Факторы гемопоэза. Эмбриональный гемопоэз

Тема 11. КРОВЕТВОРЕНИЕ

Кроветворение (гемоцитопоэз) – процесс образования форменных элементов крови.

Различают два вида кроветворения:

1) миелоидное;

2) лимфоидное.

В свою очередь миелоидное кроветворение подразделяется на:

1) эритроцитопоэз;

2) гранулоцитопоэз;

3) тромбоцитопоэз;

4) моноцитопоэз.

Лимфоидное кроветворение подразделяется на:

1) Т-лимфоцитопоэз;

2) В-лимфоцитопоэз.

Кроме того, гемопоэз подразделяется на два периода:

1) эмбриональный;

2) постэмбриональный.

Эмбриональный период приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет процесс физиологической регенерации крови как ткани.

Эмбриональный период гемопоэза

Он осуществляется в эмбриогенезе поэтапно, сменяя разные органы кроветворения. В соответствии с этим выделяют три этапа:

1) желточный;

2) гепатотимусолиенальный;

3) медуллотимусолимфоидный.

1. Желточный этап осуществляется в мезенхиме желточного мешка начиная со 2 – 3-й недели эмбриогенеза, с 4-й – снижается и к концу 3-го месяца полностью прекращается.

Вначале в желточном мешке в результате пролиферации мезенхимальных клеток образуются так называемые кровяные островки, представляющие собой очаговые скопления отростчатых клеток.

Наиболее важными моментами желточного этапа являются:

1) образование стволовых клеток крови;

2) образование первичных кровеносных сосудов.

Несколько позже (на 3-й неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, и устанавливается желточный круг кровообращения. Из желточного мешка по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.

2. Гепатотимусолиенальный этап ) гемопоэза осуществляется вначале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение начиная с 5-й недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7 – 8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем и в постнатальном периоде до его инволюции (в 25 – 30 лет). Селезенка закладывается на 4-й неделе, с 7 – 8-й недели она заселяется стволовыми клетками, и в ней начинается универсальное кроветворение, т. е. и миело– и лимфопоэз. Особенно активно кроветворение протекает в селезенке с 5-го по 7-й месяцы, а затем миелоидное кроветворение постепенно угнетается, и к концу эмбриогенеза (у человека) оно полностью прекращается.

3. Медуллотимусолимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т. е. является универсальным кроветворным органом. В это же время в тимусе, селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение.

В результате последовательной смены органов кроветворения и совершенствования процесса кроветворения формируется кровь как ткань, которая у новорожденных имеет существенные отличия от крови взрослых людей.

Постэмбриональный период кроветворения

Осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфоузлах, миндалинах, лимфоидных фолликулах).

Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.

В схеме кроветворения представлены два ряда кроветворения:

1) миелоидное;

2) лимфоидное.

Каждый вид кроветворения подразделяется на разновидности (или ряды) кроветворения.

Миелопоэз:

1) эритроцитопоэз (или эритроцитарный ряд);

2) гранулоцитопоэз (или грануляцитарный ряд);

3) моноцитопоэз (или моноцитарный ряд);

4) тромбоцитопоэз (или тромбоцитарный ряд).

Лимфопоэз:

1) Т-лимфоцитопоэз (или Т-лимфоцитарный ряд;

2) В-лимфоцитопоэз;

3) плазмоцитопоэз.

В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.

Всего в схеме кроветворения различают шесть классов клеток.

I класс – стволовые клетки . По морфологии клетки этого класса соответствуют малому лимфоциту. Эти клетки являются полипотентными, т. е. способны дифференцироваться в любой форменный элемент крови. Направление дифференцировки зависит от содержания форменных элементов в крови, а также от влияния микроокружения стволовых клеток – индуктивных влияний стромальных клеток костного мозга или другого кроветворного органа. Поддержание популяции стволовых клеток осуществляется следующим образом. После митоза стволовой клетки образуются две: одна вступает на путь дифференцировки до форменного элемента крови, а другая принимает морфологию лимфоцита малого размера, остается в костном мозге, является стволовой. Деление стволовых клеток происходит очень редко, их интерфаза составляет 1 – 2 года, при этом 80% стволовых клеток находятся в состоянии покоя и только 20% – в митозе и последующей дифференцировке. Стволовые клетки также получили название колинеобразующие единицы, так как каждая стволовая клетка дает группу (или клон) клеток.

II класс – полустволовые клетки . Эти клетки являются ограниченно полипотентными. Выделяют две группы клеток – предшественницы миелопоэза и лимфопоэза. По морфологии похожи на малый лимфоцит. Каждая из этих клеток дает клон миелоидного или лимфоидного ряда. Деление происходит раз в 3 – 4 недели. Поддержание популяции осуществляется аналогично полипотентным клеткам: одна клетка после митоза вступает в дальнейшую дифференцировку, а вторая остается полустволовой.

III класс – унипотентные клетки . Данный класс клеток является поэтинчувствительными – предшественниками своего ряда кроветворения. По морфологии они также соответствуют малому лимфоциту и способны к дифференцировке только в один форменный элемент крови. Частота деления данных клеток зависит от содержания в крови поэтина – биологически активного вещества, специфического для каждого ряда кроветворения, – эритропоэтина, тромбоцитопоэтина. После митоза клеток данного класса одна клетка вступает в дальнейшую дифференцировку до форменного элемента, а вторая поддерживает популяцию клеток.

Клетки первых трех классов объединяются в класс морфологически не идентифицируемых клеток, так как все они по морфологии напоминают малый лимфоцит, однако способности их к развитию различны.

IV класс – бластные клетки . Клетки этого класса отличаются по морфологии от всех остальных. Они крупные, имеют крупное рыхлое ядро (эухроматин) с 2 – 4 ядрышками, цитоплазма базофильна за счет большого количества свободных рибосом. Эти клетки часто делятся, и все дочерние вступают в дальнейшую дифференцировку. Бласты различных рядов кроветворения можно идентифицировать по цитохимическим свойствам.

V класс – созревающие клетки . Этот класс характерен для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток от одной (пролимфоцит, промоноцит) до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферический кровоток, например ретикулоциты или палочкоядерные лейкоциты.

VI класс – зрелые форменные элементы . К этому классы относятся эритроциты, тромбоциты и сегментоядерные гранулоциты. Моноциты не являются окончательно дифференцированными клетками. Они затем покидают кровеносное русло и дифференцируются в конечный класс – макрофаги. Лимфоциты дифференцируются в конечный класс при встрече с антигенами, при этом они превращаются в бласты и снова делятся.

Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образует дифферон (или гистогенетический ряд). Например, эритроцитарный дифферон составляют:

1) стволовая клетка (I класс);

2) полустволовая клетка – предшественница миелопоэза (II класс);

3) унипотентная эритропоэтинчувствительная клетка (III класс);

4) эритробласт (IV класс);

5) созревающая клетка – пронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит (V класс);

6) эритроцит (VI класс).

В процессе созревания эритроцитов в V классе происходят синтез и накопление гемоглобина, редукция органелл и клеточного ядра. В норме пополнение эритроцитов осуществляется за счет деления и дифференцировки созревающих клеток – пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения получил название гомопластического. При выраженной кровопотере пополнение эритроцитов осуществляется не только усилением созревающих клеток, но и клеток IV, III, II и даже I класса – происходит гетеропластический тип кроветворения.

Из книги Мужчина и женщина: искусство любви автора Диля Еникеева

«Скользкая» тема – Доченька, я хотела бы поговорить с тобой о сексе… – Хорошо, мама. Что ты хочешь узнать? Анекдот Если у вас сын (или дочь) подросткового возраста, а раньше вы с ним (или с ней) никогда не говорили на темы половых отношений, то придется это сделать хотя бы

Из книги Древние тантрические техники йоги и крийи. Вводный курс автора Сатьянанда Сарасвати

Тема 3 Пранаяма Обычное определение пранаямы – управление дыханием. Хотя с точки зрения используемых техник такая интерпретация может показаться правильной, она не передает полного значения пранаямы. Если помнить то, что мы уже говорили о пране и о биоплазменном теле,

Из книги Древние тантрические техники йоги и крийи. Продвинутый курс автора Сатьянанда Сарасвати

Тема 1 Вегетарианство Вегетарианство вызывает множество споров. Многие люди думают о том, чтобы стать вегетарианцами, но обычно сталкиваются с противоречивыми точками зрения, впадающими в ту или в другую крайность Как правило, этот вопрос обсуждается догматически,

Из книги Древние тантрические техники йоги и крийи. Мастер-курс автора Сатьянанда Сарасвати

Тема 2 Медитация и ум Любое определение ума неизбежно оказывается очень ограниченным и произвольным. Например, современная психология ориентировочно подразделяет ум на три части: сознательную, подсознательную и бессознательную. Их очень легко посчитать фиксированными

Из книги Заболевания крови автора М. В. Дроздова

Тема 6 Тантра Это обсуждение не носит практического характера. Мы приводим его для того, чтобы дать вам общие основы и введение в тантру. Многие из идей поначалу могут показаться странными, однако чем больше погружаешься в тантру, тем лучше понимаешь ее величественность.

Из книги Око настоящего возрождения автора Петр Левин

Тема 2 Амароли В этой теме мы собираемся описать различные аспекты амароли, или уринотерапии. Многие люди действительно использовали мочу как средство лечения некоторых болезней. Мы читали о почти чудесных исцелениях хронических заболеваний, которые приписывались

Из книги Самые популярные лекарственные средства автора Михаил Борисович Ингерлейб

Тема 5 Шивалингам В качестве объекта сосредоточения можно использовать шивалингам. Его можно сделать фокусом осознания, чтобы он увлекал вас в более глубокие сферы вашего существа. Он может служить проводником более высокому опыту.В Индии шивалингам является широко

Из книги автора

Тема 1 Мозг В этом уроке мы знакомим вас с сиршасаной – позой стойки на голове(1). Эта асана оказывает глубокое и благотворное влияние на все тело; однако наиболее ярко выражено её воздействие на мозг. Данная тема призвана облегчить вам понимание того, каким образом

Из книги автора

Тема 1 Здоровье Самая основная и важная вещь в жизни – это крепкое здоровье. Не имея безупречного здоровья, невозможно стремиться к чему бы то ни было. Болезнь притупляет и ум, и тело. Уменьшаются проницательность, энтузиазм, решительность и т.п. Только заболевая, человек

Из книги автора

Тема 5 Бинду Аджна – самая тонкая из чакр. После аджны идет еще более тонкий центр – бинду. Это не чакра. Чакры связаны с психической структурой человека; с другой стороны, бинду – это тонкий центр, из которого возникает сама человеческая структура. Поэтому бинду является

Из книги автора

Тема 1 Сахасрара Рисунок сахасрары, который мы приводим, – это попытка выразить невыразимое. Это шунья – пустота; или, возможно, следует говорить о шуньи-шуньи - «беспустотной пустоте» – пустоте полноты. Это Брахман. Это всё и ничто. Все, что мы можем сказать об этом,

Из книги автора

Тема 4 Чанкраманам Чанкраманам – это простая техника, которая очень полезна для тех, кто занимается интенсивной и продолжительной практикой крийя-йоги. Это метод расслабления тела при сохранении точечного сосредоточения ума. Если в ходе своей практики вы чувствуете

Из книги автора

Тема 1 Сатсанг Сатсанг составляет суть йогической и духовной жизни. Слово cam означает «истина», а санг означает «связь», «соединение». Поэтому сатсанг означает «единение с истиной», «встреча с истиной» или «единение с теми, кто следует пути истины». В высочайшем смысле,

Из книги автора

Глава 1. Кроветворение Кроветворение – сложный процесс, включающий в себя много стадий клеточных дифференцировок, итогом которых является выход в кровеносное русло таких форменных элементов, как лейкоциты, эритроциты и тромбоциты. Основная функция эритроцитов

Из книги автора

ТЕМА 1: Предисловие Повернуть время вспять Долгие годы я не решался предать широкой огласке то знание, обладателем которого мне пришлось стать при весьма необычных обстоятельствах. Не видя себя в роли учителя, гуру или проповедника, я строго следовал правилу не

Кроветворение (синоним гемопоэз) - это процесс образования, развития и созревания форменных элементов крови: эритроцитов (эритропоэз), лейкоцитов (лейкопоэз), (тромбопоэз). У кроветворение начинается в желточном мешке; со 2-го месяца эту функцию берет на себя , а с 4-го месяца возникает костномозговое кроветворение, которое к моменту рождения полностью вытесняет печеночное. Как в печени, так и в костном мозге происходит образование эритроцитов, гранулоцитов и тромбоцитов. Лимфоциты появляются лишь на 4-м месяце, когда образуются лимфатические узлы; начинает их продуцировать только после рождения. Красные кровяные клетки первых 3 месяцев - мегалобласты (крупные ядерные клетки, превращающиеся при созревании в крупные - мегалоциты) постепенно сменяются нормобластами, дающими начало нормальным эритроцитам. Во внеутробной жизни мегалобластический (эмбриональный) тип кроветворения возникает при пернициозной анемии и сходных с ней заболеваниях. К моменту рождения плода устанавливается окончательный характер кроветворения. У ребенка оно в принципе не отличается от кроветворения взрослого. До 4-летнего возраста лимфопоэз более активен, чем гранулопоэз, затем наступает обычное для взрослых их соотношение.

Родоначальником всех кровяных элементов является первичная кровяная - гемоцитобласт (см. цветную таблицу). Из него в костном мозге развиваются проэритробласты, дающие начало образованию эритроцитов, миелобласты, из которых образуются все гранулоциты (нейтрофилы, эозинофилы, базофилы), монобласты - родоначальники моноцитов и мегакариобласты, являющиеся источником образования тромбоцитов. В лимфоидных органах гемоцитобласт превращается в лимфобласт - родоначальник лимфоцитов. Имеется также другая теория, которая предполагает существование так называемые стволовой клетки, функционирующей как родоначальная клетка кроветворения. Это понятие функциональное. Стволовой клеткой может быть элемент, потентный к кроветворению: ретикулярная, лимфоидно-ретикулярная клетка, лимфоцит; гемоцитобласт же рассматривается как одна из фаз клеточного развития от стволовой до зрелой клетки крови. Из клеток ретикулярной костного мозга образуются плазмоциты - клетки, наряду с лимфоцитами вырабатывающие и играющие важную роль в защите организма от инфекций. Созревание клеток происходит на месте кроветворения, в норме в периферическую кровь поступают только зрелые клетки. Клеточный состав крови и представляет собой систему, находящуюся в здоровом организме в динамическом равновесии: происходящее непрерывно разрушение форменных элементов уравновешивается соответствующим кроветворением. Такое равновесие поддерживается комплексом регуляторных механизмов. На кроветворение влияют центральная и , ряд гормонов, витаминов и специальных факторов кроветворения (см. Касла факторы, Цианокобаламин). При патологических состояниях одни факторы (кровопотеря, гемолиз, недостаток кислорода в крови, некоторых микробов) стимулируют кроветворение, другие (недостаток железа, факторов Касла, гиперспленизм, лучевые поражения, токсины ряда вирусов) тормозят его.

Схема развития кровяных клеток во внеутробной жизни

самостоятельной работы студентов по теме:

КРОВЕТВОРЕНИЕ, ИЛИ ГЕМОПОЭЗ.

I . Учебная программа по теме.

Гемоцитопоэз и иммуноцитопоэз. Развитие крови как ткани (эмбриональный гемопоэз). Постэмбриональный гемопозз и иммунопоэз - физиологическая регенерация крови. Унитарная теория кроветворения. Классы гемопоэтических элементов. Стволовые и полустволовые клетки, их свойства и роль. Понятие о колониеобразующих единицах (КОЕ) клеток крови. Бластные, дифференцирующиеся и зрелые клетки. Характеристика миелоидной и лимфоидной тканей и роль микроокружения для развития гемопоэтических клеток. Регуляция гемопоэза и иммунопоэза.

II . Учебно-методическая литература.

1. Арцішэўскі А.А. Гісталогія з асновамі цыталогіі і эмбрыялогіі. – Мн.: Тэхналогія, 2000. – С. 67-73.

2. Быков В.Л. Цитология и общая гистология. – СПб.: Сотис, 1999. – С. 218-282.

3. Гистология / Под ред. Ю.И. Афанасьева, Н.А. Юриной. – М.: Медицина, 1999. – С. 180-198.

4. Гистология в вопросах и ответах / Под ред. Б.А. Слуки. – Мозырь: Белый ветер, 2000. – С. 70-74.

5. Гистология / Под ред. Э.Г. Улумбекова, Ю.А. Челышева. – М.: ГЭОТАР, 2001. – С. 116-126.

6. Кузнецов С.Л., Мушкамбаров Н.Н. Гистология, цитология и эмбриология: Учебник для мед. вузов. – М.: ООО “Медицинское информационное агентство”, 2005. – С. 309-324.

7. Кузнецов С.Л., Мушкамбаров Н.Н, Горячкина В.Л. Атлас по гистологии, цитологии и эмбриологии. – М.: Медицина, 2006. – С. 128-148.

8. Руководство по гистологии. – СПб.: СпецЛит, 2001. – Т. 1. – С. 220-248.

III . Краткий конспект.

Гемопоэз – это процесс образования форменных элемен­тов крови. Различают эмбриональный и постэм­бриональный гемопоэз. Под эмбриональным гемопоэзом понимают процесс образования крови как ткани, под по­стэмбриональным – процесс физиологической и репаратив­ной регенерации крови.

Эмбриональный гемопоэз происходит с 3-й недели раз­вития зародыша в мезенхиме желточного мешка (мезобластический этап), с 5-й не­дели – в печени (печеночный этап), с 8-й недели – в тимусе, с 4-5-го месяца – в селезенке и красном костном мозге (медуллярный этап).

1. Мезобластический этап. В стенке желточного мешка скопления мезенхимных клеток образуют кровяные островки. Периферические клетки островков соединяются между собой и дифференцируются в эндотелий будущих сосудов. Центральные клетки островков округляются и вступают в эритропоэз. Процесс образования эритроцитов происходит внутри сосуда и называется интраваскулярным. Поскольку образующиеся в результате эритроциты по размеру больше обычных эритроцитов, часто содержат ядра, его еще именуют мегалобластическим. Осуществляется он по схеме: первичные стволовые клетки → мегалобласты → мегалоциты (первичные эритроциты). Позже мегалобластический тип кроветворения в желточном мешке становится нормобластическим, т. е. приводит к образованию обычных эритроцитов. Одновременно вне сосудов – экстраваскулярно из бластов начинают образовываться первичные лейкоциты – гранулоциты.

2. Печеночный этап. Кроветворение в печени происходит только экстраваскулярно, по ходу кровеносных капилляров, врастающих внутрь печеночных долек вместе с мезенхимой. Причем образуются все форменные элементы крови, т. е. у эмбриона печень является универсальным кроветворным органом. Процесс кроветворения повторяет обычную схему и заканчивается образованием клеток нормальных размеров.

3. Медуллярный этап. Выселяющиеся из печени стволовые клетки оседают в закладках тимуса, лимфоузлов, селезенки и красного костного мозга. Кроветворение во всех этих органах происходит также экстраваскулярно. В тимусе стволовые клетки дифференцируются в Т-лимфоциты, завершая свое антигеннезависимое созревание. В лимфоузлах и селезенке вначале образуются все виды форменных элементов крови (в лимфоузлах до 15-й недели развития, в селезенке – до рождения). Затем преобладает лимфоцитопоэз – антигензависимое созревание В- и Т-лимфоцитов. Красный костный мозг тоже в начале образует все клетки крови, но потом его начинают покидать предшественники Т-лимфоцитов. У взрослого человека в костном мозге формируются все виды клеток крови, кроме Т-лимфоцитов. На протяжении всего последующего онтогенеза здесь сохраняются стволовые клетки.

Постэмбриональный гемопоэз осуществляется только в миелоидной ткани красного костного мозга – миелопоэз и лимфоидной тканилимфопоэз .

Согласно унитарной теории процесс кроветворения начинается со стволовой кроветворной клетки. Миелопоэз включает: образование эритроцитов, моноцитов, тромбоцитов, базофильных, оксифильных и нейтрофильных гранулоцитов крови. Лимфопоэз – образование Т- и В-лимфоцитов.

По общепринятой схеме гемопоэза различают шесть классов дифференцировки. К первому классу относят стволовую кроветворную клетку (ССК) ; ко второму – полустволовую клетку (ПСК) ; к третьему – унипотентные клетки (УПК) ; к четвертому – бласты ; к пятому – созревающие или дифференцирующиеся клетки ; к шестому – зрелые клетки крови . Клетки I-III классов похожи на малые лимфоциты, друг от друга морфологически не отличимые, а определятся по поверхностным антигенам, так как на данных стадиях гемопоэза дифференцировка идет лишь на уровне генома. СКК делятся относительно редко. Благодаря тому, что при делении не менее 50% дочерних клеток полностью идентичны материнским СКК, способны к самоподдержанию популяции. Полипотентны, т. е. могут давать начало всем форменным элементам крови. ПСК – являются частично детерминированными, т. е. способность у них к дифференцировке сужается. Также ограничивается и способность к самоподдержанию. Именно эти клетки приобретают чувствительность к регуляторам гемопоэза, которые определяют направление дифференцировки из олигопотентных ПСК в унипотентные - УПК . Эритропоэтин стимулирует образование КоЕ-ГнЭ колониеобразующих единиц нейтрофильных гранулоцитов и эритоцитов, лейкопоэтин – образование КоЕ-ГМ (колониеобразующих единиц нейтрофилов, базофилов, эозинофилов и моноцитов), тромбопоэтин – КоЕ-МГЦЭ (колониеобразующих единиц тромбоцитов). УПК – каждая из них дает развитие только одному типу клеток крови. Бласты – молодые клетки, в отличие от первых трех классов имеют большие размеры, большое светлое ядро и светлую цитоплазму. Созревающие клетки – многочисленные дифференцирующиеся клетки, последовательно переходящие друг в друга, морфологически хорошо различимые. Зрелые клетки – дифференцированные форменные элементы крови. Дифференцировка клеток пятого класса в процессе миелопоэза выражается появлением ряда морфологических особенностей и для конкретных видов клеток состоит в следующем.

При эритропоэзе в связи с необходимостью синтеза гемоглобина увеличивается количество РНК и рибосом, поэтому цитоплазма бластов приобретает резко базофильную окраску и клетки называются – базофильные эритробласты . Они способны к делению. В дальнейшем количество синтезируемого гемоглобина в цитоплазме увеличивается и наряду с базофильными, она приобретает оксифильные свойства. Клетки по прежнему способны к делению и получили название полихроматофильные эритробласты . По мере дальнейшей дифференцировки количество рибосом еще больше снижается, цитоплазма накапливает гемоглобин и в оксифильных эритробластах окрашивается только оксифильно. Эти клетки уже не делятся. Уменьшаются их размеры, ядро сначала уменьшается, уплотняется, а затем выталкивается из клетки. Оксифильные эритробласты превращаются в ретикулоциты – клетки шестого класса (зрелые клетки). Они не имеют ядра, но часть цитоплазмы занята рудиментами органелл (эндоплазматической сети, митохондрий), поэтому содержит меньше гемоглобина. Способны выходить из костного мозга в кровь и составляют 2-8% от общего количества эритроцитов. Освобождаясь от всех органелл, ретикулоциты превращаются в эритроциты.

При гранулоцитопоэзе первые клетки пятого класса – промиелоциты уже приобретают в цитоплазме азурофильную зернистость, которая образована первичными (неспецифическими гранулами). Хотя развитие клеток идет по трем направлениям (оксифильные, нейтрофильные, базофильные), специфических гранул еще нет, поэтому они не отличаются друг от друга. Промиелоциты имеют большие округлые ядра и способны к делениям. На стадии миелоцитов в цитоплазме кроме первичных, появляются вторичные, специфические гранулы для каждого из трех типов клеток – нейтрофильные, эозинофильные и базофильные . Ядра по-прежнему округлые, клетки способны к делению. На последующих стадиях развития форма ядра меняется: у метамиелоцитов – на бобовидную (в крови они называются юные гранулоциты), у палочкоядерных гранулоцитов – на изогнутую палочку и у сегментоядерных гранулоцитов (зрелых клеток) ядро превращается в несколько сегментов, разделенных перетяжками. В связи с изменением структуры и формы ядра все эти клетки теряют способность к делениям. Размеры зрелых клеток уменьшаются.

При моноцитопоэзе в классе дифференцирующихся клеток (пятом) различают только промоноциты – крупные клетки с круглым, большим ядром. Цитоплазма лишена гранул. Затем они превращаются в зрелые клетки. В зрелом моноците ядро обычно бобовидной формы, а в цитоплазме появляется азурофильная зернистость.

При тромбоцитозе особенности дифференцировки связаны с необходимостью накопления в бластах массы цитоплазмы, т. к. в дальнейшем тромбоциты образуются путем ее отщепления. Появившиеся мегакариобласты при дальнейшем развитии теряют способность к митозу и делятся путем эндомитоза. В результате образуются два вида клеток пятого класса - промегакариоциты и мегакариоциты. Они обладают большим объемом цитоплазмы и ядра. Причем ядра имеют полиплоидный набор хромосом и глубокие впячивания. В цитоплазме накапливаются азурофильные гранулы. На стадиях образования тромбоцитов (шестой класс) в цитоплазме мегакариоцита появляется демаркационная мембранная система, разделяющая ее на фрагменты. Наружные фрагменты цитоплазмы проникают в щели капилляров красного костного мозга и отделяются, образуя тромбоциты.

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

7.4.1. Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга: 1) мезобластический, когда начинается развитие клеток крови во внезаро-дышевых органах - мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед развития зародыша человека) и появляется первая генерация стволовых клеток крови; 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед); 3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или

кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофиль-ной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис. 7.14). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эри-тробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегало-цитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоци-ты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (см. рис. 7.14, а). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т. е. интраваску-лярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - ней-трофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед эмбрионального развития, а с 5-й нед она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируют-

Рис. 7.14. Эмбриональный гемопоэз (по А. А. Максимову):

а - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; б - поперечный срез кровяного островка зародыша кролика 8,5 сут: 1 - полость сосуда; 2 - эндотелий; 3 - интра-васкулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; в - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - поли-хроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нор-мобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; г - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

ся гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес внутриутробного развития, и на 7-8-й нед ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тиму-

са. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоци-тов в селезенке достигает максимума на 5-м мес внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегака-риоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лим-фобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (см. рис. 7.14, г). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

7.4.2. Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей (см. главу 14). Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоид-

ной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в. А. А. Максимов, который считал, что по своему строению они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода коло-ниеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их диф-ференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мега-кариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис. 7.15). Из мультипотентных клеток дифференцируются олигопотент-ные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегака-риоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмента: I - стволовые клетки крови (плюрипотентные, полипо-

Рис. 7.15. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной).

Стадии дифференцировки крови: I-IV - морфологически неидентифицируе-мые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил;

БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально

тентные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритро-бластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лим-фобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественника образуется конкретный вид клеток. Клетки каждого вида при созревании проходят ряд стадий и в совокупности образуют компартмент созревающих клеток (V). Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать (рис. 7.15).

Эритроцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфо-идному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов (аналог КОЕ-С in vitro). Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эри-троидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица (burst - взрыв) по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотент-ных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эри-троцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Таким образом, БОЕ-Э содержат клетки-предшественники эритроцитов, которые способны генерировать тысячи эритроидных прекурсоров

Рис. 7.16. Последовательные стадии дифференцировки проэритробласта в эритроцит: А - проэритробласт; Б - базофильный эритробласт; В - полихроматофильный эритробласт; Г - ацидофильный эритробласт (нормобласт); Д - выталкивание ядра из ацидофильного эритробласта; Е - ретикулоцит; Ж - пикнотичное ядро; З - эритроцит. 1 - ядро; 2 - рибосомы и полирибосомы; 3 - митохондрии; 4 - гранулы гемоглобина

(предшественников). Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компарт-мента мультипотентных кроветворных клеток. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофиль-ные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазо-фильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробла-сты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритро-

бласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифи-лию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофи-лии, и преобладанием НЬ, что в целом дает многоцветную (полихромную) окраску (поэтому эта клетка получила название «полихроматофильный эритроцит»). При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Таким образом, в процессе эритропоэза происходят уменьшение размера клетки в 2 раза (см. рис. 7.16); уменьшение размера и уплотнение ядра и его выход из клетки; уменьшение содержания РНК, накопление НЬ, сопровождаемые изменением окраски цитоплазмы - от базофильной до полихро-матофильной и ацидофильной; потеря способности к делению клетки. Из одной СКК в течение 7-10 сут в результате 12 делений образуется около 2000 зрелых эритроцитов.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эри-тробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э. Образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами (сиалоадгезинами и др.) (рис. 7.17, 7.18).

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения полихроматофильных эритробластов (гомопластический гемопоэз). Однако, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток (гетеропластический эритропоэз).

В норме из костного мозга в кровь поступают только эритроциты и рети-кулоциты.

Гранулоцитопоэз

Источниками гранулоцитопоэза являются также СКК и мультипотент-ные КОЕ-ГЭММ (см. рис. 7.15). В результате дивергентной дифференци-ровки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) → миелобласт → промиелоцит → миелоцит →

Рис. 7.17. Динамика развития эритробластического островка (по М. Бесси и соавт., с изменениями):

а - схема: 1 - цитоплазма макрофага; 2 - отростки макрофага; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - ацидофильный эритро-бласт; 6 - ретикулоцит; б - срез эритроидного островка: 1 - макрофаг; 2 - эритроциты; 3 - митотически делящийся эритробласт. Электронная микрофотография по Ю. М. Захарову. Увеличение 8000

Рис. 7.18. Развитие эритроцитов в печени плода человека:

а, б - 15-недельный плод (увеличение 6000); в - 20-недельный плод (увеличение 15 000). 1 - эксцентрично расположенное ядро эритробласта; 2 - обособление пикнотического ядра ацидофильного эритробласта; 3 - отделение пикнотического ядра с узким ободком цитоплазмы от ацидофильного эритробласта; 4 - ретикулоцит с единичными органеллами (указано стрелками). Электронная микрофотография (по Замбони)

Рис. 7.19. Дифференцировка нейтрофильного гранулоцита в костном мозге (по Д. Байнтону, М. Фарквару, Дж. Элиоту, с изменениями):

А - миелобласт; Б - промиелоцит; В - миелоцит; Г - метамиелоцит; Д - палоч-коядерный нейтрофильный гранулоцит (нейтрофил); Е - сегментоядерный нейтрофильный гранулоцит. 1 - ядро; 2 - первичные (азурофильные) гранулы; 3 - комплекс Гольджи; 4 - вторичные - специфические гранулы

метамиелоцит → палочкоядерный гранулоцит → сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость (рис. 7.19).

Миелобласты (myeloblastus), дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам (promyelocytus) (см. рис. 7.15). Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азуро-фильные) гранулы, которые характеризуются высокой активностью мие-лопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты (myelocytus neutrophilicus) имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты (metamyelocytus) (см. рис. 7.19). В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядер-ным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные (ацидофильные) миелоциты (см. рис. 7.15) представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоци-тов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными мета-миелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозино-фильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты (см. рис. 7.15) встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют мета-хромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

У взрослого организма потребность в лейкоцитах обеспечивается за счет размножения миелоцитов. При кровопотерях, например, миелоциты начинают развиваться из миелобластов, а последние из унипотентных и поли-потентных СКК.

Мегакариоцитопоэз. Тромбоцитопоэз

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК → КОЕ-ГЭММ → КОЕ-МГЦ → мегакариобласт → промегакариоцит → мегакариоцит → тромбоциты (кровяные пластинки). Весь период образования пластинок составляет около 10 сут (см. рис. 7.15).

Мегакариобласт (megacaryoblastus) - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит (promegacaryocytus) - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные (4 n, 8 n), несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндоми-тозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит (megacaryocytus) - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм (иногда даже до 100 мкм). Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. Прозрачная зона эктоплазмы также заполняется гранулами и вместе с плазмолеммой формирует псевдоподии в виде тонких отростков, направленных к стенкам сосудов. В цитоплазме мегакариоцита наблюдается скопление линейно расположенных пузырьков, которые разделяют зоны цитоплазмы с гранулами. Из пузырьков формируются демаркационные мембраны, разделяющие цитоплазму мегакариоцита на участки диаметром 1-3 мкм, содержащие по 1-3 гранулы (будущие кровяные пластинки). В цитоплазме можно выделить три зоны - перинуклеарную, промежуточную и наружную. В наружной зоне цитоплазмы наиболее активно идут процессы демаркации, формирования протромбоцитарных псевдоподий, проникающих через стенку синусов в их просвет, где и происходит отделение кровяных пластинок (рис. 7.20). После отделения пластинок остается клетка, содержащая дольчатое ядро, окруженное узким ободком цитоплазмы, - резидуальный мегакариоцит, который затем подвергается разрушению. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приво-

Рис. 7.20. Ультрамикроскопическое строение мегакариоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - гранулярная эндоплазматическая сеть; 3 - гранулы; 4 - комплекс Гольджи; 5 - митохондрии; 6 - гладкая эндоплазматическая сеть; 7 - альфа-гранулы; - лизосомы; 8 - инвагинация плазмолеммы; 9 - демаркационные мембраны; 10 - формирующиеся кровяные пластинки

дящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

Моноцитопоэз

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентный предшественник моноцита (КОЕ-М) → монобласт (monoblastus) → промоноцит → моноцит (monocytus). Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз и иммуноцитопоэз

Лимфоцитопоэз проходит следующие стадии: СКК → КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) → унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)→ лимфобласт (lymphoblastus) пролимфоцит → лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus). Более подробно процессы образования иммунокомпетентных клеток описаны в главе 14.

Регуляция гемопоэза

Кроветворение регулируется факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития, факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток, а также витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы, интерлей-кины и ингибирующие факторы. Они являются гликопротеинами с молекулярной массой около 20 килодальтон. Гликопротеины действуют и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и развитие клеточных дифферонов. Они почти все действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Как видно из табл. 7.1, мульти-КСФ и интерлейкин-3 действуют на поли-потентную стволовую клетку и большинство КОЕ. Некоторые КСФ могут действовать на одну или более стадий гемопоэза, стимулируя деление, диф-ференцировку клеток или их функцию. Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Большая часть эритропоэтина образуется в почках (интерстициальные клетки), меньшая - в печени. Его образование регулируется содержанием в крови О2, которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода (Ро2) является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов. К факторам роста для эритроидных клеток, кроме эритропоэтина, относится фактор бурст-промоторной активности (БПА), который влияет на БОЕ-Э. БПА образуется клетками ретикулоэндотелиальной системы. В настоящее время считают, что он является интерлейкином-3.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т. е. тормозят гемопоэз. К ним относятся липопротеины, блокирующие действие КСФ (лактофер-рин, простагландины, интерферон, кейлоны). Гормоны также влияют на гемопоэз. Например, гормон роста стимулирует эритропоэз, глюкокортикоиды, напротив, подавляют развитие клеток-предшественников.

Таблица 7.1. Гемопоэтические факторы роста (стимуляторы)

1 Нейтрофилы, эозинофилы, базофилы.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемо-поэтических клеток. Витамин В12 потребляется с пищей и поступает с кровью в костный мозг, где влияет на гемопоэз. Нарушение процесса всасывания при различных заболеваниях может служить причиной дефицита витамина В12 и нарушений в гемопоэ-зе. Фолиевая кислота участвует в синтезе пуриновых и пиримидиновых оснований.

Таким образом, развитие кроветворных клеточных дифферонов протекает в неразрывной связи с микроокружением. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т. е. относятся к тканям внутренней среды. Ретикулоцитарный, адипоцитарный, тучнокле-точный и остеобластический диффероны вместе с межклеточным веществом (матриксом) формируют микроокружение для гемопоэтических диф-феронов. Гистологические элементы микроокружения и гемопоэтические клетки функционируют в неразрывной связи. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов). В миелоидной и лимфоидной тканях стромальные ретикулярные и гемопоэтические элементы образуют единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпи-телиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т- и В-зонах Т- и В-лимфоцитов и плазмоцитов.

Контрольные вопросы

1. Гемограмма, лейкоцитарная формула: определение, количественные и качественные характеристики у здорового человека.

2. Основные положения унитарной теории кроветворения А. А. Максимова. Перечислить свойства стволовой кроветворной клетки.

3. Эритропоэз, стадии, роль клеточного микроокружения в дифферен-цировке клеток эритробластического дифферона.

4. Агранулоциты: морфологические и функциональные характеристики.


Кроветворение (гемопоэз) — процесс, при котором происходит серия клеточных дифференцировок, приводящих к образованию зрелых клеток периферической крови. Кроветворение осуществляется в кроветворных органах, представляющих собой сложную систему, продуцирующую клетки крови или принимающую участие в иммунных реакциях. Будучи гистогенетически единой, кроветворная система в своем функционировании характеризуется определенной независимостью поведения отдельных ростков кроветворения.
К органам гемопоэза относят вилочковую железу, лимфатические узлы, селезенку и печень (кроветворение в этих органах происходит в основном в антенатальном периоде, а после рождения интенсивность его быстро снижается), костный мозг. Кроветворные органы имеют общие черты строения:
- их строму составляет ретикулярная ткань, паренхиму — кроветворные клетки;
-органы богаты элементами, относящимися к системе мононуклеарных фагоцитов;
- характерным является наличие капилляров синусоидного типа. В синусах между эндотелиальными клетками имеются поры, связывающие ткань кроветворных органов с кровяным руслом. Такое строение обеспечивает транспорт клеток крови, а также поступление из крови в кроветворные органы гуморальных факторов (гемопоэтинов).

Периоды кроветворения

Различают три периода кроветворения: желточный, печеночный, костномозговой.
У зародыша, по мере его развития, локализация кроветворения последовательно меняется.
I. Желточный (мезобластический, ангиобластический) период. Впервые кроветворение начинается в стенке желточного мешка. Здесь появляются скопления мезенхимных клеток - кровяные островки. Периферические клетки островков уплощаются и образуют стенку первичных сосудов. Центральные клетки кровяных островков округляются и внутри сосудов, т.е. интраваскулярно, вступают в т.н. мегалобластический эритропоэз:
Образующиеся первичные эритроциты имеют большой размер, часто содержат ядра, содержат особый вид гемоглобина - т.н. Hb эмбриона (Hb Р).
Позднее в желточном мешке начинается нормобластический эритропоэз - образование обычных эритроцитов (нормоцитов); вне сосудов (экстраваскулярно) образуются первичные лейкоциты (причём, только гранулоциты); часть стволовых клеток (1-ой генерации) выходит в кровь и переносится в зачаток печени.
II. Печёночный этап. С 6-й недели эмбрионального развития центром кроветворения становится печень. Процесс кроветворения (в т.ч. эритропоэз) происходит экстраваскулярно - вокруг капилляров, врастающих в печёночные дольки; образуются все форменные элементы крови; при этом эритроциты имеют обычный размер и содержат другой (нежели мегалоциты) вид гемоглобина - фетальный (Hb F). Наряду с клетками крови, из печени разносятся также стволовые кроветворные клетки 2-ой генерации.
III. Медуллярный этап. Названные стволовые клетки (2-й генерации) оседают в зачатках тимуса, лимфоузлов, селезёнки и красного костного мозга. Все эти органы (а не только красный костный мозг, как следует из названия этапа) включаются в кроветворение на медуллярном этапе; причём, кроветворение в них происходит экстраваскулярно, эритроциты (если они образуются в органе) содержат, в основном, HbF и в меньшей степени HbA (гемоглобин взрослых); перечисленные органы остаются органами кроветворения также после рождения. Однако, как правило, суживается спектр образуемых в них клеток.
Тимус. Вскоре красный костный мозг начинают покидать предшественники Т-лимфоцитов. Своё антигеннезависимое созревание они заканчивают в тимусе. В итоге, кроветворная роль тимуса быстро суживается до одной, но ключевой, функции - обеспечения антигеннезависимого созревания Т-лимфоцитов.
Лимфоузлы и селезёнка. Вначале в лимфоузлах и селезёнке образуются все виды форменных элементов крови. Такая способность сохраняется в лимфоузлах до 15-й недели развития, а в селезёнке - до рождения. Затем эти органы (а также лимфоидная система слизистых оболочек) тоже концентрируются лишь на одной функции (если говорить о кроветворении) - антигензависимом созревании В- и Т-лимфоцитов. А именно: здесь образуются лимфатические узелки; в последних оседают В- и Т-лимфоциты из, соответственно, красного костного мозга и тимуса; после антигенной стимуляции соответствующие клоны лимфоцитов вступают в активную пролиферацию и в дальнейшую дифференцировку.
Красный костный мозг. Вначале в красном костном мозгу тоже образуются все клетки крови, а затем, как отмечалось, его начинают покидать предшественники Т-лимфоцитов.
Таким образом, у взрослого животного красный костный мозг сохраняет способность образовывать все виды клеток крови, кроме Т-лимфоцитов, а также предшественники Т-лимфоцитов. Причём, на протяжении всего последующего онтогенеза в нём сохраняются стволовые кроветворные клетки 3-го поколения.

Органы кроветворения у взрослых

Центральные органы кроветворения: красный костный мозг и тимус.
Красный костный мозг:
Локализация - губчатое вещество плоских и губчатых костей, а также эпифизов трубчатых костей. Консистенция - полужидкая, поэтому из красного костного мозга приготовляют как срезы, так и мазки.
Функция: в красном костном мозгу, как говорилось выше, происходят все стадии созревания эритроцитов, гранулоцитов, моноцитов, тромбоцитов и В-лимфоцитов (нестимулированых). Кроме того, здесь же образуются предшественники Т-лимфоцитов, которые далее мигрируют в тимус.
Тимус (вилочковая, или зобная железа).
Локализация - за грудиной. Функция: в тимусе завершается созревание Т-лимфоцитов и происходит их пролиферация, одновременно элиминируются те Т-лимфоциты, которые настроены против собственных антигенных детерминант организма.
Периферические органы кроветворения. Периферические органы кроветворения составляют т.н. периферическую лимфоидную систему, которая включает: лимфоидную систему слизистых оболочек, многочисленные лимфатические узлы, располагающиеся по ходу лимфатических сосудов, и селезёнку.
Очень многочисленны компоненты лимфоидной системы слизистых оболочек:
- глоточное лимфоидное кольцо (или кольцо Пирогова);
- в стенке тонкой кишки - одиночные (солитарные) лимфатические фолликулы, а также их скопления (пейеровы бляшки);
- в стенке червеобразного отростка - лимфатические узелки;
- в стенке воздухоносных путей - лимфатические узелки (бронхоассоциированная лимфоидная ткань - БАЛТ).
Функция. В периферической лимфоидной ткани, как уже отмечалось, оседают В- и Т-лимфоциты из центральных органов кроветворения, образуя лимфоидные узелки. Именно здесь происходит встреча лимфоцитов (В- и Т-клеток) с антигенами - чужеродными молекулами (которые могут находиться либо в растворённом состоянии, либо на поверхности клеток). Это вызывает соответствующие иммунные реакции, которые обычно включают и интенсивную пролиферацию антигенстимулированных клеток.

Кроветворная ткань

Выделяют два типа кроветворения - миело- и лимфопоэз. Миелопоэз - образование всех форменных элементов крови, кроме лимфоцитов, т.е. эритроцитов, гранулоцитов, моноцитов и тромбоцитов. Лимфопоэз - образование лимфоцитов (Т- и В-клеток).
Отсюда выделяют два типа кроветворной ткани - миелоидная и лимфоидная ткань. Миелоидная - ткань, в которой происходит миелопоэз; представлена красным костным мозгом. В миелоидной ткани, кроме миелопоэза, совершаются и важные события лимфопоэза: созревание В-лимфоцитов и начальные стадии созревания Т-лимфоцитов. Ткань, в которой происходит дозревание и функционирование лимфоцитов, называется лимфоидной (локализация - см. выше).
И в миелоидной ткани костного мозга, и в лимфоидной ткани соответствующих органов содержатся два основных компонента. Первый - стромальный компонент. Он может быть представлен:
- ретикулярной тканью - в красном костном мозгу, лимфоузлах и селезёнке,
- рыхлой соединительной тканью - в лимфатических фолликулах слизистых оболочек,
- эпителиальной тканью - в тимусе.
Второй компонент - гемальный - гемопоэтические (кроветворные) клетки на разных стадиях созревания. Они находятся в тесной связи с элементами стромального компонента, образующими микроокружение. Кроветворные клетки и клетки стромального компонента (будучи разновидностью соединительной ткани) имеют мезенхимное происхождение. Исключение составляет тимус: здесь строма долек представлена эпителиальной тканью.

Теории кроветворения.

Унитарная теория кроветворения

Существует несколько теорий кроветворения:
- унитарная теория (А. А. Максимов, 1909 г.) - все форменные элементы крови развиваются из единого предшественника - стволовой клетки;
- дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного ростков отдельно;
- полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.
На сегодняшний день общепринятой является унитарная теория кроветворения, на основании которой разработана современная схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г., 1981 г.).

Постэмбриональный гемоцитопоэз

Постэмбриональный гемоцитопоэз - пути дифференцировки исходных стволовых клеток в различные виды форменных элементов крови. Все клетки крови происходят из единого источника - стволовых клеток крови. В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Соответственно числу разных видов форменных элементов крови, на схемах 1 и 2 показаны 6 направлений миелопоэза и 2 направления лимфопоэза.
В каждом из этих путей дифференцировки различают 6 классов клеток:
1 класс - стволовые клетки;
2 класс - полустволовые клетки;
3 класс - унипотентные клетки;
4 класс - бластные клетки;
5 класс - созревающие клетки;
6 класс - зрелые форменные элементы.

Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения

Общие свойства клеток классов I-III
1. Локализация. Данные клетки находятся, в основном, в красном костном мозгу. Но при этом способны попадать в кровь и после циркуляции вновь выселяться в кроветворные органы (репопуляция).
2. Морфология. Все клетки похожи на малые лимфоциты, т.е. друг от друга морфологически не отличаются, а отличаются только по поверхностным антигенам. Причина в том, что на данных стадиях дифференцировка идёт лишь на уровне генома.
3. Самоподдержание. Клетки классов I-III обладают способностью к самоподдержанию: при их делениях часть дочерних клеток полностью идентична материнским (т.е. пополняет пул клеток того класса, к которому принадлежали родительские клетки), и лишь другая часть подвергается дифференцировке (превращается в клетки последующих классов).
4. Образование колоний. Благодаря предыдущим свойствам (самоподдержанию и дифференцировке), способны образовывать колонии, почему для многих из них используется обозначение КоЕ (колониеобразующие единицы).
Определение способности к образованию колоний. Способность к образованию колоний определяют следующим образом. 1. Мышей-реципиентов облучают такой дозой радиации, при которой погибают все их гемопоэтические клетки. 2. В кровь вводят клетки костного мозга от необлучённых мышей-доноров. 3. Через две недели исследуют селезёнку облучённых мышей. На её поверхности видны узелки. Каждый из них - колония (клон) клеток, развившихся из одной гемопоэтической клетки класса I, II или III. Замечание: подобные колонии можно получить также в тканевой культуре.

Особенности клеток классов I, II и III
I. Класс I: стволовые клетки крови.
1. Эти клетки делятся редко; в основном же они находятся в Gо-периоде. Поэтому их доля (от общего числа гемопоэтических клеток) в кроветворных органах очень низкая (10-4 - 10-5).
2. При этом они являются полипотентными: могут давать начало всем форменным элементам крови.
3. На первом этапе их дифференцировки образуются полустволовые клетки двух видов:
- предшественники миелопоэза и предшественники лимфопоэза.
II. Класс II: полустволовые клетки. Клетки класса II имеют три принципиальные особенности:
1. Коммитированность. От предыдущих (полипотентных) клеток они отличаются тем, что являются коммитированными, или частично детерминированными: возможности дальнейших превращений для каждой из них уже ограничена.
2. Олигопотентность. От последующих же клеток они отличаются тем, что ещё сохраняют возможность дифференцироваться не по одному, а по двум или более различным направлениям.
3. Чувствительность к регуляторам. Данные клетки приобретают чувствительность к регуляторам гемопоэза, которые и определяют направление дифференцировки.
Виды полустволовых клеток. К полустволовым клеткам относятся предшественники миелопоэза и образующиеся из них клетки следующей стадии развития - КоЕ-ГнЭ, КоЕ-ГМ, КоЕ-МГЦЭ, а также предшественники лимфопоэза.
Итого - 5 видов клеток, где КоЕ - т.н. колониеобразующие клетки (единицы) (хотя способность образовывать колонии присуща всем клеткам классов I-III, в т.ч. стволовым клеткам и предшественникам миело- и лимфопоэза).
Потенции развития полустволовых КоЕ: В обозначениях полустволовых КоЕ буквы после чёрточки показывают, в какие клетки крови способны дифференцироваться данные КоЕ:
КоЕ-ГнЭ - по двум направлениям - в нейтрофильные гранулоциты (Гн) и в эритроциты (Э);
КоЕ-ГМ - по четырём направлениям - во все три вида гранулоцитов (Г) (нейтрофилы, эозинофилы, базофилы), а также в моноциты (М);
КоЕ-МГЦЭ - по двум направлениям - в мегакариоциты (МГЦ) - источники тромбоцитов - и в эритроциты (Э) (напомним: последние могут образовываться также из КоЕ-ГнЭ).
Таким образом, два вида из полустволовых КоЕ - бипотентны, а один вид - тетрапотентен.
Регуляторы миелопоэза. Превращение предшественников миелопоэза в тот или иной из трёх перечисленных видов КоЕ происходит под действием регуляторов:
- эритропоэтин (синтезируемый в почках, лёгких и печени) стимулирует образование КоЕ-ГнЭ;
- лейкопоэтин - образование КоЕ-ГМ;
- тромбопоэтин - образование КоЕ-МГЦЭ.
Размещено на сайт

III. Класс III: унипотентные клетки
В отличие от предыдущих клеток, каждая клетка этого класса может развиваться только по одному направлению. Поэтому естественно, что (по числу разных видов форменных элементов крови) имеются 8 видов унипотентных клеток - предшественники:
1) моноцитов - КоЕ-М
2) базофильных гранулоцитов - КоЕ-Б
3) эозинофильных гранулоцитов - КоЕ-Эо
4) нейтрофильных гранулоцитов - КоЕ-Гн
5) эритроцитов - КоЕ-Э
6) мегакариоцитов - КоЕ-МГЦ
7) предшественников В-лимфоцитов
8) предшественников Т-лимфоцитов.

Гомобластический и гетеробластический типы кроветворения

Преобразование стволовых клеток крови в унипотентные клетки включает следующие процессы: митотические деления; одновременно происходящее постепенное сужение потенций развития клеток.
Гомобластический тип кроветворения. В обычных условиях начальные стадии гемопоэза протекают с небольшой интенсивностью, и содержание клеток классов I-III (а также класса IV) в костном мозгу очень низко. Преобладают же (и значительно) клетки последующих стадий развития - обычно той последней стадии, на которой клетки ещё способны делиться. Такой тип кроветворения называют гомобластическим - в силу преобладания в костном мозгу клеток одной стадии.
Гетеробластический тип кроветворения. В экстремальных ситуациях (например, после острой кровопотери) дифференцировочные деления начальных клеток ряда ускоряются, а расход зрелых форм увеличивается. Это приводит к перераспределению соотношения клеточных форм в костном мозгу: доля поздних форм снижается, а доля ранних форм повышается. В таком случае говорят о гетеробластическом типе кроветворения: в заметном количестве присутствуют клетки нескольких стадий.
Принципиальной разницы между этими "типами" кроветворения нет: в обоих случаях функционирует вся "вертикаль" гемопоэза, и в обоих случаях достигается стационарное состояние (т.е. постоянство количества клеток) каждой клеточной формы.

Особенности лимфопоэза. Дифференциация клеток по антигенной
Специфичности

На ранних стадиях лимфопоэза происходит перестройка геномной области, кодирующей фрагменты иммуноглобулинов, и в результате в каждой клетке образуется лишь один полный ген иммуноглобулина.
В итоге, каждая клетка приобретает способность синтезировать и нести на поверхности иммуноглобулины (антитела) только к одному виду (из множества возможных) антигенных детерминант. В силу случайности процесса геномной перестройки, образуется большое число разных клеток, отличающихся по своей антигенной специфичности.
Образование клонов с разной антигенной специфичностью.
Последующие деления клеток приводят к образованию клонов лимфоцитов с разной антигенной специфичностью. По некоторым оценкам, число таких клонов близко к 107 . Прежде полагали, что дифференциация на клоны происходит только в эмбриональный период. По альтернативным представлениям, это совершается постоянно - в красном костном мозгу и, возможно, в тимусе (если в него попадают стволовые или полустволовые клетки).

Гемопоэтические клетки класса IV
Деления и созревание 8 видов клеток класса III приводят к образованию бластов - клеток класса IV. Здесь впервые изменяется морфология клеток (за счёт начала специфических синтезов): от клеток классов I-III (похожих на малые лимфоциты) бласты отличаются большим размером, более светлым ядром и светлой цитоплазмой, появлением в цитоплазме первых продуктов специфических синтезов.
Несмотря на последнее обстоятельство, между собой (т.е. "по горизонтали") бластные клетки морфологическически практически неразличимы. В отличие от предыдущих клеток, бласты не способны к самоподдержанию. Это означает, что при их делениях образуются только более дифференцированные клетки, а клетки, подобные родительским, не воспроизводятся.

Завершающие стадии миелопоэза

Общая характеристика:
1.Множественность промежуточных форм - класс V гемопоэтических клеток почти в каждом из 6 направлений миелопоэза представлен не одной клеточной формой, а целым рядом последовательно переходящих друг в друга клеток. Потому-то он и обозначается как класс созревающих клеток.
2. Морфология. Здесь уже имеются чёткие морфологические отличия не только "по вертикали" - между смежными клетками каждого ряда, но и "по горизонтали" - между клетками различных направлений дифференцировки.
Таким образом, каждая из многочисленных гемопоэтических клеток класса V, в принципе, может быть морфологически идентифицирована (хотя на практике для этого требуется достаточно большой опыт.)
3. Результат созревания. В конечном счёте, дифференцировка клеток V приводит к образованию дифференцированных клеток, т.е. клеток класса VI, или зрелых форменных элементов крови.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло