Бактериофаги их свойства и применение в диагностике. Практическое использование бактериофагов

Практическое применение фагов. Бактерио­фаги используют в лабораторной диагнос­тике инфекций при внутривидовой иденти­фикации бактерий, т. е. определении фаговара (фаготипа). Для этого применяют метод фаготипирования, основанный на строгой специфичности действия фагов: на чашку с плотной питательной средой, засеянной «газоном» чистой культурой возбудителя, на­носят капли различных диагностических типоспецифических фагов. Фаговар бактерии определяется тем типом фага, ко­торый вызвал ее лизис (образование сте­рильного пятна, «бляшки», или «негативной колонии», фага). Методику фаготипирова­ния используют для выявления источника и путей распространения инфекции (эпидеми­ологическое маркирование). Выделение бак­терий одного фаговара от разных больных указывает на общий источник их заражения.

Фаги применяют также для лечения и про­филактики ряда бактериальных инфекций. Производят брюшнотифозный, сальмонеллезный, дизентерийный, синегнойный, ста­филококковый, стрептококковый фаги и комбинированные препараты (колипротейный, пиобактериофаги и др.). Бактериофаги назначают по показаниям перорально, парен­терально или местно в виде жидких, таблетированных форм, свечей или аэрозолей.

Бактериофаги широко применяют в генной инженерии и биотехнологии в качестве векторов для получе­ния рекомбинантных ДНК.

Применяемые на практике препараты бактериофагов представляют собой фильтрат бульонной культуры соответствующих микробов, лизированных фагом, содержащий живые частицы фага, а также растворённые антигены бактерий, освободившиеся из бактериальных клеток при их лизисе. Полученный препарат - жидкий бактериофаг должен иметь вид совершенно прозрачной жидкости жёлтого цвета большей или меньшей интенсивности.

Для применения с лечебно-профилактическими целями фаги могут выпускаться в форме таблеток с кислотоустойчивой оболочкой. Таблетированный сухой фаг более стабилен при хранении и удобен при применении. Одна таблетка сухого бактериофага соответствует 20-25 мл жидкого препарата. Срок годности сухого и жидкого препарата - 1 год. Жидкий бактериофаг следует хранить при температуре + 2 +10 С, сухой- не выше +1°С, но его можно хранить в холодильнике и при отрицательной температуре.

Принятый внутрь бактериофаг сохраняется в организме в течение 5-7 дней. Как правило, прием бактериофага не сопровождается какими-либо реакциями или осложнениями. Противопоказаний к приёму нет. Применяются в виде орошений, полосканий, примочек, тампонов, инъекций, а также вводят в полости - брюшную, плевральную, суставную и в мочевой пузырь, в зависимости от места локализации возбудителя.

Диагностические фаги выпускаются как в жидкой, так и сухой форме в ампулах.Перед началом работы сухой бактериофаг разводится. Если на ампулах указан титр,тр, ДРТ (доза рабочего титра) применяют в реакции фаголизабельности (метод Отто) для идентификации бактерий, если указан тип фага, то для фаготипирования– определения источника инфекции.

Действие бактериофага на микробную культуру в жидкой среде и на плотной среде

Метод Отто (стекающая капля)

Делают густой посев газоном исследуемой культуры. Через 5-10 мин после посева на подсушенную поверхность питательной среды наносят жидкий диагностический фаг. Чашку слегка наклоняют, чтобы капля фага растеклась по поверхности агара. Чашку помещают в термостат на 18-24 часа. Учёт результата производят по полному отсутствию роста культуры в месте нанесения капли фага.

Опыт на жидкой питательной среде

Делают посев исследуемой культуры в две пробирки с жидкой средой. В одну пробирку («О») добавляют петлёй диагностический бактериофаг. Через 18-20 часов в пробирке, куда бактериофаг не добавлялся («К»), наблюдается сильное помутнение бульона - произошел рост посеянной культуры. Бульон в пробирке, куда был добавлен бактериофаг, остался прозрачным вследствие лизиса культуры под его влиянием.

Фаготипирование бактерий

По спектру действия различают следующие бактериофаги: поливалентные, лизирующие родственные виды бактерий; моновалентные, лизирующие бактерии определенного вида; типовые, лизирующие отдельные типы (варианты) бактерий.

Например, один штамм патогенного стафилококка может лизироваться несколькими типами фагов, поэтому все типовые фаги (24) и штаммы патогенных стафилококков объединены в 4 группы.

Метод фаготипирования имеет большое значение для эпидемиологического исследования, так как позволяет выявить источник и пути распространения возбудителей заболеваний. С этой целью определяют фаговар выделенной из патологического материала чистой культуры на плотных питательных средах с помощью типовых диагностических фагов.

Фаговар культуры микроорганизмов определяют по тому типовому фагу, который вызвал ее лизис.Выделение бактерий одного фаговара от разных обследуемых указывает на источник заражения.

Достижения современной медицины и фармацевтики велики, но болезнетворные микроорганизмы тоже постоянно совершенствуются и приспосабливаются к действию тех лекарственных препаратов, которые еще пару лет назад были для них смертельно опасны. Там, где бессильны антибиотики, бактериофаги помогут бороться с патогенными микроорганизмами.

Что такое бактериофаги

В дословном переводе с древнегреческого языка, бактериофаги - это пожиратели бактерий. Под этим биологическим термином подразумеваются вирусы, которые избирательно поражают бактериальные клетки.

Бактериофаги присутствуют везде, где живут бактерии, поэтому средой обитания для них может быть воздух, вода, почва, организм человека, продукты питания, одежда.

Особенности строения бактериофага: у такого вируса нет клеточного строения, есть только генетический материал, покрытый сверху белковой оболочкой. Поэтому для размножения им приходится искать подходящие клеточные микроорганизмы.

Фаг начинает губительную для бактерии деятельность с того, что впрыскивает в ее тело собственную генетическую информацию, а затем приступает к активному размножению. Когда бактериальная клетка разрушается, через ее обломки выходит от 100 до 200 новых бактериофагов, незамедлительно приступающих к поражению находящихся рядом бактерий.

Виды

Наиболее известные бактериофаги:

  • дизентерийный;
  • стафилококковый;
  • стрептококковый;
  • калийный;
  • псевдомонадный;
  • синегнойный.

Преимущества

Некоторые ученые утверждают, что скоро применение препаратов на основе бактериофагов составит достойную конкуренцию употреблению антибиотиков в ходе лечения самых разных болезней.

Основание для этого смелого предположения дают следующие плюсы применения фагов:

  • отсутствие привыкания и противопоказаний к применению препарата;
  • отсутствие угнетающего действия на иммунную систему;
  • избирательное действие (полезная бактериальная флора остается нетронутой);
  • гармоничное сочетание с иными способами лечения, включая терапию с помощью антибиотиков (согласно результатам исследований, фаги даже усиливают их действие);
  • ярко выраженный эффект при терапии вялотекущих болезненных состояний, вызванных малочувствительными к антибиотикам бактериальным агентами.

Это позволяет успешно использовать бактериофаг для детей, пожилых людей, беременных женщин, ослабленных пациентов.

Показания

Показаниями для включения бактериофагов в схему лечения являются следующие инфекции:

  • хирургические (абсцесс, панариций, парапроктит, остеомиелит, фурункулы, ожоги, флегмона, карбункулы, гнойные раны);
  • урогенитальные (цистит, пиелонефрит, кольпит, уретрит, эндометрит, сальпингоофорит);
  • энтеральные (холецистит, гастроэнтероколит, дисбактериоз кишечника);
  • заражение крови;
  • болезни ЛОР органов (ангина, гайморит, отит);
  • заболевания дыхательных путей и легких (трахеит, плеврит, ларингит, бронхит, пневмония).

Способы применения

Метод, которым должен применяться бактериофаг, напрямую зависит от характера и места расположения очага воспаления. В разных ситуациях уместными будут следующие способы применения:

  • перорально (лекарственный препарат принимается через рот);
  • ректально (клизма бактериофагом);
  • местно (в виде промывания, примочек, орошений, закапывания, полоскания, введения турунд, пропитанных препаратом).

Бактериофаг действует более эффективно, если лечение совмещает разные способы применения. Существуют определенные клинические показания, по которым внутрь принимается бактериофаг в таблетках, а местное действие оказывает бактериофаг жидкий в виде примочки.

Набирают популярность препараты на основе бактериофагов, выпускаемые в форме растворов, аэрозолей, таблеток, свечей и гелей. Аптечные формы препаратов снабжены подробной инструкцией, как принимать бактериофаг.

Противопоказания

Большинство людей с определенной долей недоверия рассматривает возможность лечения бактериофагами, хотя уже доказана эффективность, а главное, безопасность подобной терапии.

Единственным возможным противопоказанием может быть повышенная чувствительность к бактериофагам, хотя случаи аллергической реакции на бактериофаги не являются типичными.

Препараты бактериофаги

Фармацевтическая промышленность предлагает множество препаратов, принцип действия которых основан на противомикробной направленности бактериофагов.

  • Интести-бактериофаг (Интестифаг)

    Жидкий иммунобиологический препарат противомикробной направленности. Он подавляет активность микроорганизмов, вызывающих болезни желудочно-кишечного тракта (бактериальную дизентерию, брюшной тиф, энтероколит, паратиф, дисбактериоз, сальмонеллез). Применяется внутрь и в виде клизмы. Противопоказания: гиперчувствительность к препарату. Побочные эффекты: у новорожденных в первые 2 дня приема возможны высыпания на коже и срыгивания.

  • Пиобактериофаг поливалентный (Секстафаг)

    Успешно справляется с гнойно-септическими заболеваниями новорожденных и грудничков, гнойно-воспалительными заболеваниями ЛОР-органов, энтеральных инфекций. Применяется для обработки свежеинфицированных ран. Противопоказания и побочные эффекты отсутствуют.

  • Бактериофаг клебсиелл пневмонии (Клебсифаг)

    Поражает бактерии, вызывающие пневмонию, озены, риносклеромы. Также помогает при генерализированных септических состояниях, для профилактики обсемененности внутрибольничными штаммами клебсиелл. Побочных действий нет. Противопоказание: повышенная чувствительность к компонентам.

  • Бактериофаг сальмонеллезный

    Разрушает клетки сальмонелл и схожих с ними по антигенной структуре микроорганизмов. Подходит для лечения сальмонеллеза у детей и взрослых. Противопоказания и побочные эффекты отсутствуют.

  • Бактериофаг синегнойный (Псевдомонас аеругиноза)

    Применяется для терапии при поражении различных органов синегнойной палочкой. Побочные действия не выявлены. Противопоказание - повышенная чувствительность к препарату.

  • Бактериофаг стрептококковый (Стрептофаг)

    Убивает стрептококковые бактерии, что делает препараты на его основе незаменимыми при лечении ангины, тонзиллита, синусита, панариция, нагноившихся ран и множества других недугов. Для лечения гайморита рекомендуется закапывать данный бактериофаг в нос. Побочных действий нет. Противопоказание: сверхчувствительность к препарату.

  • Бактериофаг коли

    Обладает специфическим антибактериальным действием, направленным исключительно против патогенных штаммов кишечной палочки. Назначается при поражениях желудочно-кишечного тракта, нагноениях ран, сепсисе новорожденных, конъюнктивите, урогенитальных инфекциях. Противопоказание: повышенная чувствительность к препарату. Побочных действий не выявлено.

  • Бактериофаг клебсиелловый поливалентный

    Эффективен при лечении перитонитов, плевритов, гнойно-воспалительных заболеваний в гинекологии. Используется также при лечении стоматита, пародонтита и воспалений пазух носа. Побочные действия отсутствуют. Противопоказание - гиперчувствительность к компонентам препарата.

  • Колипротейный бактериофаг

    В жидкой форме востребован для профилактики и терапии кольпитов, энтероколитов. В форме таблеток он чаще применяется при запущенных формах пиелонефритов и циститов, воспалительных процессов в органах малого таза. Противопоказание: аллергия на любой из его компонентов препарата. Побочные эффекты отсутствуют.

  • Дизентерийный бактериофаг

    Применяется для терапии и профилактики дизентерии. Побочные действия не выявлены. Противопоказания: сверхчувствительность к компонентам, а для формы препарата в таблетках - возраст пациента менее 1 года, период беременности и кормления грудью.

Не стоит преувеличивать опасность вирусов, входящих в состав подобных препаратов и бактериофаг-аналогов. Они смертельно опасны только для бактерий, вызывающих заболевания. Если доктор считает целесообразным включение бактериофагов в схему лечения, стоит довериться и настроиться на скорейшее выздоровление.

Применение бактериофагов проводится исключительно по назначению и под наблюдением лечащего врача.

№ 10-2013

Фотография, сделанная с помощью электронного микроскопа,
показывает процесс закрепления бактериофагов (колифагов T1) на поверхности бактерии E. coli
.

В конце ХХ века стало ясно, что бактерии безусловно доминируют в биосфере Земли, составляя более 90% ее биомассы. У каждого вида имеется множество специализированных типов вирусов. По предварительным оценкам, число видов бактериофагов составляет около 10 15 . Чтобы понять масштаб этой цифры, можно сказать, что если каждый человек на Земле будет каждый день открывать по одному новому бактериофагу, то на описание всех их понадобится 30 лет.

Таким образом, бактериофаги – самые малоизученные существа в нашей биосфере. Большинство известных сегодня бактериофагов принадлежит к отряду Caudovirales – хвостатые вирусы. Их частицы имеют размер от 50 до 200 нм. Хвост разной длины и формы обеспечивает присоединение вируса к поверхности бактерии-хозяина, головка (капсид) служит хранилищем для генома. Геномная ДНК кодирует структурные белки, формирующие «тело» бактериофага, и белки, которые обеспечивают размножение фага внутри клетки в процессе инфекции.

Можно сказать, что бактериофаг – это природный высокотехнологичный нанообъект. Например, хвосты фагов представляют собой «молекулярный шприц», который протыкает стенку бактерии и, сокращаясь, впрыскивает свою ДНК внутрь клетки. С этого момента начинается инфекционный цикл. Его дальнейшие этапы состоят из переключения механизмов жизнедеятельности бактерии на обслуживание бактериофага, размножение его генома, построение множества копий вирусных оболочек, упаковки в них ДНК вируса и, наконец, разрушение (лизис) хозяйской клетки.


Бактериофаг – это не живое существо, а молекулярный наномеханизм, созданный природой.
Хвост бактериофага – шприц, который протыкает стенку бактерии и впрыскивает вирусную ДНК,
которая хранится в головке (капсиде), внутрь клетки
.

Помимо постоянного эволюционного соревнования механизмов защиты у бактерий и нападения у вирусов, причиной сложившегося равновесия можно считать и то, что бактериофаги специализировались по своему инфекционному действию. Если имеется крупная колония бактерий, где своих жертв найдут и следующие поколения фагов, то уничтожение бактерий литическими (убивающими, дословно – растворяющими) фагами идет быстро и непрерывно.

Если потенциальных жертв маловато или внешние условия не слишком подходят для эффективного размножения фагов, то преимущество получают фаги с лизогенным циклом развития. В этом случае после внедрения внутрь бактерии ДНК фага не сразу запускает механизм инфекции, а до поры до времени существует внутри клетки в пассивном состоянии, зачастую внедряясь в бактериальный геном.

В таком состоянии профага вирус может существовать долго, проходя вместе с хромосомой бактерии циклы деления клетки. И лишь когда бактерия попадает в благоприятную для размножения среду, активируется литический цикл инфекции. При этом, когда ДНК фага освобождается из бактериальной хромосомы, часто захватываются и соседние участки бактериального генома, а их содержимое в дальнейшем может перенестись в следующую бактерию, которую заразит бактериофаг. Этот процесс (трансдукция генов) считается важнейшим средством переноса информации между прокариотами – организмами без клеточных ядер.


Как действует бактериофаг

Все эти молекулярные тонкости не были известны во втором десятилетии ХХ века, когда были открыты «невидимые инфекционные агенты, уничтожающие бактерий». Но и без электронного микроскопа, с помощью которого в конце 1940-х впервые удалось получить изображения бактериофагов, было понятно, что они способны уничтожать бактерии, в том числе и болезнетворные. Это свойство было незамедлительно востребовано медициной.

Первые попытки лечения фагами дизентерии, раневых инфекций, холеры, тифа и даже чумы были проведены достаточно аккуратно, и успех выглядел вполне убедительно. Но после начала массового выпуска и использования фаговых препаратов эйфория сменилась разочарованием. О том, что такое бактериофаги, как производить, очищать и применять их лекарственные формы, было известно еще очень мало. Достаточно сказать, что по результатам предпринятой в США в конце 1920-х годов проверки во многих промышленных фагопрепаратах собственно бактериофагов вообще не оказалось.

Проблема с антибиотиками

Вторую половину ХХ века в медицине можно назвать «эрой антибиотиков». Однако еще первооткрыватель пенициллина Александр Флеминг в своей нобелевской лекции предупреждал, что устойчивость микробов к пенициллину возникает довольно быстро. До поры до времени антибиотикоустойчивость компенсировалась разработкой новых типов противомикробных лекарств. Но с 1990-х годов стало ясно, что человечество проигрывает «гонку вооружений» против микробов.

Виновато прежде всего бесконтрольное применение антибиотиков не только в лечебных, но и в профилактических целях, причем не только в медицине, но и в сельском хозяйстве, пищевой промышленности и быту. В результате устойчивость к этим препаратам начала вырабатываться не только у болезнетворных бактерий, но и у самых обычных микроорганизмов, живущих в почве и воде, делая из них «условных патогенов».

Такие бактерии комфортно существуют в медицинских учреждениях, заселяя сантехнику, мебель, медицинскую аппаратуру, порой даже дезинфицирующие растворы. У людей с ослабленным иммунитетом, каких в больницах большинство, они вызывают тяжелейшие осложнения.

Неудивительно, что медицинское сообщество бьет тревогу. В прошедшем, 2012 году гендиректор ВОЗ Маргарет Чен выступила с заявлением, предсказывающим конец эры антибиотиков и беззащитность человечества перед инфекционными заболеваниями. Впрочем, практические возможности комбинаторной химии – основы фармакологической науки – далеко не исчерпаны. Другое дело, что разработка противомикробных средств – очень дорогой процесс, не приносящий таких прибылей, как многие другие лекарства. Так что страшилки о «супербактериях» – это скорее предостережение, побуждающее людей к поискам альтернативных решений.

Бактериофаги и иммунитет

Поскольку бактериофагов в природе несметное количество и они постоянно попадают в организм человека с водой, воздухом и пищей, то иммунитет их просто игнорирует. Существует даже гипотеза о симбиозе бактериофагов в кишечнике, регулирующем кишечную микрофлору. Добиться какой-то иммунной реакции можно лишь при длительном введении в организм больших доз фагов.

Но таким образом можно добиться аллергии на почти любые вещества. И наконец, очень важно, что бактериофаги недороги. Разработка и производство препарата, состоящего из точно подобранных бактериофагов с полностью расшифрованными геномами, культивированных по современным биотехнологическим стандартам на определенных штаммах бактерий в химически чистых средах и прошедших высокую очистку, на порядки дешевле, чем современных сложных антибиотиков.

Это позволяет быстро приспосабливать фаготерапевтические препараты к меняющимся наборам патогенных бактерий и применять бактериофаги в ветеринарии, где дорогие лекарства экономически не оправданы.

На медицинской службе

Вполне логичным выглядит возрождение интереса к использованию бактериофагов – естественных врагов бактерий – для лечения инфекций. Действительно, за десятилетия «эры антибиотиков» бактериофаги активно служили науке, но не медицине, а фундаментальной молекулярной биологии. Достаточно упомянуть расшифровку «триплетов» генетического кода и процесса рекомбинации ДНК. Сейчас о бактериофагах известно достаточно, чтобы обоснованно выбирать фаги, подходящие для терапевтических целей.

Достоинств у бактериофагов как потенциальных лекарств множество. Прежде всего – это их несметное количество. Хотя изменять генетический аппарат бактериофага тоже намного проще, чем у бактерии, и тем более – у высших организмов, в этом нет необходимости. Всегда можно подобрать что-то подходящее в природе. Речь идет скорее о селекции, закреплении востребованных свойств и размножении нужных бактериофагов.

Это можно сравнить с выведением пород собак – ездовых, сторожевых, охотничьих, гончих, бойцовых, декоративных… Все они при этом остаются собаками, но оптимизированы под определенный вид действий, нужных человеку. Во-вторых, бактериофаги строго специфичны, то есть они уничтожают только определенный вид микробов, не угнетая при этом нормальную микрофлору человека.

В-третьих, когда бактериофаг находит бактерию, которую должен уничтожить, он в процессе своего жизненного цикла начинает размножаться. Таким образом, не столь острым становится вопрос дозировки. В-четвертых, бактериофаги не вызывают побочных эффектов. Все случаи аллергических реакций при использовании терапевтических бактериофагов были вызваны либо примесями, от которых препарат был недостаточно очищен, либо токсинами, выделяющимися при массовой гибели бактерий. Последнее явление, «эффект Герксхаймера», нередко наблюдается и при применении антибиотиков.

Две стороны медали

К сожалению, недостатков у медицинских бактериофагов тоже немало. Самая главная проблема проистекает из достоинства – высокой специфичности фагов. Каждый бактериофаг инфицирует строго определенный тип бактерий, даже не таксономический вид, а ряд более узких разновидностей, штаммов. Условно говоря, как если бы сторожевая собака начинала лаять только на одетых в черные плащи громил двухметрового роста, а на лезущего в дом подростка в шортах никак не реагировала.

Поэтому для нынешних фаговых препаратов нередки случаи неэффективного применения. Препарат, сделанный против определенного набора штаммов и прекрасно лечащий стрептококковую ангину в Смоленске, может оказаться бессильным против по всем признакам такой же ангины в Кемерове. Болезнь та же, вызывается тем же микробом, а штаммы стрептококка в разных регионах оказываются различными.

Для максимально эффективного применения бактериофага необходима точная диагностика патогенного микроба, вплоть до штамма. Самый распространенный сейчас метод диагностики – культуральный посев – занимает много времени и требуемой точности не дает. Быстрые методы – типирование с помощью полимеразной цепной реакции или масс-спектрометрии – внедряются медленно из-за дороговизны аппаратуры и более высоких требований к квалификации лаборантов. В идеале подбор фагов-компонентов лекарственного препарата можно было бы делать против инфекции каждого конкретного пациента, но это дорого и на практике неприемлемо.

Другой важный недостаток фагов – их биологическая природа. Кроме того, что бактериофаги для поддержания инфекционности требуют особых условий хранения и транспортировки, такой метод лечения открывает простор для множества спекуляций на тему «посторонней ДНК в человеке». И хотя известно, что бактериофаг в принципе не может заразить человеческую клетку и внедрить в нее свою ДНК, поменять общественное мнение непросто.

Из биологической природы и довольно большого, по сравнению с низкомолекулярными лекарствами (теми же антибиотиками), размера вытекает третье ограничение – проблема доставки бактериофага в организм. Если микробная инфекция развивается там, куда бактериофаг можно приложить напрямую в виде капель, спрея или клизмы, – на коже, открытых ранах, ожогах, слизистых оболочках носоглотки, ушей, глаз, толстого кишечника – то проблем не возникает.

Но если заражение происходит во внутренних органах, ситуация сложнее. Случаи успешного излечения инфекций почек или селезенки при обычном пероральном приеме препарата бактериофага известны. Но сам механизм проникновения относительно крупных (100 нм) фаговых частиц из желудка в кровоток и во внутренние органы изучен плохо и сильно разнится от пациента к пациенту. Бактериофаги бессильны и против тех микробов, которые развиваются внутри клеток, например возбудителей туберкулеза и проказы. Через стенку человеческой клетки бактериофаг пробраться не может.

Нужно отметить, что противопоставлять применение бактериофагов и антибиотиков в медицинских целях не следует. При совместном их действии наблюдается взаимное усиление противобактериального эффекта. Это позволяет, например, снизить дозы антибиотиков до значений, не вызывающих выраженных побочных эффектов. Соответственно, и механизм выработки у бактерий устойчивости к обоим компонентам комбинированного лекарства почти невозможен.

Расширение арсенала противомикробных препаратов дает больше степеней свободы в выборе методики лечения. Таким образом, научно обоснованное развитие концепции применения бактериофагов в противомикробной терапии – перспективное направление. Бактериофаги служат не столько альтернативой, сколько дополнением и усилением в борьбе с инфекциями.

Впервые, предположение, что бактериофаги являются вирусами сделал. Д.Эррель. В дальнейшем открыты вирусы грибков и тд, называть стали фаги.

Морфология фага.

Размеры - 20 - 200нм. Большинство фагов имеют форму головастиков. Наиболее сложно устроенные фаги состоят из многогранной головки, в которой располагается нуклеиновая кислота, шейка и отростки. На конце отростка располагается базальная пластинка, с отходящими от нее нитями и зубцами. Эти нити и зубцы служат для прикрепления фага к оболочке бактерии. У наиболее сложноорганизованных фагов в дистальной части отростка, содержится фермент - лизоцим . Этот фермент способствует растворению оболочки бактерий при проникновении фаговой НК в цитоплазму. У многих фагов отросток окружен чехлом, который у некоторых фагов может сокращаться.

Различают 5 морфологических групп

  1. Бактериофаги с длинным отростком и сокращающимся чехлом
  2. Фаги с длинным отростком, но не сокращающимся чехлом
  3. Фаги с коротким отростком
  4. Фаги с аналогом отростка
  5. Нитевидные фаги

Химический состав.

Фаги состоят из нуклеиновой кислоты и белков. Большинство из них содержит 2хнитевую ДНК, замкнутую в кольцо. Некоторые фаги содержат одну нить ДНК или РНК.

Оболочка фагов - капсид , состоит из упорядоченных белковых субъединиц - капсомеров.

У наиболее сложноорганизованных фагов в дистальной части отростка, содержится фермент - лизоцим . Этот фермент способствует растворению оболочки бактерий при проникновении фаговой НК в цитоплазму.

Фаги хорошо переносят замораживание, нагревание до 70, высушивание. Чувствительны к кислотам, УФ и кипячению. Фаги инфицируют строго определенные бактерии, взаимодействую со специфическими рецепторами клеток.

По специфичности взаимодействия -

Полифаги - взаимодействующие с несколькими родственными видами бактерий

Монофаги - видовые фаги - взаимодействуют с одним видом бактерий

Типовые фаги - взаимодействуют с отдельными вариантами бактерий внутри вида.

По действию типовых фагов вид можно разделить на фаговый ряд . Взаимодействие фагов с бактериями может протекать по продуктивному, апродуктивному и интегративному типу.

Продуктивный тип - образуется фаговое потомство, а клетка лизируется

При апродуктивном - клетка продолжает существовать, процесс взаимодействия обрывается на начальной стадии

Интегративный тип - геном фага интегрирует в хромосому бактерий и сосуществует с ним.

В зависимости от типов взаимодействия различают вирулентные и умеренные фаги.

Вирулентные взаимодействуют с бактериями по продуктивному типу. В начале происходит абсорбция фага на оболочке бактерий, за счет взаимодействия специфических рецепторов. Имеет место проникновение или пенетрация вирусной нуклеиновой кислоты в цитоплазму бактерий. Под действием Лизоцима в оболочке бактерии образуется небольшое отверстие, чехол у фага сокращается и НК впрыскивается. Оболочка фага за пределами бактерии. Далее осуществляется синтез ранних белков. Они обеспечивают синтез фаговых структурных белков, репликацию фаговой нуклеиновой кислоты и репрессию деятельности бактериальной хромосом.

После этого происходит синтез структурных компонентов фагов и репликация нуклеиновой кислоты. Из этих элементов происходит сборка нового поколения фаговых частиц. Сборка носит название морфогенез, новых частиц, которых в одной бактерии может образовываться 10-100. Далее лизис бактерии и выход нового поколения фагов во внешнюю среду.

Умеренные бактериофаги взаимодействуют либо по продуктивному, либо по интегративному типу. Продуктивный цикл идет аналогично. При интегративном взаимодействии - ДНК умеренного фага после попадания в цитоплазму встраивается в хромосому в определенном участке, причем при делении клетки реплицируется синхронно с бактериальной ДНК и вот эти структуры передаются дочерним клеткам. Такая встроенная ДНК фага - профаг , а бактерия, содержащая профаг, называется лизогенной, а явление - лизогения.

Спонтанно, или под влиянием ряда внешних факторов профаг может вырезаться из хромосомы, т.е. переходить в свободное состояние, проявлять свойства вирулентного фага, что будет приводить к образованию нового поколения бактериальных тел - индукция профага .

Лизогенезация бактерий лежит в основе фаговой(лизогенной) конверсии. Под этим понимают изменение признаков или свойств у лизогенных бактерий, по сравнению с нелизогенными того же вида. Изменяться могут разные свойства - морфологические, антигенные и тд.

Умеренные фаги могут быть дефектными - не способными образовывать фаговое потомство не в естественных условиях и в индукции.

Вирион - полноценная вирусная частица, состоящая из НК и белковой оболочки

Практическое применение фагов -

  1. Применение в диагностике. В отношение ряда вида бактерий монофаги, используются в реакция фаголизабельности, как один из критериев идентификации культуры бактерии, типовые фаги применяют для фаготипирования, для внутривидовой дифференциации бактерий. Проводятся с эпидимиологоическими целями, для установления источника инфекции и путей устранения
  2. Для лечения и профилактики ряда бактериальных инфекций - брюшной тип, стафилококковы и стрептококковые инфекции(таблетки с кислотоустойчивым покрытием)
  3. Умеренные бактериофаги применяют в генной инженерии в качестве вектора, способных вносить генетический материал в живую клетку.

Генетика бактерий

Бактериальный геном состоит из генетических элементов, способных к самовоспроизведению - репликонов. Репликонами является бактериальные хромосомы и плазмиды. Бактериальная хромосома формирует нуклеоид, замкнутым кольцом не связанным с белками и несет гаплоидный набор генов.

Плазмиды представляет собой также замкнутое кольцо молекулы ДНК, но гораздо меньших размеров чем хромосома. Наличии плазмид в цитоплазме бактерий не обязательно, но они придают преимущество в окружающей среде. Крупные плазмиды редуцируются с хромосомой и количество их в клетке небольшое. А число мелких плазмид может достигать нескольких десятков. Некоторые плазмиды способны обратимо встраиваться в бактериальную хромосому в определенном ее участке и функционировать в виде единого репликона. Такие плазмиды называются интегративными. Некоторые плазмиды способны передаваться от одной бактерии к другой при непосредственном контакте - коньюгативные плазмиды. Они содержат гены, ответственные за образование F-пилей, формирующих коньюгативный мостик, для передачи генетического материалы.

Основные типы плазмидов-

F - интегративная коньгативная плазмида. Половой фактор, определяет способность бактерий быть донорами при коньюгации

R - плазмиды. Резистентная. Содержит гены, детерминирующие синтез факторов, разрушающих антибактериальные препараты. Бактерии, обладающие такими плазмидами не чувствительны ко многим препаратам. Поэтому формируются устойчивые к препаратам фактор.

Токс плазмиды - детерминирующие факторы патогенности -

Ent - плазмиды - содержит ген за выработку энтеротоксинов.

Hly - разрушают эритроцит.

Подвижные генетические элементы. К ним относятся вставочные - инсерционные элементы . Общепринятое обозначение - Is. Это участки ДНК, способные перемещаться как внутри репликона, так и между ними. Они содержат только гены, необходимые для их собственного перемещения.

Транспозоны - более крупные структуры, обладающие темиже свойствами, что и Is, го помимо они содержат структурные гены, определяющие синтез биологических веществ, например токсинов. Подвижные генетические элементы могут вызывать инактивацию гена, повреждение генетического материала, слияние репликонов и распространение генов в популяции бактерий.

Изменчивость у бактерий.

Все виды изменчивости подразделяют на 2 группы - ненаследственная(фенотипическая, модификационная) и наследственная(генотипическая).

Модификации - фенотипчиеские не наследуемые изменения признаков или свойств. Модификации не затрагивают генотипа, а поэтому не передаются по наследству. Они являются адаптивными реакциями, на изменение каких то конкретных условий внешней среды. Как правило утрачиваются в первом поколении, после прекращения действия фактора.

Генотипическая изменчивость затрагивает генотип организма, а поэтому способна передаваться потомкам. Генотипическая изменчивость подразделяется на мутации и рекомбинации.

Мутации - стойкие, наследуемые изменения признаков или свойств организма. Основа мутаций - качественное или количественное изменение последовательности нуклеотидов в молекуле ДНК. Мутации могут изменять практически любые свойства.

По происхождению мутации - спонтанные и индуцируемые.

Спонтанные мутации происходит в естественных условиях существования организма, а индцированные возникают в результате направленного действия мутагенного фактора. ПО характеру изменений в первичной структуре ДНК у бактерий различают генные или точковые мутации и хромосомные аберрации.

Генные мутации происходят внутри одного гена и минимально захватывают один нуклеотид. Этот тип мутаций может быть следствием замены одно нуклеотида на другой, выпадения нуклеотида или вставления лишнего.

Хромосомные - могут затрагивать несколько хромосом.

Может быть делеция - потеря участка хромосомы, дупликация - удвоения участка хромосомы. Поворот участка хромосомы на 180 градусов - инверсия.

Любая мутация возникает под действием определенного мутагенного фактора. По своей природе мутагены - физические, химические и биологические. Ионизирующая радиация, рентгеновские лучи, УФ лучи. К химическим мутагенам - аналоги азотистых оснований, саму азотистую кислоту, и даже некоторые лекарственные средства, цитостатики. К биологическим - некоторые вирусы и трансфазоны

Рекомбинация - обмен участками хромосом

Трансдукция - перенос генетического материала с помощью бактериофага

Репарация генетического материала - восстановление возникших в результате мутаций повреждений.

Существует несколько видов репарации

  1. Фотореактивация - этот процесс обеспечивается специальным ферментом, который активируется в присутствии видимого света. Этот фермент перемещается по цепочке ДНК и восстанавливает повреждения. Объединяет тимеры, которые образуются при действии УФ. Более значимы результаты темновой репарации. Она не зависит от света и обеспечивается несколькими ферментами - вначале нуклеазы вырезают поврежденный участок цепи ДНК, затем ДНК полимераза, на матрице сохранившейся комплементарно цепи синтезирует заплату, а лигазы вшивают заплатку на поврежденное место.

Репарации подвергаются генные мутации, а хромосомные как правило нет

  1. Генетические рекомбинации у бактерий. Характеризуются проникновением генетического материала от бактерии донора в бактерию реципиента с формированием дочернего генома, содержащим генов обеих исходных особей.

Включение фрагмента ДНК донора в рецепиента происходит кроссинговером

Три типа передачи -

  1. Трансформация - процесс, при котором происходит передача фрагмента изолированной ДНК донора. Зависит от компетентности рецепиента и состояния донорской ДНК. Компетентность - способность поглощать ДНК. Она зависит от присутствия в клеточной мембране реципиента особых белков и формируется в определенные периоды роста бактерии. Донорская ДНК обязательно должна быть двухцепочечной и не очень большой по размеру. Донорская ДНК проникает через оболочку бактерий, причем одна из цепочек разрушается, другая встраивается в ДНК реципиента.
  2. Трансдукция - осуществляется с помощью бактериофагов. Общая трансдукция и специфическая трансдукция.

Общая - происходит при участии вирулентных факторов. В процессе сборки фагов частиц в головку фага по ошибке может включаться не фаговая ДНК, а кусочек хромосомы бактерий. Такие фаги - дефектные фаги.

Специфическая - она осуществляется умеренными фагами. При вырезании, вырезание его строго осуществляется по границе.Встраиваются между определёнными генами и переносят их.

  1. Коньюгация - передача генетического материала от бактерии донора рецепиенту, при их непосредственном контакте. Необходимым условием - наличие в клетке донора коньгативного плазмида. При коньюгации за счет пилей образуется коньюгационный мостик, по которому генетический материал передается от донора к пациенту.

Генодиагностика

Комплекс методов, позволяющих выявить геном микроорганизма или его фрагмента в исследуемом материале. Первым был предложен метод гибридизации НК. Основан на использовании принципа комплиментарности. Этот метод позволяет выявить в генетическом материале наличие маркерных фрагментов ДНК возбудителя с помощью молекулярных зондов. Молекулярные зонды представляют собой короткие цепочки ДНК, комплементарные маркерному участку. В состав зонда вводится метка - флюорозром, радиоактивный изотоп, фермент. Исследуемый материал подвергается специальнйо обработке, позволяющей разрушить микрооргнаизмы, высвободить ДНК и разделить ее на одноцепочечные фрагменты. После этого материал фиксируется. Затем выявляется активность метки. Этот метод не отличается высокой чувствительностью. Можно выявить возбудителя лишь при достаточно большом его количестве. 10 в 4 микроорганизмов. Он достаточно сложен технически и требует большого количества зондов. Широкого распространения в практике он не нашел. Был разработан новый метод - полимеразная цепная реакция - ПЦР.

Этот метод основан на способности ДНК и вирусных РНК к репликации, т.е. к саморепродукции. Суть у пациента - является многократное копирование - амплификация in vitro фрагмента ДНК, являющего маркерного для данного микроорганищма. Так как процесс проходит при достаточно высоких температурах 70-90, то метод стал возможен после выделения из термофильных бактерий термостабильной ДНК-полимеразы. Механизм амплификации таков, что копирование цепочек ДНК начинается не в любой точке, а только в определенных стартовых блоках для создания которых используют так называемые праймеры. Праймеры представляют собой полинуклеотидные последовательности, комплиментарные концевым последовательностям копируемого фрагмента искомой ДНК, причем праймеры не только инициируют амплификацию, но и ограничивают. Сейчас существует несколько вариантов ПЦР характерны 3 этапа -

  1. Денатурация ДНК(разделение на 1 цепочечные фрагменты)
  2. Присоединение праймера.
  3. Комплиментарное достраивание цепей ДНК до 2хцепочечных

Этот цикл длится 1,5-2 минуты. В результате количество молекул ДНК удваивает 20-40 раз. В результате 10 в 8 степени копий. После амплификации производят электрофорез и выделяются в виде полосок. Она проводится в специальном приборе, который называется амплификатор.

Достоинства ПЦР

  1. Дает прямые указания на присутствие возбудителя в исследуемом материале, без выделения чистой культуры.
  2. Очень высокая чувствительность. Теоретически можно обнаружить 1го.
  3. Материал для исследования может быть сразу дизенфицировать после забора.
  4. 100% специфичность
  5. Быстрота получения результатов. Полный анализ - 4-5 часов. Экспресс метод.

Достаточно широко используется для диагностики инфекционных заболеваний, возбудителями которых являются не культивируемые или трудно культивируемые организмы. Хламидии, микоплазмы, многие вирусы - гепатита, герпеса. Разработаны тест системы для определения сибирской язвы, туберкулеза.

Рестрикционный анализ - с помощью ферментов молекула ДНК разделяется по определенным последовательностям нуклеоидов и фрагменты анализируются поп составу. Таким образом можно найти уникальные участки.

Биотехнология и генная инженерия

Биотехнология это наука, которая на основе изучения процессов жизнедеятельности живых организмов использует эти биопроцессы, а также сами биологические объекты для промышленно производства продуктов необходимых для человека, для воспроизведения биоэффектов, не проявляющихся в неестественных условиях. В качестве биологических объектов чаще всего используются одноклеточные микроорганизмы, а также клетки, животных и растений. Клетки очень быстро воспроизводятся, что позволяет за короткое время нарастить биомассу продуцента. В настоящее время биосинтез сложных веществ, таких как белки, антибиотики, экономичнее и технологически доступнее чем другие виды сырья.

Биотехнология использует сами клетки как источник целевого продукта а также крупные молекулы, синтезируемые клеткой, ферменты токсины, антитела и первичные и вторичные метаболиты - аминокислоты, витамины,гормоны. Технология получения продуктов микробного и клеточного синтеза сводится к нескольким типовым стадиям - выбор или создание продуктивного штаба. Подбор оптимальной питательной среды, культивирование. Выделение целевого продукта, его очистка, стандартизация, придание лекарственной формы. Генетическая инженерия сводится к созданию необходимый для человека целевой продукции. Полученный целевой ген сшивают с вектором, а вектором может быть плазмиды и встраивают его в клетку реципиента. Реципиент - бактерия - кишечная палочка, дрожжи. Синтезируемые рекомбинантами целевые продукты, выделяют очищают и используют в практике.

Первыми, были созданы инсулин и человеческий интерферон. Эритропоэтин, гормон роста, монокланальные антитела. Вакцина против гепатита Б.

Отличительные свойства бактериофагов как представителей царства Vira. Вирулентные фаги, стадии взаимодействия с бактериальной клеткой. Практическое применение бактериофагов

Вирулентные фаги вызывают продуктивную инфекцию , при которой происходит репродукция фагов и лизис бактериальной клетки.

Механизм взаимодействия вирулентного фага с микробной клеткой:

1. Адсорбция фага на чувствительной клетке. Происходит при наличии комплементраных рецепторов в клеточной стенке бактерий и на концах нитей фагового отростка. Сперва фаг присоединяется нитями, а затем прочно прикрепляется к клеточной стенке с помощью зубцов банальной пластинки.

2. Проникновение ДНК фага в бактериальную клетку . С помощью лизоцима, находящегося в банальной пластинке, участок клеточной стенки гидролизируется, чехол отростка сокращается и внутренний стержень прокалывать оболочки клетки. Молекула фаговой ДНК по каналу стержня проникает внутрь клетки.

3. Внутриклеточное развитие фага . Фазовая ДНК вносит в бактериальную клетку генетическую информацию. Происходит биосинтез компонентов, необходимых для репродукции. На начальных этапах синтезируются "ранние белки" - ферменты, осуществляющие репликацию фаговой ДНК с целью образования множества ее копий. Затем на клеточных рибосомах формируются структурные "поздние белки"

4. Морфогенез фага . Созревание фага происходит по трем независимым ветвям в различных участках клетки, является разобщенным процессом. Отдельно формируются головки фага - вокруг молекулы ДНК строится капсид. Независимо идет построение отростка. Отдельно синтезируются нити отростка. Затем все составные части фага объединяются, образуя вирионы.

5. Лизис бактериальной клетки и выход фага. Лизис осуществляется под действием лизоцима. Выход путем отпочковывания.

Строгая специфичность бактериофагов позволяет использовать их для фаготипирования и дифференцировки бактериальных культур, а также для индикации их во внешней среде, например в водоемах.

Метод фаготипирования бактерий широко применяется в микробиологической практике. Он позволяет не только определить видовую принадлежность исследуемой культуры, но и ее фаготип (фаговар). Это связано с тем, что у бактерий одного и того же вида имеются рецепторы, адсорбирующие строго определенные фаги, которые затем вызывают их лизис. Использование наборов таких типоспецифических фагов позволяет проводить фаготипирование исследуемых культур с целью эпидемиологического анализа инфекционных заболеваний:(установления источника инфекции и путей ее передачи)



II. Фаги применяют для профилактики и лечения инфекционных заболеваний:

а) фагопрофилактика - метод предупреждения развития некоторых бактериальных инфекций с помощью приема внутрь специфического бактериофага. Применяют для профилактики холеры, дизентерии, брюшного тифа и др.

б) фаготерапия- метод лечения бактериальных инфекций посредством приема внутрь специфического фага. (брюшнотифозного, сальмонеллезных, дизентерийного, протейного, синегнойного, стафилококкового, стрептококкового, коли-фага и комбинированных препаратов. Их используют в терапии инфекционных заболеваний, вызываемых вышеперечисленными микроорганизмами, а также в терапии раневых и анаэробных инфекций.)

Генотипическая изменчивость

Патогенность -

Адгезия

Инвазия

Агрессия .

4.Строение генетического аппарата прокариот. Фенотипическая и генотипическая изменчивость. Генетические основы патогенности бактерий.

Генетический аппарат прокариот - не имеет ядерной оболочки и представлен одной кольцевой молекулой ДНК,которая является хромосомой; располагается в цитоплазме,не содержит белков гистонов. Не способен к митозу

Фенотипическая изменчивость – модификации(изменение не одного или нескольких признаков)– не затрагивает генотип. Изменения Фенотипическая происходят под влиянием факторов внешней среды.Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу.

Генотипическая изменчивость - изменение свойств бактерий,застрагивая их генотип. Передается по наследству, является долговременной. Возникает в следствие мутаций или генетического обмена(трансформации, конъюгации или трансдукции)

Патогенность - видовой признак, передающийся по наследству, закрепленный в геноме микроорганизма т. е. это генотипический признак, отражающий потенциальную возможность микроорганизма проникать в макроорганизм и размножаться в нем (инвазионность), вызывать комплекс патологических процессов, возникающих при заболевании.

К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Часть из них кодируется непосредственно генами нуклеоида (например, капсула и ферменты у некоторых видов). Другая часть кодируется внехромосомными факторами наследственности – плазмидами и эписомами. Плазмидные гены обычно определяют взаимодействие возбудителей с эпителием, а хромосомные – существование и размножение бактерий внеклеточно в органах и тканях.

Адгезия Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности.У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.

Инвазия фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.

Агрессия К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло