенокардии и других патологических нарушений.

В случае перевозбуждения парасимпатической системы могут появляться желудочно-кишечные заболевания (возникновение приступов бронхиальной астмы и обострение язвенных болей во время ночного сна объясняются повышенной в это время суток активностью парасимпатической системы и торможением симпатической системы).

Существует возможность волевой регуляции вегетативных функций с помощью специальных приемов внушения и самовнушения (гипноз, аутогенная тренировка и др.). Однако во избежание нанесения вреда организму (и психике) это требует осторолености и осознанного владения психологическими технологиями подобного рода.

Центральная нервная система включает в себя:
- головной мозг;
- спинной мозг.

Анатомически они расположены в черепе и позвоночнике. Костные ткани черепа и позвоночника обеспечивают защиту мозга от физических травм.

Спинной мозг представляет собой длинный столб нервной ткани, проходящий через спинной канал, от второго поясничного позвонка до продолговатого мозга. Он решает две основные задачи:
- передает сенсорную информацию от периферийных рецепторов в головной мозг;
- обеспечивает ответные реакции организма на внешние и внутренние сигналы через активацию мышечной системы. Спинной мозг образован 31 идентичным блоком ~ сегментами, соединенными с различными частями туловища человека. Каждый из сегментов состоит из серого и белого вещества. Белое вещество формирует восходящие, нисходящие и внутренние нервные пути. Первые передают информацию в головной мозг, вторые - из головного мозга различным частям организма, третьи - от сегмента к сегменту.

Структуру серого вещества образуют ядра спинномозговых нервов, отходящие от каждого из сегментов. В свою очередь, каждый спинномозговой нерв состоит из чувствительного и двигательного нерва. Первый воспринимает сенсорную информацию от рецепторов внутренних органов, мышц и кожи. Второй передает моторное возбуждение от спинномозговых нервов к периферии организма человека.

Головной мозг является высшей инстанцией нервной системы. Это самый крупный отдел центральной нервной системы. Масса мозга не является информативным показателем уровня интеллектуального развития его хозяина. Так, по отношению к телу мозг человека составляет 1/45 часть, мозг обезьяны - 1/25, мозг кита - 1/10 ООО часть. Абсолютный вес мозга у мужчин составляет около 1400 г, у женщин - 1250 г.

Масса мозга меняется в течение жизни человека. Начиная с веса в 350 г (у новорожденных), мозг «набирает» максимальный вес к 25 годам, затем удерживает его постоянным до 50-летнего возраста, а затем начинает «худеть» в среднем на 30 г в каждое последующее десятилетие. Все эти параметры зависят от принадлежности человека к той или иной расе (однако никакой корреляции с уровнем интеллекта здесь нет). Например, максимальный вес мозга японца наблюдается в 30-40 лет, европейца - к 20-25 годам.

В состав головного мозга входят: передний, средний, задний и продолговатый мозг.

Современные представления связывают развитие мозга человека с тремя уровнями:
- высший уровень - передний мозг;
- средний уровень - средний мозг;
- низший уровень - задний мозг.

Передний мозг. Все составляющие мозга работают совместно, но «центральный пульт управления» нервной системой находится в переднем отделе мозга, состоящем из коры больших полушарий, промежуточного мозга и обонятельного мозга (рис. 4). Именно здесь находится большая часть нейронов и формируются стратегические задачи по управлению про-цессахми, а также команды на их исполнение. Реализацию команд берут на себя средний и низший уровни. При этом команды коры головного мозга могут носить инновационный характер, быть совершенно необычными. Низшие же уровни отрабатывают эти команды по привычным для человека, «наезженным» программам. Такое «разделение труда» сложилось исторически.

Представители материалистической концепции утверждают, что передний отдел мозга возник в результате эволюции обоняния. В настоящий момент он управляет инстинктивной (генетически обусловленной), индивидуальной и коллективной (обусловленной трудовой деятельностью и речью) формами поведения человека. Коллективная форма поведения послужила причиной появления новых поверхностных слоев коры головного мозга. Всего таких слоев шесть, каждый из которых состоит из однотипных нервных клеток, имеющих свою форму и ориентацию. По времени происхол<дения принято различать древнюю, старую и новую кору. Древняя кора занимает около 0,6 % площади всей коры и состоит из одного слоя нейронов. Площадь старой коры - 2,6 %. Остальная площадь принадлежит новой коре.

Внешне кора напоминает ядро грецкого ореха: сморщенная поверхность с многочисленными извилинами и бороздами. Эта конфигурация одинакова для всех людей. Под корой размещаются правое и левое полушария мозга, на которые приходится около 80 % веса всего мозга. Полушария заполнены аксонами, соединяющими нейроны коры с нейронами других участков мозга. Каждое полушарие мозга состоит из совместно функционирующих лобной, височной, теменной и затылочной долей.

В связи с той ролью, которую играет кора больших полушарий в психической жизни человека, целесообразно рассмотреть более подробно функции, которые она выполняет.

В коре условно выделяют несколько функциональных зон (центров), связанных с выполнением тех или иных функций.

Каждая из сенсорных (первичных проективных) зон принимает сигналы от «своих» органов чувств и непосредственно участвует в формировании ощущений. Зрительная и слуховая сенсорные зоны расположены отдельно от других. Поражение сенсорных зон вызывает потерю определенного вида чувствительности (слуха, зрения и т.д.).

Моторные зоны приводят в движение различные участки тела. Раздражая участки моторных зон слабым электрическим током, можно заставить двигаться (даже против воли человека) различные органы (растягиваться губы в улыбке, сгибаться руку и др.).

Повреждение участков этой зоны сопровождается частичным или полным параличом.

В регуляции произвольных и непроизвольных движений принимают участие так называемые ба-зальные узлы, расположенные под лобными долями. Следствиями их поражения являются судороги, тики, подергивания, маскообразность лица, дрожание мышц и др.

Ассоциативные (интегративные) зоны способны одновременно реагировать на сигналы от нескольких органов чувств и формировать целостные перцептивные образы (восприятие). Эти зоны не имеют четко обозначенных границ (во всяком случае, границы пока не установлены). При поражении ассоциативных зон возникают признаки другого рода: чувствительность к определенному виду раздражителя (зрительному, слуховому и др.) сохраняется, но нарушается способность правильно оценивать значение действующего раздражителя. Так:
- повреждение зрительной ассоциативной зоны приводит к «словесной слепоте», когда зрение сохраняется, но теряется способность понимать то, что видишь (человек может прочитать слово, но не понять его значения);
- при повреждении слуховой ассоциативной зоны человек слышит, но не понимает смысла слов (словесная глухота);
- нарушение работы тактильной ассоциативной зоны приводит к тому, что человек не в состоянии узнавать предметы на ощупь;
повреждение ассоциативных зон лобной доли приводит к потере способности планировать и прогнозировать события при сохранении памяти и умений;
- травмы лобной доли резко изменяют характер личности в сторону невоздержанности, грубости и неразборчивости при сохранении других способностей, необходимых для повседневной жизни индивида.

Автономных центров речи, строго говоря, не существует. Здесь чаще говорят о центре слухового восприятия речи (центр Вернике) и двигательном центре речи (центр Брока). Представительство речевой функции у большинства людей находится в левом полушарии в области третьей извилины коры. Об этом свидетельствуют факты нарушения процессов формирования речи при повреждении лобной доли и потеря понимания речи при повреждении задних отделов доли. «Захват» функций речи (а вместе с ней и функций логического мышления, чтения и письма) левым полушарием получил название функциональной асимметрии мозга.

Правому полушарию достались процессы, связанные с регуляцией чувств. В этой связи правое полушарие участвует в формировании целостного образа объекта. Левое же призвано анализировать мелочи при восприятии объекта, т. е. формирует образ объекта последовательно, подетально. Это «пресс-секретарь» мозга. Но обработка информации происходит в тесном содружестве обоих полушарий: стоит только одному полушарию отказать в работе, другое оказывается беспомощным.

Промежуточный мозг шефствует над деятельностью органов чувств, регулирует все вегетативные функции. Его состав:
- таламус (зрительный бугор);
- гипоталамус (подбугровая область).

Таламус (зрительный бугор) - сенсорный пункт управления информационными потоками, крупнейший «транспортный» узел нервной системы. Основная функция таламуса состоит в приеме информации от сенсорных нейронов (от глаз, ушей, языка, кожи, внутренних органов, кроме обоняния) и передаче ее в высшие отделы мозга.

Гипоталамус (подбугровая область) контролирует работу внутренних органов, эндокринных лселез, процессы обмена веществ, температуру тела. Здесь же формируются эмоциональные состояния человека. Гипоталамус влияет на сексуальное поведение человека.

Обонятельный мозг - самая меньшая часть переднего мозга, обеспечивающая функцию обоняния, отмеченную сединой тысячелетий эволюции человеческой психики.

Средний мозг распололсен между задним и промежуточным (см. рис. 3). Здесь находятся первичные центры зрения и слуха, а также нервные волокна, соединяющие спинной и продолговатый мозг с корой больших полушарий. В состав среднего мозга входит значительная часть лимбической системы (висцерального мозга). Элементами этой системы являются гиппокампы и миндалины.

Продолговатый мозг - самый низший отдел головного мозга. Анатомически он является продолжением спинного мозга. В «обязанности» продолговатого мозга входят:
- координация движений регуляции дыхания, сердцебиения, тонуса кровеносных сосудов и др.;
- регуляция рефлекторными актами жевания, глотания, сосания, рвотой, морганием и кашлем;
- контроль равновесия тела в пространстве.

Задний мозг расположен между средним и продолговатым. Состоит из мозжечка и моста. Мост содерлсит центры слуховой, вестибулярной, кожной и мышечной сенсорных систем, вегетативные центры регуляции слезных и слюнных желез. Он участвует в осуществлении и выработке сложных форм движений.

Важную роль в работе нервной системы человека играет ретикулярная (сетчатая) формация, которая расположена в спинном, продолговатом и заднем мозге. Ее влияние распространяется на активность головного мозга, состояние коры и подкорковых структур головного мозга, мозжечка, спинного мозга. Это источник активности организма, его работоспособности. Ее основные функции:
- поддержание бодрствующего состояния;
- повышение тонуса мозговой коры;
- избирательное торможение деятельности некоторых участков мозга (слуховых и зрительных центров подкорковых структур), что важно для контроля внимания;
- формирование стандартных адаптивных форм реагирования на знакомые внешние раздражители;
- формирование ориентировочных реакций на необычные внешние раздражители, на основе которых могут быть сформированы реакции первого типа и обеспечено нормальное функционирование организма.

Нарушение работы этого образования приводит к сбоям биоритмов организма. Например, человек не может долго уснуть или, наоборот, сон становится очень продолжительным.

Гиппокамп существенно влияет на процессы памяти. Нарушение его работы приводит к ухудшению или полной потере кратковременной памяти. Долговременная же память при этом не страдает. Предполагают, что гиппокамп участвует в процессах передачи информации из кратковременной памяти в долговременную. Кроме того, участвует в формировании эмоций, что обеспечивает надежное запоминание материала.

Миндалины представляет собой два сгустка нейронов, оказывающих влияние на чувства агрессивности, ярости и страха. Вместе с тем миндалины не являются центром этих чувств. Еще Аристотель пытался локализовать чувства (душа исторгает мысль, тело рождает различные ощущения, а вместилищем чувств, страстей, ума и произвольных движений является сердце). Его идею поддерживал Фома Аквинский. Декарт утверждал, что чувства радости и опасности порождаются шишковидной железой, которая потом передает их душе, мозгу и сердцу. Гипотеза И. М. Сеченова состоит в том, что эмоции представляют собой системное явление.

Первые экспериментальные попытки увязать эмоции с работой определенных участков мозга (локализовать эмоции) предприняты В. М. Бехтеревым. Раздражая участки таламуса птиц, он анализировал эмоциональное содерлсание их двигательных реакций. Впоследствии В. Кеннон и П. Бард (США) придали таламусу решающую роль в формировании эмоций. Еще позлее Э. Гельгорн и Дж. Луфборроу пришли к заключению, что основным центром формирования эмоций является гипоталамус.

Экспериментальные исследования, проведенные С. Олдсом и П. Милнером (США) над крысами, позволили выделить у них зоны «рая» и «ада». Оказалось, что около 35 % точек мозга ответственны за формирование чувства удовольствия, 5 % вызывают чувство неудовольствия и 60% остаются нейтральными относительно этих чувств. Естественно, эти результаты не могут быть полностью перенесены на психику человека.

По мере проникновения в тайны психики все более укреплялось мнение о том, что организация эмоций представляет собой широко разветвленную систему нервных образований. При этом основная функциональная роль отрицательных эмоций состоит в сохранении человека как вида, а положительных - в приобретении им новых свойств. Если бы отрицательные эмоции не были необходимы для выживания, то они просто бы исчезли из психики. Главный же контроль и регуляция эмоционального поведения осуществляются лобными долями коры больших полушарий.

Поиск участков, ответственных за те или иные психические состояния и процессы, ведется до сих пор. Более того, проблема локализации переросла в психофизиологическую проблему.

Нервные окончания расположены во всем человеческом теле. Они несут важнейшую функцию и являются составной частью всей системы. Строение нервной системы человека представляет сложную разветвленную структуру, которая проходит через весь организм.

Физиология нервной системы является сложной составной структурой.

Нейрон считается основной структурной и функциональной единицей нервной системы. Его отростки формируют волокна, которые возбуждаются при воздействии и передают импульс. Импульсы достигают центров, где подвергаются анализу. Проанализировав полученный сигнал, мозг передает необходимую реакцию на раздражитель соответствующим органам или частям тела. Нервная система человека кратко описывается следующими функциями:

  • обеспечение рефлексов;
  • регуляция внутренних органов;
  • обеспечение взаимодействия организма с внешней средой, путем приспособления тела к изменяющимся внешним условиям и раздражителям;
  • взаимодействие всех органов.

Значение нервной системы заключается в обеспечении жизнедеятельности всех частей организма, а также взаимодействии человека с окружающим миром. Строение и функции нервной системы изучаются неврологией.

Структура ЦНС

Анатомия центральной нервной системы (ЦНС) является скоплением нейронных клеток и нейронных отростков спинномозгового отдела и головного мозга. Нейрон – это единица нервной системы.

Функция ЦНС – это обеспечение рефлекторной деятельности и обработка импульсов, поступающих от ПНС.

Особенности строения ПНС

Благодаря ПНС происходит регулирование деятельности всего организма человека. ПНС состоит из черепных и спинномозговых нейронов и волокон, образующих ганглии.

У строение и функции очень сложные, поэтому любое малейшее повреждение, например, повреждение сосудов на ногах, может вызвать серьезные нарушения ее работы. Благодаря ПНС осуществляется контроль за всеми частями организма и обеспечивается жизнедеятельность всех органов. Значение этой нервной системы для организма переоценить невозможно.

ПНС делится на два подразделения – это соматическая и вегетативная системы ПНС.

Выполняет двойную работу – сбор информации от органов чувств, и дальнейшая передача этих данных в ЦНС, а также обеспечение двигательной активности организма, путем передачи импульсов от ЦНС в мышцы. Таким образом, именно нервная система соматическая является инструментом взаимодействия человека с окружающим миром, так как она обрабатывает сигналы, получаемые от органов зрения, слуха и вкусовых рецепторов.

Обеспечивает выполнение функций всех органов. Она контролирует сердцебиение, кровоснабжение, дыхательную деятельность. В ее составе – только двигательные нервы, регулирующие сокращение мышц.

Для обеспечения сердцебиения и кровоснабжения не требуются усилия самого человека – этим управляет именно вегетативная часть ПНС. Принципы строения и функции ПНС изучаются в неврологии.

Отделы ПНС

ПНС также состоит из афферентной нервной системы и эфферентного отдела.

Афферентный отдел представляет собой совокупность сенсорных волокон, которые обрабатывают информацию от рецепторов и передают ее в головной мозг. Работа этого отдела начинается тогда, когда рецептор раздражается из-за какого-либо воздействия.

Эфферентная система отличается тем, что обрабатывает импульсы, передающиеся от головного мозга к эффекторам, то есть мышцам и железам.

Одна из важных частей вегетативного отдела ПНС – это энтеральная нервная система. Энтеральная нервная система формируется из волокон, расположенных в ЖКТ и мочевыделительных путях. Энтеральная нервная система обеспечивает моторику тонкой и толстой кишки. Этот отдел также регулирует секрет, выделяемый в ЖКТ, и обеспечивает местное кровоснабжение.

Значение нервной системы заключается в обеспечении работы внутренних органов, интеллектуальной функции, моторике, чувствительности и рефлекторной деятельности. ЦНС ребенка развивается не только во внутриутробный период, но и на протяжение первого года жизни. Онтогенез нервной системы начинается с первой недели после зачатия.

Основа для развития головного мозга формируется уже на третьей неделе после зачатия. Основные функциональные узлы обозначаются к третьему месяцу беременности. К этому сроку уже сформированы полушария, ствол и спинной мозг. К шестому месяцу высшие отделы мозга уже развиты лучше, чем спинальный отдел.

К моменту появления малыша на свет, наиболее развитым оказывается головной мозг. Размеры мозга у новорожденного составляют примерно восьмую часть веса ребенка и колеблются в пределах 400 г.

Деятельность ЦНС и ПНС сильно понижена в первые несколько дней после рождения. Это может заключаться в обилии новых раздражающих факторов для малыша. Так проявляется пластичность нервной системы, то есть способностью этой структуры перестраиваться. Как правило, повышение возбудимости происходит постепенно, начиная с первых семи дней жизни. Пластичность нервной системы с возрастом ухудшается.

Типы ЦНС

В центрах, расположенных в коре мозга, одновременно взаимодействуют два процесса – торможение и возбуждение. Скорость смены этих состояний определяет типы нервной системы. В то время как возбужден один участок центра ЦНС, другой замедляется. Этим обусловлены особенности интеллектуальной деятельности, такие как внимание, память, сосредоточенность.

Типы нервной системы описывают отличия между скоростью процессов торможения и возбуждения ЦНС у разных людей.

Люди могут отличаться по характеру и темпераменту, в зависимости от особенностей процессов в ЦНС. К ее особенностям относят скорость переключения нейронов с процесса торможения на процесс возбуждения, и наоборот.

Типы нервной системы делятся на четыре вида.

  • Слабый тип, или меланхолик, считают наиболее предрасположенным к возникновению неврологических и психоэмоциональных расстройств. Он отличается медленными процессами возбуждения и торможения. Сильный и неуравновешенный тип – это холерик. Этот тип отличается преобладанием процессов возбуждения над процессами торможения.
  • Сильный и подвижный – это тип сангвиника. Все процессы, проистекающие в коре головного мозга сильны и активны. Сильный, но инертный, или флегматический тип, отличается низкой скоростью переключения нервных процессов.

Типы нервной системой взаимосвязаны с темпераментами, но эти понятия следует различать, ведь темперамент характеризует набор психоэмоциональных качеств, а тип ЦНС описывает физиологические особенности процессов, происходящих в ЦНС.

Защита ЦНС

Анатомия нервной системы очень сложная. ЦНС и ПНС страдают из-за воздействия стресса, перенапряжения и недостатка питания. Для нормального функционирования ЦНС необходимы витамины, аминокислоты и минералы. Аминокислоты принимают участие в работе мозга и являются строительным материалом для нейронов. Разобравшись, зачем и для чего нужны витамины и аминокислоты, становится ясно, как важно обеспечить организм необходимым количеством этих веществ. Особенно для человека важны глютаминовая кислота, глицин и тирозин. Схема приема витаминно-минеральных комплексов для профилактики заболеваний ЦНС и ПНС подбирается индивидуально лечащим врачом.

Повреждения пучков , врожденные патологии и аномалии развития мозга, а также действие инфекций и вирусов – все это приводит к нарушению работы ЦНС и ПНС и развитию различных патологических состояний. Такие патологии могут вызвать ряд очень опасных заболеваний - обездвиживание, парез, атрофия мышц, энцефалит и многое другое.

Злокачественные новообразования в головном или спинном мозге приводят к ряду неврологических нарушений. При подозрениях на онкологическое заболевания ЦНС назначается анализ - гистология пораженных отделов, то есть обследование состава ткани. Нейрон как часть клетки также может мутировать. Такие мутации позволяет выявить гистология. Гистологический анализ проводится по показаниям врача и заключается в сборе пораженной ткани и ее дальнейшем изучении. При доброкачественных образования также проводится гистология.

В теле человека находится множество нервных окончаний, повреждение которых может вызвать ряд проблем. Повреждение зачастую приводит к нарушению подвижности части тела. Например, повреждение руки может привести к боли на пальцах рук и нарушению их движения. Остеохондроз позвоночника спровоцировать возникновение болей на стопе из-за того, что раздраженный или передавленный нерв посылает болевые импульсы рецепторам. Если болит ступня, люди часто ищут причину в долгой ходьбе или травме, но болевой синдром может быть спровоцирован повреждением в позвоночнике.

При подозрении на повреждение ПНС, а также при любых сопутствующих проблемах необходимо пройти осмотр у специалиста.

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло