Из чего состоят углеводы.             Углеводы

Углеводами называют вещества с общей формулой C n (H 2 O) m , где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

  1. моносахариды или простые сахара;
  2. олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).
  3. полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C 3), тетрозы (C 4), пентозы (C 5), гексозы (C 6), гептозы (C 7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются прежде всего альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями , соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH 3 . Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки.

Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов

Энергетическая . Глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания (1 г углеводов при окислении высвобождает 17,6 кДж энергии).

Структурная . Целлюлоза входит в состав клеточных оболочек растений; хитин является структурным компонентом покровов членистоногих и клеточных стенок грибов.

Некоторые олигосахариды входят в состав цитоплазматической мембраны клетки (в виде гликопротеидов и гликолипидов) и образуют гликокаликс.

Метаболическая . Пентозы участвуют в синтезе нуклеотидов (рибоза входит в состав нуклеотидов РНК, дезоксирибоза - в состав нуклеотидов ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозодифосфат является акцептором СO 2 в темновой фазе фотосинтеза).

Пентозы и гексозы участвуют в синтезе полисахаридов; в этой роли особенно важна глюкоза.

Углеводы являются основным повседневным источником энергии человека и наибольшей по массе составной частью пищевого рациона человека.

Углеводы являются органическими соединениями, включающими в себя углерод, водород и кислород.


Углеводы подразделяются на две основные категории - простые и сложные. Простые углеводы – моносахариды - это различные сахара, состоящие из одной молекулы. Сюда относятся глюкоза, фруктоза и галактоза. Сложные углеводы в свою очередь подразделяются на дисахариды и полисахариды. Дисахариды – это сахароза, мальтоза, лактоза. Полисахариды включают в себя крахмал, гликоген, целлюлозу, гемицеллюлозу и клетчатку.

Моносахариды

Глюкоза используется организмом для энергетических нужд, для питания мозга, работающих мышц, в том числе сердечной мышцы, эритроцитов, для обеспечения работы центральной нервной системы. Глюкоза обеспечивает поддержание необходимого уровня сахара крови и создания запасов гликогена печени. Если получаемое с пищей количество углеводов недостаточно, необходимая концентрация глюкозы в крови может поддерживаться некоторое время за счет расщепления гликогена печенью.

Глюкоза входит в состав важнейших для человека дисахаридов - сахарозы, лактозы, мальтозы, является структурной единицей (мономером), на основе которой построены важнейшие полисахариды - гликоген, крахмал и целлюлоза (клетчатка).


Глюкоза быстро всасывается в желудочно-кишечном тракте и поступает в кровь, а затем в клетки органов и тканей, где вовлекается в процессы окисления. Окисление глюкозы сопряжено с образованием АТФ (аденозинтрифосфорная кислоты).


Глюкоза является непосредственным предшественником гликогена и при избыточном поступлении глюкозы в организм легко превращается в гликоген.

Глюкоза легко превращается в организме человека в триглицериды, причем, этот процесс особенно усиливается при избыточном поступлении глюкозы с пищей.


Фруктоза обладает теми же свойствами, что и глюкоза, но она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70-80%) задерживается в печени, не вызывает перенасыщения крови сахаром, легко вовлекается в обменные процессы. Отличается от других сахаров фруктоза и тем, что обладает сравнительно невысокой стойкость - при продолжительном кипячении фруктоза начинает частично изменяться.

Фруктоза в 3 раза слаще глюкозы и в 2 раза слаще сахарозы, усваивается лучше сахарозы.


Галактоза в природе в чистом виде не встречается, получается путём расщепления молочного сахара (лактозы). Большая часть ее превращается в печени человека в глюкозу и участвует в построении гемицеллюлоз.

Дисахариды

Сахароза - получается при соединении глюкозы и фруктозы. Обычный сахар, применяемый повседневно.


Мальтоза – образуется при соединении двух молекул глюкозы. Получается, в частности, при расщеплении крахмала.


Лактоза – молочный сахар, содержится только в молоке. Получается при соединении глюкозы и галактозы.

Полисахариды

Полисахариды характеризуются плохой растворимостью в воде.

Крахмал состоит из большого числа молекул (до 1000) моносахаридов. Человек может усваивать крахмал Обладает свойством только коллоидальной растворимости.


Сложность строения молекул полисахаридов является причиной их нерастворимости. Крахмал обладает свойством только коллоидальной растворимости. Превращения крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Превращение в глюкозу происходит через ряд промежуточных образований.


Гликоген используется в организме как источник энергии для питания работающих мышц, органов и систем. Также является первичным источником глюкозы и энергии. Мышечный гликоген используется напрямую в качестве энергии. Гликоген из печени может преобразовываться в глюкозу и переноситься кровью к различным тканям по мере необходимости.


В печени гликоген содержится в значительном количестве (до 20% в пересчете на сырую массу). Восстановление гликогена происходит путем peсинтеза гликогена за счет глюкозы крови.


Целлюлоза - состоит из множества молекул глюкозы и является базовым элементом растений. По химической струк¬туре весьма близка к полисахаридам. Является разновидностью клетчатки. Человек не может усваивать целлюлозу.


Гемицеллюлоза включает в себя пектин и агар-агар. Гемицеллюлоза обладает способностью впитывать воду, образуя гель. Человек не усваивает гемицеллюлозу.


Пектиновые вещества по своей химической структуре могут быть отнесены к коллоидным полисахаридам, или глюкополисахаридам. Различают два основных вида пектиновых веществ - протопектин и пектин.

Протопектин представляет собой соединение пектина с целлюлозой. В связи с этим прoтопектин при расщеплении на свои составные части может служить источником пектина. Протопектины нерастворимы в воде. Содержатся в клеточных стенках плодов, образуя межклеточную прослойку в их тканях и являясь связывающим и скрепляющим материалом между отдельными клетками.

Пектины являются растворимыми веществами, хорошо усваивающимся в организме. Пектин подвергается гидролизу под действием фермента пектиназы, при этом образуются пектиновая кислота и метиловый спирт. Необходимо отметить, что метиловый спирт (и пектиновая кислота) присутствуют в перезрелых и испорченных плодах и ягодах, a, также, в плодовых и виноградных винах. Основным свойством пектиновых веществ, определившим их использование в пищевой промышленности, является способность преобразовываться в водном растворе в присутствии кислоты н сахара в желеобразную, коллоидную массу. И чем выше содержание в пектине метилового спирта, нем лучше его желирующие свойства.


Клетчатка не усваивается человеком, содержится только в растительной пище. Существует два вида клетчатки – растворимая и нерастворимая. Оба этих вида необходимо важно употреблять каждый день. Под действием фермента целлюлазы, выделяемой бактериями, клетчатка расщепляется c образованием растворимых соединений, которые частично всасываются. Клетчатка играет важную роль в стимулировании перистальтики кишечника. Наряду с этим, клетчатка растительной пищи адсорбирует стерины и препятствует обратному их всасы¬ванию. Благодаря этому улучшается выведение холестерина из организма.

Функции Значение углеводов

Значение углеводов в питании человека чрезвычайно велико.

Углеводы служат важнейшим источником энергии, обеспечивая до 50-70 % общей энергетической ценности рациона. Большая часть глюкозы используется для сиюминутных потребностей клеток в энергии (1 г глюкозы обеспечивает выделение 4,1 ккал энергии). При поступлении с пищей достаточного количества углеводов аминокислоты лишь в незначительной степени используются в организме как энергетический материал и утилизируются в основном для различных пластических нужд. Если после усвоения глюкозы, вся она не расходуется, то оставшаяся часть запасается в виде гликогена в печени (преимущественно) и мышечных тканях как энергетический резерв (правда, небольшой емкости).


Если после окончания процесса накопления гликогена организм еще продолжает получать глюкозу, то она преобразуется в жирные кислоты и запасается в виде жировых тканей.


Углеводы играют важную роль в реализации пластических функций организма. Глюкоза, фруктоза, галактоза аминосахара и др. являются обязательными составными частями гликопротеидов. К их числу принадлежит большинство белков плазмы крови, включая иммуноглобулины и трансферрин, ряд гормонов, ферментов, факторов свертывания крови и др. Гликопротеиды и гликолипиды, наряду с белками и фосфолипидами, являются необходимыми компонентами клеточных мембран, играют важную роль в межклеточном взаимодействии и росте клеток, их дифференцировке и решении задач иммунитета.

Углеводы пищи являются предшественниками гликогена и триглицеридов, входят в состав заменимых аминокислот, участвуют в построении коферментов, нуклеиновых кислот, АТФ и других биологически важных соединений.


Углеводы необходимы для регуляции нервных тканей, в частности, центральная нервная система расходует около 140 г глюкозы за сутки, для обеспечения функционирования кровеносной системы - эритроциты крови расходуют до 40 г, и являются единственным источником энергии для мозга.


В организме человека все углеводы расщепляются ферментами слюны, поджелудочного и кишечного сока до простейших сахаров и всасываются в виде глюкозы через стенку кишок в кровь. Из воротной вены глюкоза поступает в печень, где часть ее превращается в гликоген и жир, а другая часть переходит, не задерживаясь в печени, в большой круг кровообращения и распределяется по всем органам. В значительном количестве глюкоза используется скелетными мышцами, где она окисляется непосредственно или откладывается в виде гликогена, а также мышцами сердца и мозговой тканью, но значительного накопления глюкозы здесь не происходит. Во всех этих случаях запасы гликогена идут на удовлетворение собственных потребностей тканей, и только гликоген печени, превращаясь в глюкозу, используется для нужд всего организма и поддерживает определенный уровень сахара в крови.

Общая характеристика. Углеводами называют вещества с общей формулой Сn (H 2 O) m, где п ит могут иметь разные значения. Само название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих вешеств в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы — одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также входят в состав клеток всех других организмов. В животной клетке содержится I—2% углеводов, в растительных в некоторых случаях — 85—90%.

Выделяют три группы углеводов:

  • моносахариды, или простые сахара;
  • олигосахариды (греч. oligos — немногочисленный) — соединения, состоящие из 2—10 последовательно соединенных молекул простых Сахаров;
  • полисахариды, состоящие более чем из 10 молекул простых Сахаров или их производных.

Моносахариды, Это соединения, в основе которых лежит не-разветвленная углеродная цепочка, в которой при одном из атомов углерода находится карбонильная группа (С=0), а при всех остальных — по одной гидроксильной группе. В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (С 3), гетрозы (С 4), пентозы (С 5), гексозы (С 6), гептозы (С 7). Примерами пентоз являются рибоза, дезоксирибоза, гексоз-глюкоза, фруктоза, галактоза.

Моносахариды хорошо растворяются в воде, они сладкие на вкус. В водном растворе моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз — их обычные формы; в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов. Кроме Сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды. При гидролизе олигосахариды образуют несколько молекул простых Сахаров. В олигосахаридах молекулы простых Сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы, например:

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар):

глюкоза + глюкоза = мальтоза;
глюкоза + галактоза - лактоза;
глюкоза + фруктоза = саxароза.

Эти сахара называют также дисахаридами. Мальтоза образуется из крахмала в процессе его расщепления под действием ферментов амилаз. Лактоза содержится только в молоке. Сахароза наиболее распространена в растениях.

По своим свойствам дисахариды близки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды. Это высокомолекулярные (до 10 000 000 Да) биополимеры, состоящие из большого числа мономеров — простых Сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисаха-риды (крахмал, целлюлоза, хитин и др.), во втором — гетеро-полисахариды (гепарин).

Полисахариды могут иметь линейную, неразветвленную структуру (целлюлоза) либо разветвленную (гликоген). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза — линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована 3—10 тыс. остатков P-D-тюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26—^0% целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку железы желудочно-кишечного тракта не образуют фермента целлюлазы, расщепляющей целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, так как они придают пище грубую консистенцию, объемность и стимулируют перистальтику кишечника.

Крахмал (у растений) и гликоген (у животных, человека и грибов) являются основными запасными полисахаридами по ряду причин: будучи нерастворимыми в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что важно при длительном нахождении их в живой клетке. Твердое, обезвоженное состояние полисахаридов способствует увеличению полезной массы продукта запаса за счет экономии объема, причем существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями, грибами и другими микроорганизмами. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.

Хитин образован молекулами pVD-глюкозы, в которой гидро-ксильная группа при втором атоме углерода замещена азотсодержащей группой NHCOCH 3 . Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин — основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов:

  1. Энергетическая. Глюкоза — основной источник энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания. Крахмал и гликоген составляют энергетический запас в клетках.
  2. Структурная, Целлюлоза входит в состав клеточных оболочек растений; хитин служит структурным компонентом покровов членистоногих и клеточных стенок многих грибов. Некоторые олигосахариды — составная часть цитоплазмати-ческой мембраны клетки (в виде гликопротеинов и гликолипи-дов), образующая гликокаликс.Пентозы участвуют в синтезе нуклеиновых кислот (рибоза входит в состав РНК, дезоксирибоза — в состав ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозо-дифосфат является акцептором С0 2 в темновой фазе фотосинтеза).
  3. Защитная. У животных гепарин препятствует свертыванию крови, у растений камеди и слизи, образующиеся при повреждении тканей, выполняют защитную функцию.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

Органические соединения, которые являются основным источником энергии, называются углеводами. Чаще всего сахара встречаются в пище растительного происхождения. Дефицит углеводов может вызвать нарушение работы печени, а их избыток вызывает повышение уровня инсулина. Поговорим о сахарах подробнее.

Что такое углеводы?

Это органические соединения, которые содержат карбонильную группу и несколько гидроксильных. Они входят в состав тканей организмов, а также являются важным компонентом клеток. Выделяют моно -, олиго - и полисахариды, а также более сложные углеводы, такие как гликолипиды, гликозиды и другие. Углеводы являются продуктом фотосинтеза, а также основным исходным веществом биосинтеза других соединений в растениях. Благодаря большому разнообразию соединений данный класс способен играть многоплановые роли в живых организмах. Подвергаясь окислению, углеводы обеспечивают энергией все клетки. Они участвуют в становлении иммунитета, а также входят в состав многих клеточных структур.

Виды сахаров

Органические соединения делятся на две группы - простые и сложные. Углеводы первого типа - моносахариды, которые содержат карбонильную группу и представляют собой производные многоатомных спиртов. Ко второй группе принадлежат олигосахариды и полисахариды. Первые состоят их остатков моносахаридов (от двух до десяти), которые соединены гликозидной связью. Вторые могут содержать в своем составе и сотни и даже тысячи мономеров. Таблица углеводов, которые чаще всего встречаются, выглядит следующим образом:

  1. Глюкоза.
  2. Фруктоза.
  3. Галактоза.
  4. Сахароза.
  5. Лактоза.
  6. Мальтоза.
  7. Раффиноза.
  8. Крахмал.
  9. Целлюлоза.
  10. Хитин.
  11. Мурамин.
  12. Гликоген.

Список углеводов обширен. Остановимся на некоторых из них подробнее.

Простая группа углеводов

В зависимости от места, которое занимает карбонильная группа в молекуле, различают два вида моносахаридов - альдозы и кетозы. У первых функциональной группой является альдегидная, у вторых - кетонная. В зависимости от числа углеродных атомов, входящих в молекулу, складывается название моносахарида. Например, альдогексозы, альдотетрозы, кетотриозы и так далее. Эти вещества чаще всего не имеют цвета, плохо растворимы в спирте, но хорошо в воде. Простые углеводы в продуктах - твердые, не гидролизуются при переваривании. Некоторые из представителей обладают сладким вкусом.

Представители группы

Что относится к углеводам простого строения? Во-первых, это глюкоза, или альдогексоза. Она существует в двух формах - линейной и циклической. Наиболее точно описывает химические свойства глюкозы - это вторая форма. Альдогексоза содержит шесть атомов углерода. Вещество не имеет цвета, но зато сладкое на вкус. Отлично растворяется в воде. Встретить глюкозу можно практически везде. Она существует в органах растений и животных организмах, а также во фруктах. В природе альдогексоза образуется в процессе фотосинтеза.

Во-вторых, это галактоза. Вещество отличается от глюкозы расположением в пространстве гидроксильной и водородной групп у четвертого атома углерода в молекуле. Обладает сладким вкусом. Она встречается в животных и растительных организмах, а также в некоторых микроорганизмах.

И третий представитель простых углеводов - фруктоза. Вещество является самым сладким сахаром, полученным в природе. Она присутствует в овощах, фруктах, ягодах, меде. Легко усваивается организмом, быстро выводится из крови, что обуславливает ее применение больными сахарным диабетом. Фруктоза содержит мало калорий и не вызывает кариес.

Продукты, богатые простыми сахарами

  1. 90 г - кукурузный сироп.
  2. 50 г - сахара-рафинад.
  3. 40,5 г - мед.
  4. 24 г - инжир.
  5. 13 г - курага.
  6. 4 г - персики.

Суточное употребление данного вещества не должно превышать 50 г. Что касается глюкозы, то в этом случае соотношение будет немного другое:

  1. 99,9 г - сахар-рафинад.
  2. 80,3 г - мед.
  3. 69,2 г - финики.
  4. 66,9 г - перловая крупа.
  5. 61,8 г - овсяные хлопья.
  6. 60,4 г - гречка.

Чтобы рассчитать суточное употребление вещества, необходимо вес умножить на 2,6. Простые сахара обеспечивают энергией человеческий организм и помогают справляться с разными токсинами. Но нельзя забывать, что при любом употреблении должна быть мера, иначе серьезные последствия не заставят долго ждать.

Олигосахариды

Наиболее часто встречающимся видом в данной группе являются дисахариды. Что такое углеводы, содержащие несколько остатков моносахаридов? Они представляют собой гликозиды, содержащие мономеры. Моносахариды связаны между собой гликозидной связью, которая образуется в результате соединения гидроксильных групп. Исходя из строения дисахариды делятся на два виды: восстанавливающие и не восстанавливающие. К первому относится мальтоза и лактоза, а ко второму сахароза. Восстанавливающий тип обладает хорошей растворимостью и имеет сладкий вкус. Олигосахариды могут содержать более двух мономеров. Если моносахариды одинаковые, то такой углевод относится к группе гомополисахаридов, а если разные, то к гетерополисахаридов. Примером последнего типа является трисахарид раффиноза, которая содержит остатки глюкозы, фруктозы и галактозы.

Лактоза, мальтоза и сахароза

Последнее вещество хорошо растворяется, имеет сладкий вкус. Сахарный тростник и свекла являются источником получения дисахарида. В организме при гидролизе сахароза распадается на глюкозу и фруктозу. Дисахарид в больших количествах содержится в сахаре-рафинаде (99,9 г на 100 г продукта), в черносливе (67,4 г), в винограде (61,5 г) и в других продуктах. При избыточном поступлении этого вещества увеличивается способность превращаться в жир практически всех пищевых веществ. Также повышается уровень холестерина в крови. Большое количество сахарозы негативно влияет на кишечную флору.

Молочный сахар, или лактоза, содержится в молоке и его производных. Углевод расщепляется до галактозы и глюкозы благодаря специальному ферменту. Если его в организме нет, то наступает непереносимость молока. Солодовый сахар или мальтоза является промежуточным продуктом распада гликогена и крахмала. В пищевых продуктах вещество встречается в солоде, патоке, меде и проросших зернах. Состав углеводов лактозы и мальтозы представлен остатками мономеров. Только в первом случае ими являются D-галактоза и D-глюкоза, а во втором вещество представлено двумя D-глюкозами. Оба углевода являются восстанавливающимися сахарами.

Полисахариды

Что такое углеводы сложные? Они отличаются друг от друга по нескольким признакам:

1. По строению мономеров, включенных в цепь.

2. По порядку нахождения моносахаридов в цепи.

3. По типу гликозидных связей, которые соединяют мономеры.

Как и у олигосахаридов, в данной группе можно выделить гомо -, и гетерополисахариды. К первой относятся целлюлоза и крахмал, а ко второй - хитин, гликоген. Полисахариды являются важным источником энергии, который образуется в результате обмена веществ. Они участвуют в иммунных процессах, а также в сцеплении клеток в тканях.

Список сложных углеводов представлен крахмалом, целлюлозой и гликогеном, их мы рассмотрим подробнее. Одним из главных поставщиков углеводов является крахмал. Это соединения, которые включают сотни тысяч остатков глюкозы. Углевод рождается и хранится в виде зернышек в хлоропластах растений. Благодаря гидролизу крахмал переходит в водорастворимые сахара, что способствует свободному перемещению по частям растения. Попадая в человеческий организм, углевод начинает распадаться уже во рту. В наибольшем количестве крахмал содержат зерна злаков, клубни и луковицы растений. В рационе на его долю приходится около 80% всего количества употребляемых углеводов. Наибольшее количество крахмала, в расчете на 100 г продукта, содержится в рисе - 78 г. Чуть меньше в макаронах и пшене - 70 и 69 г. Сто грамм ржаного хлеба включает в себя 48 г крахмала, а в той же порции картофеля его количество достигает лишь 15 г. Суточная потребность человеческого организма в данном углеводе равна 330-450 г.

Зерновые продукты также содержат клетчатку или целлюлозу. Углевод входит в состав клеточных стенок растений. Его вклад равен 40-50 %. Человек не способен переварить целлюлозу, так нет необходимого фермента, который бы осуществлял процесс гидролиза. Но мягкий тип клетчатки, например, картофеля и овощей, способен хорошо усваиваться в пищеварительном тракте. Каково содержание данного углевода в 100 г еды? Ржаные и пшеничные отруби являются самыми богатыми клетчаткой продуктами. Их содержание достигает 44 г. Какао-порошок включает 35 г питательного углевода, а сухие грибы лишь 25. Шиповник и молотый кофе содержат 22 и 21 г. Одними из самых богатых на клетчатку фруктов являются абрикос и инжир. Содержание углевода в них достигает 18 г. В сутки человеку нужно съедать целлюлозы до 35 г. Причем наибольшая потребность в углеводе наступает в возрасте от 14 до 50 лет.

В роле энергетического материала для хорошей работы мышц и органов используется полисахарид гликоген. Пищевого значения он не имеет, так как содержание его в еде крайне низкое. Углевод иногда называют животным крахмалом из-за схожести в строении. В данной форме в животных клетках хранится глюкоза (в наибольшем количестве в печени и мышцах). В печени у взрослых людей количество углевода может достигать до 120 г. Лидером по содержанию гликогена являются сахар, мед и шоколад. Также большим содержанием углевода могут «похвастаться» финики, изюм, мармелад, сладкая соломка, бананы, арбуз, хурма и инжир. Суточная норма гликогена равна 100 г в сутки. Если человек интенсивно занимается спортом или выполняет большую работу, связанную с умственной деятельностью, количество углевода должно быть увеличено. Гликоген относится к легко усваиваемым углеводам, которые хранятся про запас, что говорит о его использовании только в случае недостатка энергии от других веществ.

К полисахаридам также относятся следующие вещества:

1. Хитин. Он входит в состав роговых оболочек членистоногих, присутствует в грибах, низших растениях и в беспозвоночных животных. Вещество играет роль опорного материала, а также выполняет механические функции.

2. Мурамин. Он присутствует в качестве опорно-механического материала клеточной стенки бактерий.

3. Декстраны. Полисахариды выступают как заменители плазмы крови. Их получают путем воздействия микроорганизмов на раствор сахарозы.

4. Пектиновые вещества. Находясь вместе с органическими кислотами, могут образовывать желе и мармелад.

Белки и углеводы. Продукты. Список

Человеческий организм нуждается в определенном количестве питательных веществ каждый день. Например, углеводов необходимо употреблять в расчете 6-8 г на 1 кг массы тела. Если человек ведет активный образ жизни, то количество будет увеличиваться. Углеводы в продуктах содержатся практически всегда. Составим список их присутствия на 100 г пищи:

  1. Наибольшее количество (более 70 г) содержатся в сахаре, мюслях, мармеладе, крахмале и рисе.
  2. От 31 до 70 г - в мучных и кондитерских изделиях, в макаронах, крупах, сухофруктах, фасоли и горохе.
  3. От 16 до 30 г углеводов содержат бананы, мороженое, шиповник, картофель, томатная паста, компоты, кокос, семечки подсолнечника и орехи кешью.
  4. От 6 до 15 г - в петрушке, укропе, свекле, моркови, крыжовник, смородина, бобах, фруктах, орехах, кукурузе, пиве, семечках тыквы, сушеных грибах и так далее.
  5. До 5 г углеводов содержится в зеленом луке, томатах, кабачках, тыквах, капусте, огурцах, клюкве, в молочных продуктах, яйцах и так далее.

Питательного вещества не должно поступать в организм меньше 100 г в сутки. В противном случае клетка не будет получать положенную ей энергию. Головной мозг не сможет выполнять свои функции анализа и координации, следовательно, мышцы не будут получать команды, что в итоге приведет к кетозу.

Что такое углеводы, мы рассказали, но, помимо них, незаменимым веществом для жизни являются белки. Они представляют собой цепочку аминокислот, связанных пептидной связью. В зависимости от состава белки различаются по своим свойствам. Например, эти вещества исполняют роль строительного материала, так как каждая клетка организма включает их в свой состав. Некоторые виды белков являются ферментами и гормонами, а также источником энергии. Они оказывают влияние на развитие и рост организма, регулируют кислотно-щелочной и водный баланс.

Таблица углеводов в еде показала, что в мясе и в рыбе, а также в некоторых видах овощей их число минимально. А каково содержание белков в пище? Самым богатым продуктом является желатин пищевой, на 100 г в нем содержится 87,2 г вещества. Далее идет горчица (37,1 г) и соя (34,9 г). Соотношение белков и углеводов в суточном употреблении на 1 кг веса должно быть 0,8 г и 7 г. Для лучшего усвоения первого вещества необходимо принимать пищу, в которой он принимает легкую форму. Это касается белков, которые присутствуют в кисломолочных продуктах и в яйцах. Плохо сочетаются в одном приеме пищи белки и углеводы. Таблица по раздельному питанию показывает, каких вариаций лучше избегать:

  1. Рис с рыбой.
  2. Картофель и курица.
  3. Макароны и мясо.
  4. Бутерброды с сыром и ветчиной.
  5. Рыба в панировке.
  6. Ореховые пирожные.
  7. Омлет с ветчиной.
  8. Мучное с ягодами.
  9. Дыню и арбуз нужно есть отдельно за час до основного приема пищи.

Хорошо сочетаются:

  1. Мясо с салатом.
  2. Рыба с овощами или на гриле.
  3. Сыр и ветчина по отдельности.
  4. Орехи в целом виде.
  5. Омлет с овощами.

Правила раздельного питания основаны на знаниях законов биохимии и информации о работе ферментов и пищевых соков. Для хорошего пищеварения любой вид еды требует индивидуального набора желудочных жидкостей, определенного количества воды, щелочную или кислотную среду, а также присутствие или отсутствие энзимов. Например, кушанье, насыщенное углеводами, для лучшего переваривания требует пищеварительного сока с щелочными ферментами, которые расщепляют данные органические вещества. А вот еда, богатая белками, уже требует кислых энзимов... Соблюдая нехитрые правила соответствия продуктов, человек укрепляет свое здоровье и поддерживает постоянный вес, без помощи диет.

«Плохие» и «хорошие» углеводы

«Быстрые» (или «неправильные») вещества - соединения, которые содержат небольшое число моносахаридов. Такие углеводы способны быстро усваиваться, повышать уровень сахара в крови, а также увеличивать количество выделяемого инсулина. Последний снижает уровень сахара крови, путем превращения его в жир. Употребление углеводов после обеда для человека, который следит за своим весом, представляет наибольшую опасность. В это время организм наиболее предрасположен к увеличению жировой массы. Что именно содержит неправильные углеводы? Продукты, список которых представлен ниже:

1. Кондитерские изделия.

3. Варенье.

4. Сладкие соки и компоты.

7. Картофель.

8. Макароны.

9. Белый рис.

10. Шоколад.

В основном это продукты, не требующие долгого приготовления. После такой еды необходимо много двигаться, иначе лишний вес даст о себе знать.

«Правильные» углеводы содержат более трех простых мономеров. Они усваиваются медленно и не вызывают резкого подъема сахара. Данный вид углеводов содержит большое количество клетчатки, которая практически не переваривается. В связи с этим человек долго остается сытым, для расщепления такой пищи требуется дополнительная энергия, кроме того, происходит естественное очищение организма. Составим список сложных углеводов, а точнее, продуктов, в которых они встречаются:

  1. Хлеб с отрубями и цельнозерновой.
  2. Гречневая и овсяная каши.
  3. Зеленые овощи.
  4. Макароны из грубого помола.
  5. Грибы.
  6. Горох.
  7. Красная фасоль.
  8. Помидоры.
  9. Молочные продукты.
  10. Фрукты.
  11. Горький шоколад.
  12. Ягоды.
  13. Чечевица.

Для подержания себя в хорошей форме нужно больше есть «хороших» углеводов в продуктах и как можно меньше «плохих». Последние лучше принимать в первую половину дня. Если нужно похудеть, то лучше исключить употребление "неправильных" углеводов, так как при их использовании человек получает пищу в большем объеме. "Правильные" питательные вещества низкокалорийные, они способны надолго оставлять ощущение сытости. Это не означает полный отказ от "плохих» углеводов, а лишь только их разумное употребление.

ХИМИЧЕСКИЙ СОСТАВ УГЛЕВОДОВУГЛЕВОДЫ – это класс органических веществ, в состав которых входят атомы углерода (С),
водорода (Н) и кислорода в соотношении 1: 2: 1.
Общая формула углеводов – Сn H2n On или (CH2O)n, где n = 3-9 атомов углерода
Согласно Международной классификации, углеводы называются ГЛИЦИДАМИ
В состав отдельных углеводов могут входить другие химические элементы: N, S, P.
По химическому строению углеводы являются АЛЬДЕГИДОСПИРТАМИ (альдозы) или
КЕТОСПИРТАМИ (кетозы)
АЛЬДОЗЫ содержат одну функциональную группу
при первом углеродном атоме и
несколько гидроксильных групп (-ОН) при других атомах углерода.
КЕТОЗЫ содержат одну кетогруппу
при втором углеродном атоме и гидроксильные
группы. Примером альдолаз является глюкоза, а кетоз – фруктоза.
Содержание углеводов в организме человека относительно небольшое до 2-3% общей массы тела.
Углеводы откладываются в печени в виде гликогена (от 5 до 10% общей массы), скелетных мышцах
(1-3%), сердце (до 0,5%).
Запасы гликогена в организме взрослого человека с массой тела 70 кг составляют в среднем 500 г.
Свободная глюкоза содержится в крови (4,5-5г)
В углеводах запасаются около 2000 ккал энергии, за счет которой организм может физически
работать в течение 30 минут – 1 часа.
В организме человека углеводы синтезируются в незначительном количестве в процессе
ГЛЮКОНЕОГЕНЕЗА. Основное их количество поступает в организм с продуктами питания.
Углеводы находятся преимущественно в продуктах растительного происхождения, так как их
первичный синтез осуществляется в зеленых растениях в процессе фотосинтеза.
Суточная потребность человека в углеводах – 300-400 г, а спортсменов – 400-700 г.

СХЕМА ФОТОСИНТЕЗА

БИОЛОГИЧЕСКИЕ ФУНКЦИИ УГЛЕВОДОВ

ЭНЕРГЕТИЧЕСКАЯ – при распаде углеводов высвобождаемая энергия рассеивается в виде тепла
или накапливается в молекулах АТФ. Углеводы обеспечивают около 50-60% суточного
энергопотребления организма, а при мышечной деятельности на выносливость – до 70%. При
окислении 1 г углеводов выделяется 17 кДж энергии (4,1 ккал). В качестве основного
энергетического источника в организме используется свободная глюкоза или запасенные
углеводы в виде гликогена.
ПЛАСТИЧЕСКАЯ – углеводы (рибоза, дезоксирибоза) используются для построения АТФ, АДФ и
других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов.
Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты
превращения глюкозы (глюкуроновая кислота, глюкозамин) входят в состав полисахаридов и
сложных белков хрящевой и других тканей.
ЗАПАС ПИТАТЕЛЬНЫХ ВЕЩЕСТВ – углеводы накапливаются в скелетных мышцах, печени и других
тканях в виде гликогена. Запасы гликогена зависят от массы тела, функционального состояния
организма, характера питания. Систематическая мышечная деятельность приводит к
увеличению запасов гликогена, что повышает энергетические возможности организма.
СПЕЦИФИЧЕСКАЯ – отдельные углеводы участвуют в обеспечении специфичности групп крови,
выполняют роль антикоагулянтов, являются рецепторами ряда гормонов или
фармакологических веществ, оказывают противоопухолевое действие.
ЗАЩИТНАЯ – сложные углеводы входят в состав компонентов иммунной системы;
мукополисахариды находятся в слизистых веществах, которые покрывают поверхность
сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от
проникновения бактерий и вирусов, а также от механических повреждений.
РЕГУЛЯТОРНАЯ – клетчатка пищи не расщепляется в кишечнике, но активирует перистальтику
кишечника, ферменты пищеварительного тракта, улучшают пищеварение, усвоение
питательных веществ.

КЛАССЫ УГЛЕВОДОВ

МОНОСАХАРИДЫ

МОНОСАХАРИДЫ – это простые углеводы, которые при гидролизе не распадаются на более
простые молекулы. В зависимости от числа атомов углерода в молекуле моносахариды
делятся на ТРИОЗЫ (С3Н6О3), ТЕТРОЗЫ (С4Н8О4), ПЕНТОЗЫ (С5Н10О5), ГЕКСОЗЫ (С6Н12О6),
ГЕПТОЗЫ (С7Н14О7). Другие моносахариды в природе не встречаются, но могут быть получены
синтетически.
Наиболее важную роль в организме человека выполняют представители гексоз – глюкоза и
фруктоза, пентоз – рибоза и дезоксирибоза, триоз – глицериновый альдегид и диоксиацетон.
ГЛЮКОЗА и ФРУКТОЗА – это основные энергетические субстраты организма человека. Они имеют
одинаковый молекулярный состав (С6Н12О6), но разную структуру молекулы, так как
различаются наличием функциональных групп. Глюкоза содержит альдегидную группу, а
фруктоза – кетогруппу, т.е. они являются изомерами по положению карбонильной группы (С=0)
Для моносахаридов характерна также пространственная изомерия или стереоизомерия, т.к. они
содержат асимметричные атомы углерода (отмечены *), которые связаны с 4 различными
атомами. Выделяют D-форму и L-форму глюкозы и других моносахаридов. В них
гидроксильная группа при 4 атоме углерода занимает разное пространственное положение.

Организм человека может усваивать только D-форму моносахаридов, в то время как
аминокислоты используются организмом только в виде L-изомеров. Внутритканевые
ферменты способны различать оптические изомеры веществ. Стереоизомерами глюкозы
являются ГАЛАКТОЗА и МАННОЗА:
ГАЛАКТОЗА входит в состав ЛАКТОЗЫ – основного дисахарида молока. В печени под
действием ферментов может превращаться в глюкозу.
В водной среде ГЛЮКОЗА и ФРУКТОЗА находится в основном в циклической форме.
Циклизация молекулы происходит за счет внутримолекулярного взаимодействия альдегидной
группы в молекуле глюкозы или кетогруппой в молекуле фруктозы с одной гидроксильной
группой этого же моносахарида:

Циклические формы моносахаридов приобретают биологически реактивную гидроксильную
группу при С1 – или С2 – атоме углерода, которая называется ГЛИКОЗИДНЫМ ГИДРОКСИЛОМ.
Она играет важную роль в химических превращениях этих моносахаридов, в частности
участвует в образовании ди- и полисахаридов, фосфорных эфиров. Например: глюкоза
участвует в обмене веществ и энергии в виде фосфорного эфира глюкозо-1-фосфат,
запускающего процесс распада глюкозы и синтеза полисахаридов. Для моносахаридов
характерно образование и других фосфорных эфиров: глюкозо-6-фосфат, фруктозо-6-фосфат,
фруктозо-1,6-дифосфат.
Фосфорилированные формы глюкозы и фруктозы в процессе их метаболизма способны
взаимопревращаться, а также распадаться до триоз – фосфоглицеринового альдегида и
фосфодиоксиацетона:

Из моносахаридов при замещении гидроксильных групп на аминогруппу (- NH2) образуются
аминосахара. В организме человека наиболее важными аминосахарами являются
ГЛЮКОЗАМИН и ГАЛАКТОЗАМИН:
ГЛЮКОЗАМИН и Галактозамин входят в состав сложных углеводов мукополисахаридов,
которые выполняют защитную и специфические функции, характерные для слизей,
стекловидного тела глаз, синовиальной жидкости суставов, системы свертывания крови и др.
Из глюкозы в процессе ее восстановления или окисления образуются многие функционально
важные вещества: аскорбиновая кислота (витамин С), спирт сорбит, глюконовая, глюкуроновая,
сиаловые и другие кислоты.

10.

РИБОЗА и ДЕЗОКСИРИБОЗА – это углеводы, которые в свободном виде встречаются редко.
Чаще они входят в состав сложных веществ, т.е. используются в организме в пластических
процессах. РИБОЗА участвует в биосинтезе нуклеотидов (АТФ, АДФ, АМФ и др.) и РНК, а также
многих коферментов (НАД, НАДФ, ФАД, ФМН, КоА). Дезоксирибоза участвует в биосинтезе
дезоксирибонуклеотидов, которые являются структурным компонентом ДНК. Спирт рибитол,
производное рибозы, входит в состав витамина В12 и некоторых дыхательных ферментов.
Рибоза и дезоксирибоза являются альдозами. В молекуле дезоксирибозы отсутствует атом О2
при втором атоме углерода. Изомером положения функциональной карбонильной группы в
рибозе является рибулоза:
В организме рибоза и другие пентозы находятся также в циклической D-форме:
Рибоза и рибулоза синтезируются в тканях организма при окислении глюкозы в пентозном
цикле. Дезоксирибоза образуется из рибозы при ее дезоксигенировании.

11.

ГЛИЦЕРИНОВЫЙ АЛЬДЕГИД и ДИОКСИАЦЕТОН – образуются в тканях организма в процессе
катаболизма глюкозы и фруктозы. Являясь изомерами они способны к взаимопревращению:
В тканях организма в процессе метаболизма углеводов и жиров образуются фосфорные эфиры
глицеринового альдегида и фосфодиоксиацетона. Фосфоглицериновый альдегид является
высоэнергетическим субстратом биологического окисления. В процессе его окисления
образуется молекула АТФ и продукты окисления – пировиноградная кислота (ПВК) и молочная
кислота:

12. ПРОИЗВОДНЫЕ МОНОСАХАРИДОВ

Большую группу производных моносахаридов составляют фосфорные эфиры, которые
образуются в ходе превращений углеводов в тканях. Пример:
В природе широко распространены 2 аминопроизводных моносахаридов – глюкозамин и
галактозамин:
В состав полисахаридов входит глюкуроновая кислота:

13. РЕАКЦИИ МОНОСАХАРИДОВ

Присутствие гидроксильных, альдегидных и кетонных групп позволяет
моносахаридам вступать в реакции, характерные для спиртов, альдегидов и
кетонов.
МУТАРОТАЦИЯ – взаимопревращение аномерных форм моносахаридов. а – и бета
– формы аномеров находятся в растворе в состоянии равновесия. При
достижении этого равновесия происходит мутаротация – размыкание и замыкание
пиранового кольца и изменение положения Н- и ОН-групп при 1 углероде
моносахарида.
ОБРАЗОВАНИЕ ГЛИКОЗИДОВ – при образовании гликозидной связи аномерная ОНгруппа одного моносахарида взаимодействует с ОН-группой другого моносахарида
или спирта. При этом происходят отщепление молекулы воды и образование Огликозидной связи.
ЭТЕРИФИКАЦИЯ – Это реакция образования эфирной связи между ОН-группами
моносахаридов и различными кислотами.
ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ – при окислении концевых групп глюкозы –СНО
и -СН2ОН образуются три разных производных. При окислении группы – СНО
образуется глюконовая кислота. При окислении – СН2ОН образуется глюкуроновая
кислота. Если окисляются обе концевые группы, то образуется сахарная кислота.

14. РЕАКЦИИ МОНОСАХАРИДОВ

15. ОЛИГОСАХАРИДЫ

Наиболее распространенными в природе олигосахаридами являются ДИСАХАРИДЫ
ДИСАХАРИДЫ – это группа, состоящая из небольшого (от 2 до 10) моносахаридов. В
дисахаридах 2 остатка моносахаридов соединены между собой 1,4- или 1,2-гликозидными
связями.
Основные дисахариды – САХАРОЗА, МАЛЬТОЗА, ЛАКТОЗА.
Молекулярная формула – С12Н22О11.
САХАРОЗА
Сахароза состоит из остатка глюкозы и фруктозы, соединенных между собой 1,2-гликозидной
связью, которая образуется при взаимодействии гидроксильной группы в 1 атоме углерода
глюкозы и гидроксильной группы при 2 атоме углерода фруктозы:
Сахароза является основным компонентом пищевого сахара. В процессе пищеварения под
воздействием фермента сахарозы она распадается на глюкозу и фруктозу
МАЛЬТОЗА
Мальтоза состоит из двух остатков глюкозы, соединенных между собой 1,4-гликозидной связью:
Мальтоза образуется в ЖКТ в процессе гидролиза крахмала или гликогена пищи. При пищеварении
она расщепляется на молекулы глюкозы под воздействием фермента мальтазы. Много
мальтозы содержится в солодовых экстрактах злаковых, проросших зернах.

16.

ЛАКТОЗА (молочный сахар) состоит из остатков глюкозы и галактозы, которые соединены
между собой 1,4-гликозидной связью:
Лактоза синтезируется в молочных железах в период лактации. В коровьем молоке содержание
ее составляет 5%, в женском молоке – 6%. В системе пищеварения человека лактоза
расщепляется под воздействием фермента лактазы на глюкозу и галактозу. Поступление
лактозы в организм с пищей способствует развитию молочнокислых бактерий, подавляющих в
кишечнике развитие гнилостных процессов. Однако у людей, имеющих низкую активность
фермента лактазы, развивается интолерантность к молоку.
Сахароза (пищевой сахар), имеет сладкий вкус и высокую питательную ценность. Поэтому они
не рекомендуются для питания людей, страдающих ожирением и диабетом. Их заменяют
искусственными веществами, например сахарином, которые имеют сладкий вкус, но не
усваиваются организмом.

17. ПОЛИСАХАРИДЫ

ПОЛИСАХАРИДЫ – это сложные углеводы, состоящие из многих сотен или тысяч
связанных между собой остатков моносахаридов, в основном остатков глюкозы.
Основные гомополисахариды, выполняющие важную биологическую роль и
состоящие из молекул глюкозы являются: крахмал и клетчатка растений, гликоген
человека и животных.
Эти полисахариды не обладают сладким вкусом, плохо растворяются в воде, образуя
коллоиды. Они имеют общую молекулярную формулу (С6Н10О5)n, однако
различаются количественным составом и строением молекул.
НЕЙТРАЛЬНЫЕ
КРАХМАЛ – резервный полисахарид растений, состоящий из большого числа остатков
D-глюкозы (до 300). Является основным полисахаридом пищи, поставщиком
глюкозы в организм человека. Молекулярная масса крахмала – 50000 до 300000. По
строению не однороден и представляет смесь спиралевидных цепей амилозы (1020%) и разветвленных цепей амилопектина (80-90%). Остатки глюкозы в амилозе
связаны между собой 1,4-гликозидной связью, а в точках ветвления амилопектина
– 1,6-гликозидными связями. Коллоидные частицы (мицеллы) амилозы дают с
иодом синее окрашивание. АМИЛОЗА хорошо растворяется в воде, тогда как
амилопектин не растворяется и образует коллоидный раствор – клейстер. При
частичном разрушении структуры крахмала образуются соединения с меньшей
молекулярной массой (декстрины), которые также хорошо растворяются в воде.
Основные ферменты, расщепляющие крахмал пищи – амилазы слюны и сока
поджелудочной железы. АМИЛОПЕКТИН – разветвленный полисахарид с mm 1 млн.
Через 12 моносахаридных звеньев у него имеются точки ветвления, образованные
а-(1 6) – гликозидными связями. Пектин – природный сорбент

18.

АМИЛОЗА
Спиралевидная конформация молекулы амилозы
АМИЛОПЕКТИН

19. Схема строения цепей крахмала –амилозы (а), амилопектина (б) и участка молекулы гликогена (в)

20. ГЛИКОГЕН

ГЛИКОГЕН – главный резервный полисахарид всех тканей человека и животных.
Встречается гликоген в небольших количествах у бактерий и растений. Имеет
большую молекулярную массу – 1-20 х 10 7, отличается большой
разветвленностью цепей по сравнению с амилопектином. Гликоген состоит из
большого количества молекул глюкозы (до 30000), соединенных между собой
гликозидными связями. Благодаря такой структуре гликоген способен
растворяться в воде. Накапливается (депонируется) гликоген в печени (около 100
г) и скелетных мышцах (около 400 г), создавая запас глюкозы в организме.
Концентрация гликогена в тканях зависит от:
1.
Состава пищи
2.
Характера мышечной деятельности
3.
Факторов окружающей среды (жара, гипоксии).
При недостаточном поступлении углеводов с пищей или интенсивной мышечной
деятельности запасы гликогена снижаются
При избыточном поступлении глюкозы с пищей запасы гликогена восстанавливаются.
Гликоген печени используется для поддержания уровня глюкозы в крови в периоды
между приемом пищи или интенсивности ее окисления, а гликоген скелетных
мышц – для энергообеспечения самих мышц.

21.

В молекуле гликогена выделяют внутренние и наружные ветви, а также цепи А, В и С.
Цепь А – наружная, не несет других ветвей, она присоединяется к цепям В, образующим
внутренние ветви. Цепь С – стержневая, содержащая единственный восстанавливающий
остаток глюкозы.

22. ИСПОЛЬЗОВАНИЕ ГЛИКОГЕНА ПЕЧЕНИ И СКЕЛЕТНЫХ МЫШЦ

23.

ЦЕЛЛЮЛОЗА – структурный гомополисахарид растений, придающий им прочность и
эластичность mm 5х 104 – 5 х 105. Он имеет линейное строение, но отличается от альфаамилозы типом гликозидной связи. Это неразветвленный полимер, состоящий из большого
числа остатков глюкозы. Целлюлоза образует вторичную стенку растительных клеток в
виде микрофибрилл, которые цементируются другими полисахаридами или лигнином
(аморфный ароматический полимер). Это позволяет растительной стенке выдерживать
внутреннее давление 2 х 10 3 кПа (20 атм). В организме человека целлюлоза не
расщепляется, но она необходима для регуляции перистальтики и активности ферментов
тонкого кишечника. Расщепляет целлюлозу специальный фермент – целлюлаза, который
отсутствует в ЖКТ человека.
КИСЛЫЕ ГЕТЕРОПОЛИСАХАРИДЫ или МУКОПОЛИСАХАРИДЫ
От лат.mucos – слизь. Мукополисахариды – это большая группа полисахаридов разного
химического строения и состава, которые содержатся в коже, сухожилиях хрящах, оболочках
клеток, межклеточной и синовиальной жидкости – сильно гидратированные, желеподобные,
липкие вещества, имеющие значительный отрицательный заряд. Все они находятся в
межклеточном веществе, но не в свободном виде, а связаны с белками.
1.
Гиалуроновая кислота
2.
Хондроитинсульфаты
3.
Дерматансульфат
4.
Кератансульфат
5.
Гепарин и гепарансульфат

24. ГИАЛУРОНОВАЯ КИСЛОТА

Гиалуроновая кислота – несульфатированный гетерополисахарид с линейной структурой и самой
большой молекулярной массой из всех гетерополисахаридов. Она служит биологическим
цементом, заполняя пространства между клетками. Сетка гиалуроновой кислоты в виде геля
является биологическим фильтром, задерживая микробные и иные крупные молекулы,
попадающие в организм. Она участвует в связывании воды в организме, придает
внутрисуставной жидкости смазочные свойства, уменьшает трение при сгибании суставов.
Разрыв гликозидных связей в цепях гиалуроновой кислоты вызывает ее деполимеризацию. В
результате фильтрующая система нарушается, между клетками проникают различные
молекулы, скапливается межклеточная вода (наступает отек). В клетках организма имеется
специальный фермент – гиалуронидаза, который, выделяясь в межклеточное пространство,
может повышать межклеточную проницаемость. Поэтому гиалуронидазу называют фактором
проницаемости. При оплодотворении яйцеклетки выделяемая сперматозоидом гиалуронидаза
способствует проникновению его внутрь клетки. Стекловидное тело и пуповина
новорожденных также богаты гиалуроновой кислотой.
В структурном отношении молекула представляет собой линейный полисахарид, образованный
дисахаридными повторяющимися звеньями, состоящими из остатков D-глюкуроновой
кислоты и N-ацетил-D-глюкозамина, соединенных бета-1,3-гликозидной связью.
Повторяющиеся дисахаридные звенья гиалуроновой кислоты связаны между собой бета-1,4связью:

25.

ХОНДРОИТИНСУЛЬФАТЫ - Наиболее распространенные кислые гетерополисахариды в тканях
человека и животных. Mm 6 х 104. В комплексе с белком коллагеном входят в состав хрящей,
костей, сердечных клапанов, стенок кровеносных сосудов, кожи, сухожилий, роговицы глаз.
Повторяющееся дисахаридное звено в хондроитинсульфате из глюкуроновой кислоты и Nацетитилгалактозаминосульфата; звенья соединены друг с другом бета-1,3- и бета- 1,4 –
гликозидными связями, подобно связям в гиалуроновой кислоте:
ГЕПАРИН - в отличие от других гетерополисахаридов не являются структурными
компонентами межклеточного вещества. Они вырабатываются тучными клетками
соединительной ткани и выделяются при их распаде (цитолизе) в межклеточную среду и
кровяное русло. В крови гепарин нековалентно связан со специфическими белками. Комплекс
гепарина с гликопротеидом плазмы проявляет противосвертывающую активность, а комплекс
с ферментом липопротеидлипазой расщепляет липиды, находящихся в крови в виде
хиломикронов. Гепарин содержится в крови, печени, легких, селезенке, щитовидной железе и в
других тканях и органах. Молекула гепарина состоит из глюкуроновой кислоты и альфаглюкозамина в виде двойного сульфопроизводного, соединенных между собой а-1,4гликозидными связями.

26. БИОЛОГИЧЕСКИЕ ФУНКЦИИ ПОЛИСАХАРИДОВ

ЭНЕРГЕТИЧЕСКАЯ – крахмал и гликоген
являются «депо» углеводов в клетке и при
необходимости быстро расщепляются на
легкоусваиваемый источник энергии – глюкозу.
ОПОРНАЯ – хондроитинсульфат выполняет
опорную функцию в костной ткани.
СТРУКТУРНАЯ – гиалуроновая кислота,
хондроитинсульфат и гепарин являются
структурными межклеточными веществами.
ГИДРООСМОТИЧЕСКАЯ и ИОНРЕГУЛИРУЮЩАЯ –
гиалуроновая кислота благодаря высокой
гидрофильности и отрицательному заряду
связывает межклеточную воду и катионы,
регулируя осмотическое давление.
ЗАЩИТНАЯ – участие в свертывании крови.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло