Кроветворение. Гемопоэз симптомы и признаки

Согласно унитарной теории кроветворение представляет собой непрерывный процесс пролиферации и дифференциации полипотентной стволовой клетки, которая в зависимости от микроокружения и других гуморальных стимулов производит все основные виды клеток, после созревания выполняющих специфические функции. Этот процесс можно проследить как у зародышей, так и у взрослых животных при исследовании кроветворных и других органов, а также при культивировании кровяных клеток in vivo и in vitro в нормальных и экспериментальных условиях.
Установлено, что у всех животных в течение эмбрионального периода происходит последовательная смена локализации и стабилизации типа кроветворения. В самый ранний период клетки образуются в стенке желточного мешка, где возникают так называемые кровяные островки. Центральные мезенхимные клетки округляются и превращаются в стволовые кроветворные клетки. Периферические же клетки, уплощаясь и растягиваясь, образуют стенку первичных капилляров. Под действием микроокружения мезенхимального эндотелия стенки желточного мешка стволовые клетки вначале дифференцируются в первичные эритроциты-мегалоциты. В последующем возникает популяция вторичных эритроцитов, которые по морфологии не отличаются от аналогичных клеток у взрослых животных. Это самый ранний, первичный мегалобластический тип кроветворения, когда образование клеток крови идет преимущественно в сосудистом русле.
При формировании печени стволовые клетки с кровью попадают в этот орган, где микроокружение иное, когда помимо вросшего в нее мезенхимального эндотелия из желточного мешка проявляются клетки эпителия из энтодермы. Поэтому стволовая клетка, кроме эритроцитов, начинает продуцировать зернистые лейкоциты и мегакарноциты, причем эти клетки развиваются преимущественно экстраваскулярно. Это так называемый печеночный период кроветворения. В последующем внутрь губчатой паренхимы печени врастает соединительная ткань, которая делит ее на дольки. Этот процесс начинается во второй половине и заканчивается у различных видов животных в разное время, обычно к концу эмбрионального периода или в начале висутробной жизни. С изменением структуры органон кроветворение в печени прекращается.
С затуханием кроветворения в печени эта функция осуществляется в специализированных тканях или органах (селезенка, красный костный мозг, лимфатические узлы, тимус). В селезенке вначале осуществляется эритропоэз, гранулоцитопоэз и мегакариоцитопоэз, а в последующем с образованием в ней трабекулярного аппарата и «красной и белой пульпы» развивается лимфопоэз.
Усложнение структуры органа изменяет микроокружение стволовой клетки и приводит к изменению степени дифференцировки в миелоидном направлении. По мере развитая в селезенке лимфоидных образований в виде мальпигиевых телец миелоидное кроветворение в ней к концу внутриутробного периода или в первые месяцы жизни прекращается. Однако это происходит не у всех животных, в частности, у представителей отряда грызунов и некоторых видов эта функция сохраняется почти на протяжении всей жизни. Это так называемые животные с «неустоявшимся» типом кроветворения.
В костном мозге в конце внутриутробного периода осуществляются все виды кроветворения, за исключением лимфопоэза. Однако некоторые авторы признают его центральным органом образования B-лимфоцитов. Возможно, они появляются в нем в ранний внутриутробный период, хотя, по нашим данным, лимфоидных микроскоплений в костном мозге крупного рогатого скота не обнаружено.
В тимусе и лимфатических узлах происходит только лимфоцитообразование. Из стволовых клеток дифференцируются лимфоциты тимуса и мигрирующие Т-лимфоциты, которые заселяют T-зоны лимфатических узлов и селезенки. После рождения специфическая ткань тимуса у большинства животных постепенно начинает атрофироваться и замещается жиром.
Лимфоидные органы и рассеянные лимфоидные образования (миндалины, солитарные фолликулы и др.) после рождения получают наибольшее развитие и постепенно снижают свои кроветворные функции к кощу жизни животных. Таким образом, кроветворение во внеутробном периоде жизни осуществляется в костном мозге, селезенке и лимфатических узлах, т. с. в органах и тканях со специализированной функцией. В костном мозге осуществляется эритропоэз по нормобластическому типу, все виды гранулоцитопоэзa и мегакарноцитопоэза. В селезенке и лимфатических узлах большинства животных происходит образование лимфоцитов, причем T- и В-популяций.
Однако у многих видов животных в первые месяцы жизни нередко в печени и селезенке обнаруживают остаточные проявления мислопоэза, в том числе эритропоэза, гранулоцитопоэза, мегакариоцитопоэза с соответствующими незрелыми морфологическими элементами.


Гемопоэз - процесс кроветворения (образование клеток крови), происходящий в кроветворной ткани. У взрослого человека гемопоэз происходит в костном мозге костей черепа, рёбер, грудины, позвонков, костей таза, эпифизов длинных костей. В пренатальном периоде гемопоэз последовательно происходит в нескольких развивающихся органах.
А. Пренатальный гемопоэз
Кровяные островки
Рис. 6-13. Эмбриональный гемопоэз. 3-недельный зародыш (вид сверху). В передней части зародышевого диска появляются кровяные островки, видимые сквозь слои эктодермы и соматической мезодермы [из Sadler TW, 1990]

эндотелий первичных кровеносных сосудов. В ходе мегалобластического эритропоэза клетки центральной части островка образуют первые клетки крови - первичные эрит- робласты (рис. 6-14) - крупные клетки, содержащие ядро и эмбриональные Hb (Hb Gower-1, Hb Gower-2, см. главу 4 II Б I г (I) (б)). Лейкоцитов и тромбоцитов на этой стадии нет. На 12-й неделе кроветворение в желточном мешке заканчивается.

  1. Гепатоспленотимическая стадия. В течение второго месяца развития стволовые клетки крови заселяют печень, селезёнку и тимус, и в этих органах образуются разные типы клеток крови.
а. Печень. В печени кроветворение начинается на 5-6 неделе развития. Здесь образуются гранулоциты, тромбоциты и как дефинитивные эритробласты (ядросодержащие клетки), так и эритроциты (безъядерные клетки). К концу 5-го месяца интенсивность гемопоэза в печени уменьшается, но в небольшой степени продолжается ещё несколько недель после рождения.
б. Селезёнка. Гемопоэз в селезёнке наиболее выражен с 4 по 8 месяц внутриутробного развития. Здесь образуются эритроциты и небольшое количество гранулоцитов и тромбоцитов. Непосредственно перед рождением важнейшей функцией селезёнки становится образование лимфоцитов.
в. Тимус. В вилочковой железе образуются лимфоциты (различные типы Т-клеток).
  1. Костномозговое кроветворение. В течение 5-го месяца развития гемопоэз начинается в костном мозге, где образуются все типы клеток крови. Дополнительное количество лимфоцитов формируется в лимфоидных органах (тимус, лимфатические узлы, селезёнка). Перед рождением лимфатические узлы могут также продуцировать эритроциты. К моменту рождения, после рождения и у взрослого кроветворение ограничивается костным мозгом и лимфоидной тканью. Когда костный мозг не в состоянии удовлетворить повышенный и длительный запрос на образование клеток крови, гемопоэтическая активность печени, селезёнки и лимфатических узлов может восстановиться (экстра- медуллярный гемопоэз).
Костный мозг. После рождения и до полового созревания количество очагов кроветворения в костном мозге уменьшается, хотя костный мозг полностью сохраняет гемопо- этический потенциал.

Жёлтый костный мозг, однако, может восстановить свою активность, если необходимо усилить гемопоэз (например, при хронической гипоксии или выраженных кровотечениях).

  1. Красный костный мозг (рис. 6-15). Здесь преобладают созревающие эритроциты, что придаёт костномозговым очагам гемопоэза красный цвет.
(а) Структура. Строма костного мозга состоит из ретикулярных клеток с длинными отростками, ретикулиновых волокон, синусоидных капилляров (глава 10 А 3 в (3)); здесь же расположены макрофаги и жировые клетки. Ламинин и фибронектин связывают гемопоэтические клетки с элементами стромы. Протеогликаны могут связывать факторы роста и другие модуляторы гемопоэза. (0 Ретикулиновые волокна вместе с отростками ретикулярных клеток формируют трёхмерную сеть и образуют полости, заполненные островками гемопоэ- тических клеток.

(б) Функция. Помимо кроветворения, в костном мозге, как в селезёнке и печени, происходит удаление из кровотока старых и дефектных клеток крови. Костный мозг играет центральную роль в иммунной системе, т.к. в нём образуются В-лимфоциты, а также присутствует большое количество плазматических клеток, синтезирующих AT.
Б. Постнатальный гемопоэз. Унитарная теория кроветворения предусматривает, что родоначальница всех форменных элементов крови - стволовая кроветворная клетка. Она медленно размножается и дифференцируется в несколько различных типов коммитированных клеток, дифференцирующихся в отдельные линии - эритроциты, гранулоциты, лимфоциты, моноциты и тромбоциты. Коммитированные клетки интенсивно делятся, и образуются предшественники зрелых клеточных типов. Пролиферативную активность стволовых клеток модулируют колониестимулирующие факторы и интерлейкины (особенно ИЛ-3).

  1. Дифферон (рис. 6-16). В гемопоэзе участвуют стволовая кроветворная клетка, коммитированные унипотентные клетки и клетки-предшественницы.
а. Стволовая кроветворная клетка - клетка мезенхимного происхождения, способная к повторным делениям и дифференцировке в различные зрелые клетки крови. Такая клетка была названа CFU-S - колониеобразующая единица селезёнки. Часть CFU-S циркулирует в крови и имеет сходство с малыми лимфоцитами. В культуре костного мозга человека выявлена клетка, весьма сходная с CFU-S, названная CFU-blast. Стволовая кроветворная клетка делится редко. Её потомки - полипо- тентные клетки-предшественницы лимфоцитопоэза (CFU-Ly) и миелопоэ- за (CFU-GEMM). В результате деления CFU-Ly и CFU-GEMM их потомки остаются полипотентными или дифференцируются в один из нескольких типов коммитированных унипотентных стволовых клеток, также способных делиться, но дифференцирующихся только в одном направлении.

Рис. 6-16. Схема гемопоэза. CFU-blast - стволовая кроветворная клетка; CFU-GEMM - полипо- тентная клетка-предшественница миелопоэза; CFU-Ly - полипотентная клетка-предшественница лимфоцитопоэза; CFU-GM - полипотентная клетка-предшественница гранулоцитов и моноцитов; CFU-G - полипотентная клетка-предшественница нейтрофилов и базофилов. Унипотентные предшественники: BFU-E и CFU-E - эритроцитов; CFU-Eo - эозинофилов; CFU-M - моноцитов; CFU Meg - мегакариоцитов

Свойства. Стволовая кроветворная клетка дифференцируется в различные клеточные типы. Она выходит в кровоток и циркулирует в крови. Для стволовых клеток характерно морфологическое сходство с малыми лимфоцитами и способность к самообновлению.
б. Унипотентные коммитированные клетки имеют ограниченные потенции, комми- тированы к дифференцировке в один клеточный тип, пролиферируют и в присутствии факторов роста дифференцируются в клетки-предшественницы. Унипотентные клетки морфологически не отличаются от стволовых клеток. Программирование клетки на определённый путь дифференцировки (коммитирование), по-видимому, происходит случайным образом.
в. Клетки-предшественницы - клетки одной линии, отличающиеся морфологически и образующиеся последовательно в каждой линии, начинающейся с коммитиро- ванной унипотентной клетки и завершающейся формированием зрелой клетки крови.

  1. Эритропоэз (рис. 6-17). Начало эритроидного ряда - взрывообразующая единица эритро- поэза (BFU-E), происходящая из CFU-blast’a. Из BFU-E формируется унипотентный предшественник эритроцитов (CFU-E). На дальнейших стадиях эритропоэза дифференцируются проэритробласты, эритробласты, ретикулоциты и эритроциты. Длительность эритропоэза


Рис. 6-18. Регуляция эритропоэза. Взрывообразующую единицу эритропоэза (BFU-E) стимулирует ИЛ-3. Из BFU-E образуется CFU-E - унипотентный предшественник эритроцитов, чувствительный к эритропоэтину. Решающий стимул для образования эритроцитов - гипоксия, запускающая синтез эритропоэтина в почке. Эритропоэтин выходит в кровь и поступает в костный мозг, где стимулирует размножение и дифференцировку унипотентного предшественника эритроцитов (CFU-E) и дифферен- цировку клеток эритроидного ряда. В результате количество эритроцитов в крови увеличивается. Соответственно возрастает количество кислорода, поступающего в почку, что тормозит образование эритропоэтина [из Besa ЕС et al, 19921

(от стволовой клетки до эритроцита) - 2 недели. Интенсивность эритропоэза контролирует
эритропоэтин. Основной стимул для выработки эритропоэтина - гипоксия (рис. 6-18).
а. BFU-E и CFU-E. Отличия взрывообразующей единицы эритропоэза (BFU-E) от унипотентного предшественника эритроцитов (CFU-E) состоят в том, что первые реагируют на ИЛ-3, но нечувствительны к эритропоэтину, тогда как пролиферация и дифференцировка CFU-E зависят от эритропоэтина. От клеток в состоянии терминальной дифференцировки BFU-E отделена 12 делениями, а от стадии CFU-E до зрелых клеток проходит 6 или меньше делений.
б. Проэритробласты (рис. 6-17) - первые морфологически опознаваемые предшественники эритроцитов - крупные клетки (диаметр 14-19 мкм) с многочисленными органеллами, но без Hb. Бледное ядро расположено центрально. Объём цитоплазмы невелик и составляет около 20% общего объёма клетки; в ней присутствует довольно много полирибосом, чем обусловлена базофилия клетки. Проэритробласты подвергаются многократным митозам.
в. Эритробласты. На дальнейших стадиях дифференцировки происходят уменьшение размера клетки, конденсация хроматина и уменьшение диаметра ядра, прогрессирующая потеря органелл и РНК, постепенное увеличение содержания Hb1 элиминация ядра. Последовательно различают эритробласты базофильные, полихроматофильные, оксифильные (нормобласты).

  1. Базофильный эритробласт несколько меньше (диаметр 13-16 мкм) проэрит- робласта, содержит ядро с более плотным хроматином. Цитоплазма более базо- фильна; около ядра часто виден клеточный центр. Клетка сохраняет способность к митозу и активно синтезирует Hb.
  2. Полихроматофильный эритробласт - клетка диаметром 12-15 мкм, содержит значительное количество Hb. Серый тон цитоплазмы обусловлен базофиль- ным окрашиванием рибосом и оксифильным окрашиванием Hb. Размеры ядра уменьшаются. Клетки продолжают синтезировать Hb и могут делиться.
  1. Нормобласт (оксифильный эритробласт) имеет небольшие размеры (диаметр 8- 10 мкм) и ацидофильную цитоплазму со следами базофилии. Ядро небольшое, содержит конденсированный хроматин. Ранние нормобласты, по-видимому, ещё могут делиться; на этой стадии эритроидные клетки постепенно утрачивают способность к делению и выталкивают пикнотическое (дегенерирующее) ядро.
  2. Островки эритробластов (рис. 6-19). В костном мозге выделяют отдельные структурные единицы эритропоэза - т.н. островки эритробластов. Островок состоит из одного-двух макрофагов, окружённых предшественниками эритроцитов. Макрофаг образует длинные отростки, на поверхности которых расположены делящиеся эритроидные клетки. По мере дифференцировки эритроидная клетка мигрирует к концу отростка макрофага, а следом за ней перемещаются менее дифференцированные клетки. Далее эритробласт вступает в контакт с эндотелием ближайшего синуса, проходит через его стенку и попадает в общий кровоток. Ядро при этом выталкивается и фагоцитируется макрофагами.
г. Ретикулоциты содержат остатки рибосом и РНК, формирующие сетеподобные структуры голубого цвета при суправитальном окрашивании. Ретикулоциты выходят в кровоток и составляют до 1% общего числа циркулирующих эритроцитов. После выхода в кровоток в течение первых 24-48 часов ретикулоцит завершает созревание и становится эритроцитом. При этом клетка приобретает форму двояковогнутого диска, а последние сохранившиеся органеллы разрушаются ферментами.
Рис. 6-19. Эритробластный островок в костном мозге. Островок образован макрофагом и прилежащими к нему дифференцирующимися эритроидными клетками. Последние располагаются между отростками макрофага [из Bessis U et al, 1978]


Рис. 6-20. Гранулоцитопоэз. В ходе дифференцировки предшественников гранулоцитов выделяют: миелобласт, промиелоцит, миелоцит, метамиелоцит, палочкоядерный и сегментоядерный гранулоци- ты. По мере дифференцировки уменьшаются размеры клетки, появляются гранулы в цитоплазме, уплотняется ядро и изменяется его форма (от округлой к сегментированной) (из Gartner LP, 1993]

а. Миелобласт образуется на самой ранней стадии гранулоцитопоэза. Это малодифференцированная клетка диаметром около 15 мкм. Миелобласты содержат крупное округлое ядро и 1-3 ядрышка. Цитоплазма лишена гранул и более базофильна, чем у их колониеобразующих единиц.
б. Промиелоцит. Миелобласты дают начало промиелоцитам - крупным клеткам (15-24 мкм), содержащим более конденсированный хроматин. Округлое ядро расположено эксцентрично. Цитоплазма базофильнее и содержит азурофильные гранулы. По мере деления и созревания клеток количество азурофильных гранул уменьшается.
в. Миелоцит. Размеры клетки меньше (10-16 мкм), появляется значительное количество специфических гранул, что позволяет различить 3 типа миелоцитов: нейтрофиль- ный, эозинофильный и базофильный. Образование и накопление гранул продолжаются в течение последующих трёх клеточных делений. Ядро постепенно приобретает бобовидную форму, хроматин становится конденсированнее.
г. Метамиелоцит. В результате делений миелоцитов образуются нейтрофильный, эозинофильный и базофильный метамиелоциты. Размеры этих клеток ещё меньше (10-12 мкм); содержание специфических гранул больше, чем на предыдущей стадии. В ядре появляются глубокие вырезки, хроматин ещё более конденсирован. Способность к митозу утрачивается.
д. Палочкоядерный гранулоцит. Метамиелоциты дифференцируются в палочкоядерные гранулоциты - клетки, непосредственно предшествующие зрелым формам. Их размер составляет 10-12 мкм, ядро имеет подковообразную форму. Эти клетки уже могут выходить в кровоток и составляют 3-5% общего количества циркулирующих лейкоцитов.

е. Сегментоядерный гранулоцит. Палочкоядерные гранулоциты дифференцируются в зрелые формы - сегментоядерные. По мере дифференцировки ядро сегментируется и содержит плотный хроматин.

  1. Моноцитопоэз. Моноциты и гранулоциты имеют общую клетку-предшественницу - колониеобразующую единицу гранулоцитов и моноцитов (CFU-GM), образующуюся из полипо- тентной клетки-предшественницы миелопоэза (CFU-GEMM). При развитии моноцитов выделяют две стадии - монобласт и промоноцит. До достижения стадии зрелого моноцита клетки проходят три деления. Постепенно уменьшается размер клеток, и появляется углубление в ядре. Все зрелые моноциты покидают костный мозг вскоре после формирования. Примерно двое суток моноциты находятся в кровотоке, а затем мигрируют в ткани.
  2. Тромбецитопоэз. Тромбоцитам дают начало самые крупные (30-100 мкм) клетки костного мозга - мегакариоциты.
а. Мегакариобласт - предшественник мегакариоцита. Эта клетка - потомок унипотент- ной клетки-предшественницы мегакариоцитов (CFU-Meg), берущей начало от полипотен- тной клетки-предшественницы миелопоэза (CFU-GEMM).
б. Мегакариоцит (рис. 6-21). Из ме- гакариобласта образуется очень крупная клетка с полиплоидным
Рис. 6-21. Дифференцировка мегакариоцита. По мере созревания мегакариоцит увеличивается в размерах, ядро становится дольчатым. Образуется развитая система демаркационных мембран, по которым происходит отделение тромбоцитов [из Hees Н, Sinowatz F, 1992]

и дольчатым ядром - мегакариоцит. В цитоплазме мегакариоцита появляются небольшие базофильные гранулы. В дальнейшем формируются везикулы и демаркационные мембраны; количество свободных рибосом и выраженность гранулярной эндоплазматической сети уменьшаются. В цитоплазме зрелого мегакариоцита различают три зоны: перинуклеарную, промежуточную и наружную. Тромбоциты формируются путём фрагментации цитоплазмы мегакариоцита. В костном мозге мегакариоцит образует протромбоцитарную псевдоподию, проникающую через стенку синуса в его просвет (рис. 6-22).

  1. Перинуклеарная зона содержит комплекс Гольджи, гладкую и гранулярную эндоплазматическую сеть, гранулы, центриоли и трубочки. Эта зона остаётся связанной с ядром после отделения тромбоцитов.
  2. Промежуточная зона содержит развитую систему взаимосвязанных пузырьков и трубочек (демаркационная мембранная система), переходящую в клеточную мембрану и выполняющую разграничительную функцию при формировании тромбоцитарных полей.
  3. Наружная (краевая) зона содержит элементы цитоскелета и пересекается мембранами, связанными с системой демаркационных мембран.

зать и вне костного мозга. Это происходит в тканях иммунной системы в ответ на стимуляцию.
В. Факторы гемопоэза. Образование клеток крови стимулируют гемопоэтические факторы роста. На кроветворение влияют фолиевая кислота и витамин B12. Дифференци- ровку кроветворных клеток контролируют факторы транскрипции.

  1. Гемопоэтические факторы роста (рис. 6-23) - фактор стволовых клеток (SCF)1 колониестимулирующие факторы (CSF)1 интерлейкины, эритропоэтин, тромбоцитопоэ- тин. Колониестимулирующий фактор гранулоцитов и макрофагов (GM-CSF), колониестимулирующий фактор гранулоцитов (G-CSF) и колониестимулирующий фактор макрофагов (M-CSF) стимулируют пролиферацию предшественников фагоцитов в костном мозге, а также значительно усиливают бактерицидные и цитотоксические функции зрелых потомков этих клеток. GM-CSF усиливает практически все реакции нейтрофилов (адгезия, фагоцитоз, дегрануляция и т.д.) на такие хемоаттрактанты, как f-Met-Leu-Phe, компонент С5а комплемента, лейкотриен LTB4.

а. Стволовых клеток фактор (SCF) в ходе эмбрионального гемопоэза способствует выживанию, пролиферации и миграции ранних потомков стволовых кроветворных клеток.
б. Колониестимулирующий фактор гранулоцитов и макрофагов (GM-CSF). На образование и пролиферацию фагоцитов (гранулоцитов и моноцитов) влияет по крайней мере 14 цитокинов. Разные CSF, индуцирующие образование фагоцитов, вырабатываются разными клетками мезенхимного происхождения. Наиболее значим GM-CSF, способствующий образованию моноцитов и гранулоцитов. GM-CSF продуцируют моноциты, Т-лимфоциты, фибробласты, клетки эндотелия. GM-CSF влияет на ранние стадии гемопоэза, стимулируя пролиферацию практически всех классов ранних клеток- предшественниц гранулоцитов и макрофагов.
в. Колониестимулирующий фактор гранулоцитов (G-CSF) влияет на полипотен- тную клетку-предшественницу нейтрофилов и базофилов (CFU-G), стимулируя её дифференцировку в унипотентные клетки-предшественницы нейтрофилов и базофилов. G-CSF синтезируют макрофаги и фибробласты.
г. Колониестимулирующий фактор макрофагов (M-CSF) стимулирует полипо- тентную клетку-предшественницу гранулоцитов и моноцитов (CFU-GM) и унипотен- тный предшественник моноцитов (CFU-M) к дифференцировке в моноциты и далее в макрофаги. Оказывает противоопухолевое действие. M-CSF вырабатывают макрофаги и фибробласты.
д. Интерлейкин-3 действует на стволовую кроветворную клетку и полипотентную клетку-предшественницу миелопоэза (CFU-GEMM), на большинство клеток-предшес- твенниц миелоидного ряда, стимулируя формирование эритроцитов, гранулоцитов, моноцитов, тромбоцитов. Вырабатывается Т-лимфоцитами и клетками стромы костного мозга. ИЛ-3 поддерживает размножение практически всех классов ранних клеток- предшественниц.
е. Интерлейкин-5 (наряду с ИЛ-3 и GM-CSF) стимулирует образование эозинофилов.
ж. Интерлейкин-7 способствует образованию T- и В-лимфоцитов, воздействуя на их клетки-предшественницы. Продуцируется клетками стромы костного мозга.
з. Эритропоэтин регулирует эритропоэз, стимулируя пролиферацию и дифференцировку унипотентных предшественников эритроцитов (CFU-E); синтезируется в почке и печени (в антенатальном периоде); интенсивность синтеза зависит от р02 в этих органах.
и. Тромбопоэтин - белковый фактор пролиферации предшественников мегакариоци- тов, их созревания и увеличения количества тромбоцитов; синтезируется главным образом в печени.

  1. Факторы транскрипции - связывающиеся с ДНК белки различных семейств, функционирующие с ранних стадий развития и регулирующие экспрессию генов кроветворных
клеток.
а. SCL - фактор транскрипции в стволовых кроветворных клетках, предшественниках эритроцитов, мегакариоцитов.
б. NF-E2 - эритроидный фактор транскрипции, активирует транскрипцию а- и р-глоби- нов, ферментов синтеза гема (порфобилиноген дезаминаза и феррохелатаза).
в. Факторы транскрипции GATA - связывающиеся с ДНК белки, узнающие последовательность GATA.
  1. GATAl поддерживает нормальный эмбриональный и постнатальный гемопоэз, экспрессируется в эритроидных клетках и мегакариоцитах.
  2. GATA2 экспрессируется кроветворными клетками и играет ключевую роль в регуляции экспрессии гемопоэтических факторов, контролирующих эмбриональный гемопоэз в желточном мешке и печени.
  3. GATA3 экспрессируют Т-клетки.
г. EKLF влияет на эритропоэз, стимулируя экспрессию гена р-глобина; возможный
переключатель эритропоэза на дефинитивный тип (переключение синтеза с у- на
Р-глобин).
  1. Фолиевая кислота и витамин В|2. При массовом образовании новых клеток крови
активно синтезируется ДНК. Для этого необходимы витамин B12 и фолиевая кислота.
Фолаты и витамин B12 поступают с пищей и всасываются в тонкой кишке.
а. Витамин B12
  1. Внутренний фактор. Для всасывания витамина B12 в кишечнике необходим (внутренний) фактор Касла, синтезируемый париетальными клетками желудка. Фактор связывает витамин B12 и защищает его от разрушения ферментами. Комплекс внутреннего фактора с витамином B12 в присутствии ионов Ca2+ взаимодействует с рецепторами эпителиальной клетки дистального отдела подвздошной кишки. При этом витамин B12 поступает в клетку, а внутренний фактор высвобождается. Отсутствие внутреннего фактора приводит к развитию анемии.
  2. Транспорт витамина B12. Из эпителия кишечника витамин B12 с помощью транскобаламина II переносится в костный мозг (витамин B12 деметилирует фолаты, предотвращая их выход из клеток; участвует в синтезе ДНК) и в печень (для запасания). Транскобаламин II вырабатывают эпителиальные клетки кишечника.
  3. Дефицит витамина B12. Алиментарный дефицит витамина B12 в развитых странах встречается редко; исключение составляют грудные дети матерей - строгих вегетарианок. Обычная причина дефицита - нарушение процессов всасывания; одна из причин - дифиллоботриоз (гельминтоз, вызванный Diphyllobothrium Iatum [Лентец широкий], эндемичен для некоторых районов России).
б. Фолиевая кислота. Фолаты в качестве кофермента участвуют в синтезе пуриновых
и пиримидиновых оснований.
  1. Алиментарный дефицит фолиевой кислоты - редкое явление; может развить
ся у грудного ребёнка, вскармливаемого кипячёным или козьим молоком, а также у детей с тяжёлой анорексией.
  1. Нарушение всасывания фолатов наблюдают при синдроме мальабсорбции (болезнь Крона, целиакия), характеризующемся поражением тонкой кишки.
  2. Повышенная потребность в фолатах развивается при состояниях, сопровождающихся усилением метаболических процессов (беременность, хронический гемолиз, злокачественные новообразования).
  3. Нарушения метаболизма фолатов могут вызвать некоторые противосудо- рожные препараты (фенитоин и фенобарбитал).

Вены безмышечного типа в стенке имеют эндотелий, подэндотелиальный слой, средняя оболочка невыраженна, более выражена наружная оболочка. Они располагаются в костях, плаценте, твердой и мягкой мозговой оболочке, сетчатке, селезенке. Из них кровь течет по д силой собственной тяжести/сокращения мышечных компонентов органа.

Вены мышечного типа со слабым развитием мышечных элементов (голова, шея. верхняя полая вена) в стенке имеет эндотелий, подэндотелиальный слой, средняя оболочка содежит небольшое количество гладких миоцитов, наружная – адвентициальная. Со средним развитием мышечных элементов (верхняя часть туловища, верхние конечности) – внутренняя оболочка без особенностей и имеет на границе алистические волокна. Средняя оболчка имеет циркулярно расположенные пучки миоцитов; наружная – без особенностей. Вены с сильно развитыми мышечными элементами (все что ниже сердца) в среднем слое имеет больше мышечных элементов, гладкие миоциты встречаются во внутреннем и наружном слоях.

    Сердце. Источники эмбрионального развития, Гистофизиология и регенерация.

Сердце – основной орган, приводящий в движение кровь. Источники развития: мезенхима образует эндокард, висцеральный листок спланхотома – миокард и эпикард. В стенке различают 3 оболочки: 1) эндокард – содержит эндотелий, подэндотелиальный слой, мышечно-эластический слой, наружный соединительнотканный слой. 2) миокард – образован типичными, атипичными и секреторными кардиомицитами. М/у волокнами имеются прослойки соединительной ткани с сосудами. В предсердии 2 слоя миокард (продольный и циркулярный), в желудочках – 3слоя. атипичные кардиомиоциты составляют проводящую систему. 3) эпикард – висцеральный листок перикарда.

    Гемопоэз. Определение понятия. Органы кроветворения и иммуногенеза. Общая морфофункциональная характеристика и классификация.

Гемопоэз – развитие крови. Различают эмбриональный (происходит в эмбриональный период) и постэмбриональный (процесс физиологической регенерации крови) гемопоэз.

В эмбриональном гемопоэзе выделяют 3 этапа: мезобластический, печеночный, медуллярный (костномозговой). В этот период органами кроветворения являются желточный мешок, тимус, красный костный мозг.

Органы кроветворения делят на: центральные (тимус, красный костный мозг) – антиген независимые; периферические – антиген зависимые (миндалины, селезенка, лимфатические узлы, лимфатические узелки).

    Эмбриональный гемопоэз. Основные этапы кроветворения в эмбриогенезе.

Выделяют 3 этапа, сменяющих последовательно друг друга: 1) мезобластический – развитие клеток крови начинается во внезадорышевых органах – мезенхиме стенки желточного мешка, хориона (с 3 по 9 неделю развития зародыша) и появляется первая генерация стволовых клеток крови (СКК). Наружные клетки дифференцируются в эндотелиальные клетки кровеносных сосудов; внутренние клетки дифференцируются в первичные эритробласты (мегалобласты) – мегалобластический тип и интраваскулярным. Клетки крупные, содрежат ядра, мало гемоглобина. За пределами сосудов, в стенке желточного мешка, образуются гранулоциты (нейтрофилы, эозинофилы) – экстраваскулярный тип. 2) печеночный – начинается в печени с 5-6 недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени завершается перед рождением. СКК заселяют тимус (с 7-8 недели развиваются Т-лимфоциты), селезенку (с 12 нед.) и лимфатические узлы (с 10 нед.). Мегалобластический тип меняется на нормобластический тип кроветворения, остается только экстраваскулярным. Эритроциты выбрасывают ядро, в них увеличивается содержание гемоглобина, цитоплазма становится оксифильной. Здесь т.ж. образуются зернистые лейкоциты, мегакариоциты. Меняется микроокружение. 3) медуллярный (костномозговой) – появление 3ей генерации СКК в костном мозге, гемопоэз начинается с 10й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза. В селезенке и лимфатических узлах к рождению появляются соединительнотканные капсулы и трабекулы, кровеносные сосуды. Остаются только очаги лимфоидной ткани.

    Постэмбриональный гемопоэз. Теория кроветворения. Современная схема кроветворения.

Постэмбриональный гемопоэз – физиологическая ргенерация крови (клеточное обновление), которая компенсирует физиологическое разрушение дифференцированных клеток.

Миелопоэз – происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоидной ткани находят СКК и СК соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимф-кие узлы и т.д.

Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образовании Т- и В-лимфоцитов, иммуноцитов. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, п.э. в них представлены 2 основные клеточные линии – клетки ретикулярной ткани и гемопоэтические.

В основе схемы кроветворения лежит унитарная теория. Унитарная теория: родоначальницей всех клеток лежит 1 стволовая клетка, образующая 0,15 трлн клеток в сутки (250 млрд – эритроцитов, 250 млрд - лейкоцитов).

Схему делят на 6 классов: 1) полипотентные клетки – предшественники СКК – лимфоцитоподобные, гетерогенные. Подразделяются на про-СКК (начинают пролиферировать при трансплотации), др.-СКК. кр.-СКК – пролиферируют кратковременно. Мультипотентны. МСК – мезнхимальные стоволовые клетки – микроокружение СКК, поддерживают и регулируют кроветворение.

2) Частично детерминированные клетки – предшественники (полустволовые клетки): 2 типа – КОЕ (колония образующая единица)-М миелопоэза (эритроциты), КОЕ-Л лимфопоэза (белые клетки).

3) Унипотентные КП (клетки предшественники) (олигопотентные): КОЕ-М миелопоэза – образует линии КОЕ-Г (гранулоциты), КОЕ-М (макрофаги), КОЕ-Э (эритроциты), КОЕ-Мгк (мегакариоциты), КОЕ-Т (тучные клетки). КОЕ-Л лимфопоэза: КП-В лимфоцитов, КП-Т лимфоцитов, КП-натуральные киллеры, КП-дендритные клетки.

4) Пролиферирующие клетки – морфологически распознаваемы клетки. Бластные клетки.

5) Созревающие клетки – происходит дифференцировка клеток. Клетки уменьшаются в размерах, изменяется форма ядра, меняется цвет цитоплазмы и ядра, появляется специфическая зернистость.

6) Зрелые классы: бласттрансформация – только для Т- и В-лимфоцитов (взаимодействие рецепторного поля в 5 классе) обмен рецепторными полями.

    Эритропоэз и тромбоцитопоэз в эмбриональном и постэмбрио­нальном периодах.

Родоначальницей эритроидных клеток является полипотентная СКК, способная формировать в культуре костного мозга колонии. Дифференцирующаяся полипотентная СКК дает 2 типа мультипотентных частично коммитированных СКК: 1) коммитированные к лимфоидному типу дифференцировки; 2) КОЕ-ГЭММ – единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов. Из второго типа мультипотентных СКК дифференцируются унипотентные единицы: буретообразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эритроидные клетки, которые являются коммитированными родоначальными клетками эритропоэза. БОЕ-Э – наиболее примитивные клетки – предшественники эритроцитов, которые способны гнерировать тысячи эритроидных предшественников. Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компармента мультипотентных СКК. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э. Под влиянием эритропоэтина (гликопротеиновый гормон) КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты, ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются.

Кровяные пластинки образуются в костном мозге из мегакариоцитов – гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий: СКК – КОЕ-ГЭММ – КОЕ-МГЦ – мегакариобласт – промегакариобласт – мегакариоцит – тромбоциты (кровяные пластинки). Весь период образования тромбоцитов составляет примерно 10 дней.

    Лейкоцитопоэз в эмбриональном и постэмбриональном периодах.

Источником для гранулоцитопоэза являя.тся СКК и мультипотентные КОЕ-ГЭММ, одновременно начинающие дифференцироваться ч/з ряд промежуточных стадий в трех различных направлениях и образующие гранулоциты 3х видов: нейтрофилы, эозинофилы, базофилы. Основные ряды для каждой из групп гранулоцито слагаются из следующих клеточных форм: СКК – КОЕ-ГЭММ – КОЕ-ГМ – унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) – миелобласт – промиелоцит – миелоцит – метамиелоцит – палочкоядерный гранулоцит – сегментоядерный гранулоцит. По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость.

Образование моноцитов: СКК – КОЕ-ГЭММ – КОЕ-ГМ – унипотентные предшественники моноцитов (КОЕ-М) – монобласт – промоноцит – моноцит. Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз проходит следующие стадии: СКК – КОЕ-Л (лимфоидная родоначальная клетка) – унипотентные предшественники лимфоцитов (пре-Т-клетки, пре-В-клетки) – лимфобласт – пролимфоцит – лимфоцит. Особенность: способность дифференцированных клеток (лимфоцитов) дедифференцироваться в бластные формы.

    Красный костный мозг. Локализация, характеристика гемопоэтических островков и микроокружения, регенерация. Желтый костный мозг.

Красный костный мозг (ККМ) – центральный орган кроветворения. Первые недели выполняет остеогенную функцию, далее – кроветворную. Стромой ККМ является ретикулярная и жировая ткани, последняя увеличиваясь приводит к затуханию кроветворения. Сосуды ККМ: артерии с выраженной мышечной стенкой, крупные венозные синусы (депо крови), синусоидные капилляры. Ближе к кровеносным сосудам располагаются очаги формирования эритроцитов, они в процессе скапливаются вокруг макрофагов, которые содержат железо. Эритроциты меняют окраску: полихроматофильные – оксифильные - теряют ядра.

Рядом с синусоидными капиллярами располагаются самые крупные клетки – мегакариобласты (ядро округлое, дольчатое) и мегакариоциты (ядра лопастные). Их отростки проникают ч/з стенку синусоидных капилляров, отрываясь эти части образуют тромбоциты, содержащие отрывки цитоплазмы и частично органеллы.

По периферии, ближе к эндосту, располагаются зернистые лйкоциты. Здесь же идет процесс постоянной дифференцировки. Только зрелые лимфоциты проникают в кровяное русло.

Предшественники лимфоцитов мигрируют сразу в тимус – Т-лимфоциты; другая часть мигрирует в В-зависимые зоны лимфатических органов. Дальше происходит дифференцировка и пролиферация.

Регенерация осуществляется путем деления. имеет иннервация.

    Тимус. Развитие, строение, функции. Возрастная и акцидентальная инволюция тимуса.

Тимус (вилочковая железа) – центральный орган кроветворения и иммунитета, антиген независимый. Образуется из эпителия глоточной кишки (3-4пара жаберных карманов). Эпителий постепенно разделяется на дольки, м/у которыми из мезенхимы образуются соединительнотканные перегородки. Стромой дольки является эпителий, который потеряв строение пласта, постепенно разрыхляется и принимает ретикулоподоный вид, поэтому называется ретикулоэпителиоцитами. Микроокружение включает в себя: макрофаги, кровеносные сосуды с эндотелиальныеми и адвентициальнями клетками (фибробласты, липоциты).

На уровне ПСК (2 класс) происходит заселение тимуса. Эдесь происходи дифференцировка и образование Т-лимфоцитов, которые мигрируют в Т-зависимые периферийные зоны лимфатических узлов (ЛУ). Здесь происходит пролиферация Т-лимфоцитов и образование специализированных Т-лимфоцитов (Т-хелперы, киллеры, памяти). При чем эти процессы протекают в периферийных органах только при раздражении.

Лимфоциты, имеющие на своей поверхности антигены, в норме за пределы тимуса не выходят. В противном случае они могут быть причиной аутоиммунной агрессии.

Строение тимуса: различают корковое и мозговое вещество. Корковое вещество наиболее темное. мозговое – светлое. Лимфоциты заселяют сначала мозговое вещество. Здесь эпителиальные клетки располагаются более компактно и образуют сеть. В корковом веществе по периферии располагаются СК – лимфобласты. Эта зона субкапсулярная. Эти Т-лимфоциты устойчивы к физическим факторам, облучению, глюкокордикоидам надпочечников. Восстановление идет за счет Т-зоны – акцидентальная инвалюция тимуса. В мозговом веществе легче просматриваются эпителиоциты. С возрастом происходит увеличение эпителиальных телец – телец Гассаля (эпителиальные жемчужины). В центре этих телец происходит распад эпителиальных клеток – возрастная инвалюция тимуса. Виды телец: оксифильная, форма ближе к округлой, по периферии видны плоские базофильные ядра. Размеры разные.

Кровоснабжение: корковое и мозговое вещество кровоснабжается отдельно. Т-лимфоциты из коркового вещества не переходят в мозговое, а мигрируют сразу в Т-периферийную органы кроветворения. Кровоснабжение мозгового вещества больше замкнуто, из него не могу выйти Т-лимфоциты. этому препятствует специальный барьер (эндотелий, базальная мембрана капилляра, эпителиальные клетки – стромы. макрофаги).

Регенерация: максимальное развитие тимус достигает к 25 годам, после чего идет инвалюция. В старости т.ж. имеет функциональное значение. Регенерация возможна только в детском возрасте. Микроокружение тимуса вырабатывает специальные вещества – тимозины, они способствуют кроветворению, в частности вырабатывают Т-активины.

    Периферические органы кроветворения. Общая морфофункциональная характеристика. Понятие об антигензависимом кроветворении.

К периферическим органам кроветворения относят миндалины, селезенку, лимфатические узлы и узелки. В периферических органах происходят размножение приносимыхсюда из центральных органов Т- и В-лимфоцитов и специализация их под влиянием антигенов в эффекторные клетки, осуществляющие иммунную защиту, и клетки памяти. К.т. здесь погибают клетки крови, завершающие свой жизненный цикл.

    Лимфатические узлы. Общая морфофункциональная характеристика. Строение и функции синусов лимфатического узла.

ЛУ – располагаются в определенных местах. Размер от нескольких мм до 1,5 см. Развивабтся на 2 месяце внутриутробного развития, в них происходит универсальное кроветворение. После рождения остается только лимфоцитопоэз. Выполняют защитную (барьерную), кроветворную (только лимфоцитопоэз), иммунобиологическую (В-лимфоплазматические клетки), депонирующую (депонирует лимфу) функции.

ЛУ имеет бобовидную форму.По большой кривизне располагается большое количество приносящих сосудов, только 1 сосуд располагается в воротах, является выносящим. Снаружи ЛУ покрыт соединительнотканной капсулой. Внутри отходят соединительнотканные перегородки – трабекулы.

Лимфа протекает в ЛУ по сосудам снаружи выпуклой стороны и попадает в систему синусов: 1) краевой (подкапсулярный синус) – располагается м/у капсулой и ЛУ. 2) вокругузелковый (корковый) синус – м/у трабекулой и ЛУ. 3) промежуточный (мозговой) синус – м/у трабекулой и мякотными тяжами. 4) воротный синус – в области ворот.

    Лимфатические узлы. Гистофизиология коркового, мозгового вещества и паракортикальной зоны. Участие лимфатических узлов в иммунном ответе.

ЛУ включает в себя лимфоидную ткань, подразделяется на 2 части: мозговое и корковое.

Корковое вещество представлено лимфатическими узелками, мозговое – мякотными тяжами. Вместе они составляют В-зависимые зоны. На границе коркового и мозгового вещества выделяют паракортикальную Т-зависимую зону.

При раздражении антигеном (антиген зависимый орган) в гомогенных ЛУз появляются светлый (реактивный) центр (В-лимфоциты), а сам ЛУз подразделяется на корковое и мозговое вещество. Созревшие В-лимфоциты выходят в кровеносное русло, дальше в ткань – превращаются в плазматические клетки, которые начинают вырабатывать антитела.

Микроокружение: нефагоцитирующие макрофаги – они способны на поверхности накапливать антиген, при определенном количестве которого происходит пролиферация и бласттрансформация лимфоцитов. Выделяют 2 вида: 1) дендритные – находятся в реактивных центрах ЛУ и активируют В-лимфоциты; 2) интердигитирующие – находятся в паракортикальной зоне ЛУ и активируют Т-лимфоциты, является аналогом эпидермальных макрофогаов. Т.ж. в микроокружение входят ретикулярные клетки и резидентные (фагоцитирующие) макрофаги.

Регенерация возможна только в детском возрасте.

    Селезенка. Общая морфофункциональная характеристика. Функции селезенки в эмбриональном и постнатальном периодах.

Селезенка развивается на 2 месяце эмбриогенеза. Сначала выступает в роли универсального органа кроветворения, после рождении – только лимфоцитопоэз. Выполняет защитную (барьерную), иммунобиологическую функции, вырабатывает поэтины (тромбоцитопоэтины и эритропоэтины), участвует в разрушении эритроцитов. Селезенка является нежизненно важным органом. Снаружи покрыта брюшиной (висцеральным листком), под ней располагается соединительнотканная капсула (здесь находятся гладкие миоциты, при сокращении которых возникает боль в левом подреберье; при резком наполнении селезенки происходит ее разрыв). Регенерирует хорошо, при условии сохранения всех составных частей.

    Белая пульпа селезенки. Строение, функции. Участие в иммунных реакциях.

Белая пульпа - имеют ЛУз различают 4 зоны: 1) периартериальная зона – тимус зависимая зона; 2) реактивный центр – (светлая зона) В-лимфоциты, антиген зависимая зона; 3) мантийная зона – В- и Т-лимфоциты, зона расположена на пути миграции; 4) краевая зона – (маргенальная) В- и Т- лимфоциты на пути миграции.

Всегда располагается центральная аретрия на периферии.

    Красная пульпа селезенки. Строение и функции. Особенности внутриорганного кровоснабжения селезенки.

Красная пульпа – ретикулярные клетки и резидентные макрофаги (строма), которые разрушают эритроциты: билирубин поступает обратно в печень, а железо – в ККМ.

Закрытая система кровоснабжения: (а – кап - в) селезеночная а. – трабекулярная а. – пульпарная а. – центральная а. – кисточковая а. – капилляр – венозный синус – пульпарная вена – трабекулярная в.

Открытая система: (а. – кр. пульпа – в.) селезеночная а. – трабекулярная а. – пульпарная а. – центральная а. – кисточковая а. – капилляр – красная пульпа - венозный синус – пульпарная вена – трабекулярная в.

    Иммунная система слизистых оболочек. Общая морфофункциональная характеристика. Гистофизиология небной миндалины.

Миндалина выполняет защитную (барьерную), кроветворную (лимфоцитопоэз), иммунобиологическую (выработка антигена) функции. Небная миндалина имеет 10-15 крипт. Снаружи покрыта многослойным плоским неороговевающим эпителием, под ней располагается собственная пластинка слизистой оболочки (рыхлая соединительная ткань). В собственной пластинки слизистой оболочки располагаются лимфатические узелки (ЛУз). Если не было встречи с антигеном ЛУз – гомогенны, если встреча состоялась, то ЛУз – гетерогенны, т.е. имеют 2 части: корковое и мозговое. В мозговом веществе происходит пролиферация В-лимфоцитови их бласттрансформация.

Единая иммунная система слизистых оболочек представленная скоплениями лимфоцитов в слизитых оболочках ЖКТ, бронхов, мочеполовых путей, выводных протоков молочных и слюнных желез. Лимфоциты могут формировать одиночные/групповые лимфоидные узелки. ЛУз осуществляют локальную защиту. Лимфоциты располагаются в рыхлой волокнистой соединительной ткани оболочек, покрытых эпителием.

    Клеточные основы иммунных реакций. Общая морфофункциональная характеристика иммунокомпетентных клеток и их взаимодействие в иммунном ответе.

Иммунная сиситема объединяет органы и ткани, в которых происходит образование и взаимодействие клеток – иммуноцитов, выполняющих функцию распознования генетически чужеродных субстанций и осуществляющих специфическую реакцию.

При первой встречи с антигеном (первичный ответ) лимфоциты стимулируются и подвергаются трансформации в бластные формы, которые способны к пролиферации и дифференцировки в иммуноциты. В результате пролиферации увеличивается чилсо лимфоцитов соответствующего клона. Дифференцировка приводит к появлению двух типов клеток – эффекторных и клеток памяти. Эффекторные клетки непосредственно участвуют в ликвидации/обезвреживании чужеродного материла. К эффекторным клеткам относятся активированные лимфоциты и плазматические клетки. Клетки памяти – это лимфоциты, возвращающиеся в неактивное состояние, но несущие информацию о встрече с конкретным антигеном. При повторном введении данного антигена они способны обеспечивать быстрый иммунный ответ большей интенсивности (вторичный ответ) вследствие усиленной пролиферации лимфоцитов и образования иммуноцитов.

При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты/лимфоциты – киллеры, которые непосредственно участвуют в уничтожении чужеродных клеток других органов и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродный тканей в условиях трансплантации.

Основными клетками. осуществляющими иммунные реакции являются Т- и В-лимфоциты, макрофаги и ряд взаимодействующих с ними клеток.

Т-лимфоциты – дифференцируются в тимусе. поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы, в которых под влиянием антигенов образуются Т-иммуноциты и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. В популяции Т-лимфоцитов различают несколько функциональных групп клеток: Т-киллеры, Т-хелперы, Т-супрессоры.

В-лимфоциты – основные клетки, участвующие в гуморальном иммунитете. Образуются из СКК ККМ, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов. При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

    Общий план строения и источники эмбрионального развития стенки пищеварительной трубки.

Эпителиальная выстилка пищеварительной трубки и железы развивается из энтодермы и эктодермы. Из энтодермы формируются однослойный призматический эпителий слизистой оболочки желудка, тонкого и большей части толстого кишечника, а т.ж. железистая паренхима печени и поджелудочной железы. Из эктодермы ротовой полости и анальной бухт эмбриона обруется многослойный плоский эпителий ротовой полости, слюнных желез и каудального отдела прямой кишки. Мезенхима является источником развития соединительной ткани и сосудов, а т.ж. гладкой мускулатуры пищеварительных органов. Из висцерального листка спланхнотома развивается однослойный плоский эпителий серозной оболочки – висцерального листка брюшины.

В стенки пищеварительной трубки выделяют 4 оболочки: слизистая, подслизистая, мышечная и наружная (сероза/адвентиция).

    Слизистая оболочка переднего, среднего и заднего отделов пищеварительной трубки. Общая характеристика и особенности строения.

В слизистой оболочке во всех отделах пищеварительной трубки рельеф неровный: складки (встерачются везде; выпячивания слизистой оболочки при наличии подслизистой основы), ямки (в желудке; небольшие углубления в подлежащей ткани), крипты (более глубокие углубления), ворсинки (только в тонком отделе кишечника; выпячивания слизистой оболочки пальцевидной формы).

Слизистая оболочка состоит из 3 пластинок: 1) эпителиальная – в переднем и заднем отделах – многослойный; в среднем – однослойный. 2) собственная пластинка – рыхлая неоформленная соединительная ткань, в которой располагаются кровеносные и лимфатические сосуды, нервные волокна, могут находиться лимфоидные узелки, железы. 3) мышечная пластинка – гладкая мышечная ткань, лежит на границе слизистой и подслизистой. Чаще пучки мышечной пластинки образуют 2 слоя: внутренний (циркулярный) и наружный (продольный). Она придает пластичность, сокращаясь, способствует изменению рельефа и выделению секрета из желез.

    Ротовая полость. Гистофизиология слизистой оболочки органов ротовой полости (губа, язык, десна, щека, твердое и мягкое небо).

К ротовой полости относят структуры, образующие стенки полости и их производные. Стенки: губы, щеки, десны, твердое и мягкое небо.

Органы: язык, слюнные железы, зубы, небные миндалины.

Слизистая оболочка состоит из многослойного неороговевающего эпителия, но в участках повышенной механической нагрузки ороговевает (спинка языка, средняя линия щек, десны, части твердого неба). Собственная пластинка образует сосочки, которые большие, высокие, располагаются в участках с повышенной механической нагрузкой. Подслизистая основа отсутствует в местах с повышенной механической нагрузкой.

    Губа. Гистофизиология кожной, слизистой и переходной частей.

Губа – ограничивает ротовую полость, является зоной перехода от кожного покрова в слизистую пищеварительного тракта. В губе выделяют 3 отдела: 1) кожный – имеет строение тонкой кожи, эпидермис, дерма, сальные железы, волосы; 2) промежуточный (переходный) – включает гладкую часть (красная кайма) и ворсинчатую часть (линия смыкания губ). Гладкая часть выстлана многослойным плоским ороговевающим эпителием, ч/з который просвечиваются капилляры, имеется много рецепторов. Ворсинчатая часть – многослойный плоский неороговевающий эпителий (у новорожденного эпителий образует выросты). 3) слизистый отдел – многослойный неороговевающий эпителий, под ним располагается собственная пластинка слизистой оболочки.

В губе взрослого в кожной части хорошо выражены производные, отсутствуют ворсинки в ворсинчатой части губы, хорошо выражена мышечная ткань, которая залегает в толще губы.

Общая гистология - кроветворение

Кроветворением, или гемопоэзом, называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранулоцитопоэзом, тромбоцитов - тромбоцитопоэзом, моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито- и иммуноцитопоэзом.
Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный.

Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка, мезенхиме хориона и стебля. При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека.

Второй, гепатолиенальный этап начинается с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы.

Третий, медуллярный (костномозговой) этап - это появление третьей генерации стволовых клеток крови в красном костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза.

Рассмотрим подробнее особенности гемопоэза в стенке желточного мешка, в печени, в тимусе, селезенке, лимфатических узлах и в костном мозге.
Кроветворение в стенке желточного мешка

В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или кровяные островки. В них мезенхимные клетки округляются, теряют отростки и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть стволовых клеток дифференцируется в первичные клетки крови (бласты). Большинство первичных кровяных клеток митотически делится и превращается в первичные эритробласты, характеризующиеся крупным размером – мегалобласты. Это превращение совершается в связи с накоплением эмбрионального гемоглобина (HbF) в цитоплазме бластов. В некоторых первичных эритробластах ядро подвергается кариорексису и удаляется из клеток, в других ядро сохраняется. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером по сравнению с нормоцитами и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях.

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты, из которых образуются вторичные эритроциты (нормоциты).

Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудистых стенок, дифференцируется небольшое количество гранулоцитов - нейтрофилов и эозинофилов.

Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.
Кроветворение в печени

Печень закладывается примерно на 3-4-й неделе эмбриональной жизни, а с 5-й недели она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, - по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени являются стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты.

Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и эозинофильные.

Кроме гранулоцитов, в печени формируются гигантские клетки - мегакариоциты, - предшественники тромбоцитов. К концу внутриутробного периода кроветворение в печени прекращается.
Кроветворение в тимусе

Тимус закладывается в конце 1-го месяца внутриутробного развития, и на 7-8-й неделе его эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало T-лимфоцитам, заселяющим T-зоны периферических органов иммунопоэза.
Кроветворение в селезенке

Закладка селезенки также происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м месяце эмбриогенеза. После этого в ней начинает преобладать лимфоцитопоэз.
Кроветворение в лимфатических узлах

Первые закладки лимфоузлов человека появляются на 7-8-й неделе эмбрионального развития. Большинство лимфатических узлов развивается на 9-10-й неделе. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых на ранних стадиях дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть лимфатических узлов.

Появление единичных лимфоцитов происходит уже в течение 8-15-й недели развития, однако массовое «заселение» лимфатических узлов предшественниками T- и B-лимфоцитов начинается с 16-й недели, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются сначала лимфобласты (или большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка T- и B-лимфоцитов происходит, соответственно, в T- и B-зависимых зонах лимфатических узлов.
Кроветворение в костном мозге

Закладка костного мозга осуществляется на 2-м месяце эмбрионального развития. Первые гемопоэтические элементы появляются на 12-й неделе развития; в это время основную массу их составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно. Часть СКК сохраняется в костном мозге в недифференцированном состоянии. Они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани.

Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие гемопоэтические органы.
Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.

Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы.

Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов).

Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии - клетки ретикулярной ткани и гемопоэтические клетки.

Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Структуры микроокружения и гемопоэтические клетки функционируют в неразрывной связи друг с другом. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).

Таким образом, для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое функциональное целое.

СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся. Выявление СКК стало возможным при применении метода образования клеточных колоний – потомков одной стволовой клетки.

Пролиферативную активность СКК регулируют колониестимулирующие факторы (КСФ), различные виды интерлейкинов (ИЛ-3 и др.). Каждая СКК в эксперименте или лабораторном исследовании образует одну колонию и называется колониеобразующей единицей (сокращенно КОЕ, CFU).

Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке - родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (сокращенно КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнице лимфопоэза (КОЕ-Л).

Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники. В лимфопоэтическом ряду выделяют унипотентные клетки - предшественницы для B-лимфоцитов и для T-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных класса, или компартмента, гемопоэза:
I класс - СКК - стволовые клетки крови (плюрипотентные, полипотентные);
II класс - КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);
III класс - КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;
IV класс - клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).

Сразу отметим, что оставшиеся два класса гемопоэза составляют созревающие клетки (V класс) и зрелые клетки крови (VI класс).

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного одним или несколькими кольцами эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом. КОЕ-Э и образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами.

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения эритробластов. Но всякий раз, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток.

В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты.
Регуляция гемопоэза

Кроветворение регулируется:
факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития,
факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток,
витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы (КСФ), интерлейкины и ингибирующие факторы. Они являются гликопротеинами, действующими и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и дифференцировку специфических типов клеток. Почти все факторы роста действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

КСФ действуют на специфические клетки или группы клеток на различных стадиях дифференцировки. Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов, поэтинов - эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов).

Большая часть эритропоэтина образуется в почках. Его образование регулируется содержанием в крови кислорода, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода, является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т.е. тормозят гемопоэз; их недостаток может быть одной из причин лейкемии, характеризующейся значительным увеличением числа лейкоцитов в крови. Выделен ингибирующий лейкемию фактор (ЛИФ), который тормозит пролиферацию и дифференцировку моноцитов-макрофагов.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемопоэтических клеток. Витамин В12 поступает с пищей и соединяется с внутренним фактором (Касла), который синтезируется париетальными клетками желудка. Образуемый при этом комплекс, в присутствии ионов Са2+, соединяется с рецепторами эпителиоцитов подвздошной кишки и всасывается. При всасывании в эпителиоциты поступает лишь витамин В12, а внутренний фактор освобождается. Витамин В12 поступает с кровью в костный мозг, где влияет на гемопоэз, и в печень, где может депонироваться. Нарушение процесса всасывания при различных заболеваниях желудочно-кишечного тракта может служить причиной дефицита витамина В12 и нарушений в гемопоэзе.
Некоторые термины из практической медицины:
анемия (син. малокровие) -- состояние, характеризующееся снижением содержания гемоглобина в единице объема крови, чаще при одновременном уменьшении количества эритроцитов;
анемия ахрестическая -- общее название анемий, развивающихся вследствие неспособности эритробластов костного мозга использовать какие-либо антианемические факторы (цианокобаламин, фолиевую кислоту, железо и др.) при их нормальном поступлении в организм;
хлороз ранний (син.: бледная немочь, хлороз ювенильный) -- железодефицитная анемия у девушек в период полового созревания, проявляющаяся алебастровой бледностью кожи с зеленоватым оттенком, извращением вкуса, олигоменореей;
хлороз поздний (син. анемия железодефицитная эссенциальная) -- железодефицитная анемия у женщин в возрасте старше 30 лет, обычно связанная с маточными или другими кровотечениями, проявляющаяся извращением вкуса и обоняния, признаками атрофии слизистой оболочки полости рта и пищевода, выпадением волос, искривлением ногтей, позже - выраженными признаками анемии;

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Кроветворение (гемопоэз) – процесс образования крови. Выделяют эмбриональный и постэмбриональный гемопоэз.

Эмбриональный гемопоэз – это процесс образования крови как ткани.

Постэмбриональный гемопоэз – процесс образования форменных элементов крови в ходе физиологической и репаративной регенерации.

Согласно унитарной теории кроветворения, все клетки крови развиваются из одной родоначальной стволовой кроветворной клетки (СКК).

Эмбриональный гемопоэз делится на три периода в зависимости от времени и места протекания. Это периоды в определенной степени перекрываются:

мегалобластический (внезародышевый) период - 1-2-й месяцы эмбриогенеза;

гепато-тимо-лиенальный период - 2-5-й месяцы эмбриогенеза;

медулло-тимо-лимфатический период – 5-9-й месяцы эмбриогенеза.

Мегалобластический период начинается со 2-3 недели внутриутробной жизни в мезенхиме желточного мешка.

В результате интенсивного деления клеток в мезенхиме образуются кровяные островки, клетки которых дифференцируются в двух направлениях:

ангиобласты , лежащие по периферии, превращаются в эндотелий и образуют стенки первичных кровеносных сосудов;

стволовые кроветворные клетки , которые лежат в центре островков, превращаются в первичные клетки крови – бласты .

Большая часть бластов делится и превращается в первичные эритробласты больших размеровмегалобласты . Мегалобласты активно делятся и начинают синтезировать и накапливать эмбриональные гемоглобины. Из оксифильных мегалобластов образуются эритроциты больших размеров – мегалоциты . Часть мегалоцитов содержат ядро, часть – является безъядерными. Процесс образования мегалоцитов называется мегалобластическим эритропоэзом . Кроме мегалоцитов в желточном мешке образуется некоторое количество безъядерных эритроцитов обычного размера - нормобластический эритропоэз . Образование эритроцитов в желточном мешке идёт внутри кровеносных сосудов – интраваскулярно.

Одновременно с эритропоэзом в желточном мешке экстраваскулярно – вне просвета сосудов - идёт гранулоцитопоэз – образуются нейтрофильные и эозинофильные гранулоциты.

После образования кровеносных сосудов в теле зародыша и соединения их с сосудами желточного мешка эти клетки попадают в другие органы, участвующие в эмбриональном гемопоэзе. В дальнейшем желточный мешок постепенно редуцируется, и к 12-й неделе эмбриогенеза кроветворение в нём полностью прекращается

В печени кроветворение начинается на 5-6 нед. развития. Здесь образуются эритроциты, гранулоциты и тромбоциты. К концу 5-го месяца интенсивность гемопоэза в печени уменьшается, но в небольшой степени продолжается ещё несколько недель после рождения.

Гемопоэз в селезёнке наиболее выражен с 4-го по 8-й месяцы внутриутробного развития.

Начиная с 5-го месяца, красный костный мозг постепенно становится универсальным органом кроветворения , и происходит разделение на миелопоэз (образование всех видов форменных элементов крови за исключением лимфоцитов) и лимфопоэз.

Постэмбриональный гемопоэз – процесс образования форменных элементов крови в ходе физиологической и репаративной регенерации после рождения. Обновление различных клеточных популяций крови необходимо, поскольку абсолютное большинство форменных элементов крови имеет короткий жизненный цикл (скорость распада эритроцитов, например, составляет 10 млн в секунду). Гемопоэз обеспечивает поддержание постоянного количества форменных элементов в периферической крови.

Постэмбриональный гемопоэз протекает в миелоидной (красный костный мозг) и лимфоидных (тимус, селезенка, лимфоузлы, миндалины, аппендикс, лимфатические фолликулы) тканях.

Современные представления о кроветворении основаны на признании унитарной теории кроветворения. Согласно этой теории, развитие всех клеток крови начинается со стволовой клетки крови(СКК), дифференцировка которой в различные форменные элементы определяется микроокружением и действием специфических веществ – гемопоэтинов .

Во взрослом организме человека СКК в норме локализованы в костном мозге (0,05% от всех клеток костного мозга), однако в низких концентрациях они присутствуют также в периферической крови (0,0001% от всех лимфоцитов). Богатым источником СКК является пуповинная кровь и плацента.

СКК дают начало прогениторным клеткам и клеткам-предшественникам, которые делятся и дифференцируются в зрелые клетки определенного типа ткани. Такие клетки называют еще коммитированными.

Клетки предшественники образуют дифференцированные клетки через ряд поколений промежуточных клеток, становящихся все более зрелыми. Таким образом, гемопоэтические клетки подразделяются на 6 классов , в зависимости от уровня дифференцировки.

КЛАСС I. - СТВОЛОВАЯ ГЕМОПОЭТИЧЕСКАЯ КЛЕТКА (СКК)

СВОЙСТВА СКК:

· плюрипотентность : СКК способна к дифференцировке в различных направлениях и даёт начало любому виду форменных элементов крови (эритроцитам, лейкоцитам, кровяным пластинкам), поэтому СКК называют родоначальными клетками .

· способность к самоподдержанию : СККспособны поддерживать постоянство численности своей популяции за счёт того, что после деления стволовой клетки одна из дочерних клеток остается стволовой, сохраняя все свойства родительской клетки; вторая дочерняя клетка дифференцируется в полустволовую (коммитированную) стволовую клетку. Такой митоз называется асимметричным.

· способность к делению (пролиферации). СКК – долгоживущая клетка ; срок её жизни - жизнь индивидуального организма.

· устойчивость к действию повреждающих факторов , вероятно вследствие того, что СКК делятся редко; большую часть своей жизни они пребывают в состоянии покоя; при необходимости могут вновь вступать в клеточный цикл (например, при значительных кровопотерях и при воздействии факторов роста); кроме того СКК защищены своим местоположением.

· морфологически СКК не идентифицируются: то есть их нельзя различить обычными методами под световым или электронным микроскопом, СКК выглядит как любой малый лимфоцит, но они имеют свой фенотип (антигенный профиль): для них характерно присутствие на поверхности маркеров CD34+,CD59+, Thy1/CD90+, CD38lo/-, C-kit/cd117+, и отсутствие ряда маркеров, свойственных зрелым клеткам крови (Lin-негативность); благодаря определенному фенотипу СКК можно выявить методами иммуноцитохимии (с помощью меченых моноклональных антител).

· основное место локализации СКК– красный костный мозг, хотя численность СКК невелика (1 СКК на 2000 клеток красного костного мозга; или 1 СКК на 1 000 000 лейкоцитов периферической крови).



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло