Узи является как метод исследования. Динамическая эхоконтрастная ангиография

Ультразвуковое исследование - это исследование органов и тканей с помощью ультразвуковых "волн". Проходя через ткани различной плотности, а точнее через границы между различными тканями, ультразвук по-разному отражается от них. Специальный принимающий датчик фиксирует эти изменения, переводя их в графическое изображение, которое может быть зафиксировано на мониторе или специальной фотобумаге.

Ультразвуковой метод прост и доступен, не имеет противопоказаний. УЗИ можно применять неоднократно в течение всего периода наблюдения за пациентом в течение нескольких месяцев или лет. Более того, исследование можно повторять несколько раз в течение одного дня, если этого требует клиническая ситуация.

Иногда исследование трудновыполнимо или малоинформативно из-за наличия у пациента послеоперационных рубцов, повязок, ожирения, выраженного метеоризма. В этих и других случаях в нашем отделе может быть выполнена компьютерная томография (КТ) или магнитно-резонансная томография (МРТ). В том числе когда патологические процессы, выявленные при УЗИ, требуют дообследования с помощью более информативных методик уточняющей диагностики.

История метода УЗИ

Ультразвук в природе открыл итальянский ученый Ладзарро Спалланцани в 1794 г. Он заметил, что если летучей мыши заткнуть уши, она теряет ориентировку. Ученый предположил, что ориентация в пространстве осуществляется посредством излучаемых и воспринимаемых невидимых лучей. В дальнейшем они получили название ультразвуковых волн.

В 1942 году немецкий врач Теодор Дуссик и его брат физик Фридрих Дуссик попытались использовать ультразвук для диагностики опухоли мозга у человека.

Первый медицинский ультразвуковой прибор был создан в 1949 г. американским ученым Дугласом Хаури.

Особо следует отметить вклад в развитие ультразвуковой диагностики Христиана Андерса Допплера, который в своем трактате "О коллометрической характеристике изучения двойных звезд и некоторых других звезд неба" предположил о существовании важного физического эффекта, когда частота принимаемых волн зависит от того, с какой скоростью движется излучающий объект относительно наблюдателя. Это стало основой допплерографии - методики изменения скорости кровотока с помощью ультразвукового исследования.

Возможности и преимущества метода УЗИ

УЗИ - широко распространенный метод диагностики. Он не подвергает пациента лучевой нагрузке и считается безвредным. Тем не менее, у ультразвукового исследования есть ряд ограничений. Метод не является стандартизованным, и качество исследования зависит от оборудования, на котором проводится исследование, и квалификации врача. Дополнительное ограничение для УЗИ - это излишний вес и/или метеоризм, что мешает проведению ультразвуковых волн.

Ультразвуковое исследование является стандартным методом диагностики, который применяется для скрининга. В таких ситуациях, когда заболевания и жалоб у пациента еще нет, для ранней доклинической диагностики следует применять именно УЗИ. При наличии уже известной патологии лучше выбрать КТ или МРТ как методы уточняющей диагностики.

Области применения ультразвука в медицине чрезвычайно широки. В диагностических целях его используют для выявления заболеваний органов брюшной полости и почек, органов малого таза, щитовидной железы, молочных желез, сердца, сосудов, в акушерской и педиатрической практике. Также УЗИ применяется как метод диагностики неотложных состояний, требующих хирургического вмешательства, таких как острый холецистит, острый панкреатит, тромбоз сосудов и др.

УЗИ является преимущественным методом диагностики при обследовании во время беременности, т.к. рентгеновские методы исследования могут нанести вред плоду.

Противопоказания к УЗИ

Противопоказаний к ультразвуковому исследованию нет. УЗИ является методом выбора для диагностики патологических состояний во время беременности. УЗИ не обладает лучевой нагрузкой, его можно повторять неограниченное количество раз.

Подготовка

Исследование органов брюшной полости проводится натощак (предыдущий прием пищи не ранее чем за 6-8 часов до исследования), утром. Из рациона на 1-2 дня следует исключить бобовые, сырые овощи, черный хлеб, молоко. При наклонности к газообразованию рекомендован прием активированного угля по 1 таблетке 3 раза в день, других энтеросорбентов, фестала. При наличии у пациента сахарного диабета допустим легкий завтрак (теплый чай, подсушенный белый хлеб).

Для выполнения трансабдоминального исследования органов малого таза (мочевого пузыря, матки или предстательной железы) требуется наполнение мочевого пузыря. Рекомендуется воздержание от мочеиспускания в течение 3-х часов до исследования или прием 300-500 мл воды за 1 час до исследования. При проведении внутриполостного исследования (через влагалище у женщин - ТВУЗИ, или через прямую кишку у мужчин - ТРУЗИ), наоборот, необходимо опорожнить мочевой пузырь.

Ультразвуковые исследования сердца, сосудов, щитовидной железы не требуют специальной подготовки.

Как проходит обследование

Врач или медсестра пригласят Вас в кабинет ультразвуковой диагностики, и предложит Вам лечь на кушетку, обнажив исследуемую часть тела. Для наилучшего проведения ультразвуковых волн врач нанесет на кожу специальный гель, который не содержит никаких лекарственных средств и является абсолютно нейтральным для организма.

Во время исследования врач будет прижимать к телу в разных положениях ультразвуковой датчик. Изображения будут отображаться на мониторе и печататься на специальную термобумагу.

При исследовании сосудов будет включена функция определения скорости кровотока с помощью режима допплеровского исследования. В этом случае исследование будет сопровождать характерный звук, отражающий движение крови по сосуду.

Ультразвуковое исследование (УЗИ, сонография) является наиболее широко используемым методом визуализации в медицинской практике, что обусловлено его значительными преимуществами: отсутствием лучевой нагрузки, неинвазивностью, мобильностью и доступностью. Метод не требует применения контрастных веществ, и его результативность не зависит от функционального состояния почек, что имеет особое значение в урологической практике.

В настоящее время в практической медицине используются ультразвуковые сканеры, работающие в режиме реального времени, с построением изображения в серой шкале. В действии приборов реализуется физический феномен эхолокации. Отраженная ультразвуковая энергия улавливается сканирующим датчиком и преобразуется в электрическую, которая опосредованно формирует визуальный образ на экране ультразвукового прибора в палитре серых оттенков как в двух-, так и в трехмерном изображении.

При прохождении ультразвуковой волны через гомогенную жидкостную среду отраженная энергия минимальна, поэтому на экране формируется изображение в черном цвете, что носит название анэхогенной структуры. В том случае, когда жидкость содержится в замкнутой полости (киста), дальняя от источника ультразвука стенка визуализируется лучше, а непосредственно за ней формируется эффект дорсального усиления, являющийся важным признаком жидкостного характера исследуемого образования. Высокая гидрофильность тканей (зоны воспалительного отека, опухолевая ткань) также приводит к формированию изображения в оттенках черного или темно-серого цвета, что связано с малой энергией отраженного ультразвука. Такая структура носит название гипоэхогенной. В отличие от жидкостных структур гипоэхогенные образования не имеют эффекта дорсального усиления. С увеличением импеданса исследуемой структуры мощность отраженной ультразвуковой волны возрастает, что сопровождается формированием на экране структуры все более светлых оттенков серого цвета, называемых гиперэхогенными. Чем более значительной эхоплотностью (импедансом) обладает исследуемый объем, тем более светлыми оттенками характеризуется сформированное на экране изображение. Наибольшая отраженная энергия формируется при взаимодействии ультразвуковой волны и структур, содержащих кальций (камень, кость) или воздух (газовые пузыри в кишечнике).

Наилучшая визуализация внутренних органов возможна при минимальном содержании газов в кишечнике, для чего УЗИ выполняют натощак или с использованием специальных методик, приводящих к уменьшению метеоризма. Локация органов малого таза трансабдоминальным доступом возможна только при тугом заполнении мочевого пузыря, который в данном случае играет роль акустического окна, проводящего ультразвуковую волну от поверхности тела пациента до исследуемого объекта.


В настоящее время в работе ультразвуковых сканеров используют датчики трех модификаций с различной формой лоцирующей поверхности: линейные, конвексные и секторные - с частотой локации от 2 до 14 МГц. Чем выше частота локации, тем большей разрешающей способностью обладает датчик и тем крупнее масштаб полученного изображения. При этом датчики с высокой разрешающей способностью пригодны для исследования поверхностно расположенных структур. В урологической практике это наружные половые органы, поскольку мощность ультразвуковой волны по мере увеличения частоты существенно падает.

Задача врача при проведении УЗИ-диагностики - получить четкое изображение объекта исследования. С этой целью используют различные сонографические доступы и специальные модифицированные датчики. Сканирование, проводимое через кожные покровы, носит название транскутанное. Транскутанное ультразвуковое сканирование органов живота, малого таза традиционно называется трансадбоминальной сонографией.

Кроме транскутанного исследования часто используются эндокорпоральные способы сканирования, при которых датчик помещается в тело человека через физиологические отверстия. Наиболее широкое применение имеют трансвагинальные и трансректальные датчики, служащие для исследования органов малого таза. При проведении трансвагинального УЗИ визуализации доступны мочевой пузырь, внутренние половые органы, средне- и нижнеампулярные отделы толстой кишки, Дугласово пространство, частично уретра и дистальные отделы мочеточников. При трансректальном УЗИ визуализируются внутренние половые органы вне зависимости от пола обследуемого пациента, мочевой пузырь, уретра на всем ее протяжении, пузырно-мочеточниковые сегменты и тазовые отделы мочеточников.

Трансуретральный доступ не получил широкого распространения ввиду значительного перечня противопоказаний.

В настоящее время все чаще используются ультразвуковые сканеры, оснащенные миниатюрными датчиками высокого разрешения и вмонтированные в проксимальный конец гибкого уретероскопа. Данный метод, носящий название эндолюминальная сонография, позволяет провести исследование всех отделов мочевыводящих путей, что привносит ценную диагностическую информацию при заболеваниях мочеточника, чашечно-лоханочной системы почки.

УЗИ сосудов различных органов возможно благодаря эффекту Доплера, который основан на регистрации мелких перемещающихся частиц. В клинической практике данный метод был использован в 1956 году Satomuru при УЗИ сердца. В настоящее время применяются несколько ультразвуковых методик для исследования сосудистой системы, в основе которых лежит использование эффекта Доплера,- цветное доплеровское картирование, энергетический доплер. Данные методики дают представление о сосудистой архитектонике обследуемого объекта. Спектральный анализ позволяет оценивать распределение сдвига доплеровских частот, определять количественные скоростные характеристики сосудистого кровотока. Сочетание серошкального ультразвукового изображения, цветного доплеровского картирования и спектрального анализа носит название триплексное сканирование.

Доплеровские методики в практической урологии применяются для решения широкого круга диагностических вопросов. Наиболее распространена методика цветного доплеровского картирования. Определение хаотичных сосудистых структур в тканевом объемном образовании почки в большинстве случаев свидетельствует о его злокачественном характере. При выявлении асимметричного увеличения кровоснабжения патологических гипоэхогенных участков в простате значительно возрастает вероятность ее злокачественного поражения.

Спектральный анализ кровотока используется в дифференциальной диагностике вазоренальной гипертензии. Изучение скоростных показателей на различных уровнях сосудов почек: от основной почечной артерии до аркуатных артерий - позволяет определить причину артериальной гипертензии. Спектральный доплеровский анализ применяется в дифференциальной диагностике эректильной дисфункции. Данная методика проводится с использованием фармакологической пробы. Методическая последовательность включает определение скоростных показателей кровотока по кавернозным артериям и тыльной вене полового члена в состоянии покоя. В дальнейшем, после интракавернозного введения препарата (папаверин, кавердэскт и др.), проводится повторное измерение пенильного кровотока с определением индексов. Сопоставление полученных результатов позволяет не только установить диагноз вазогенной эректильной дисфункции, но и дифференцировать наиболее заинтересованное сосудистое звено - артериальное, венозное. Описано также применение таблетированных препаратов, вызывающих состояние тумесценции.

В соответствии с диагностическими задачами виды УЗИ подразделяются на скрининговые, инициальные и экспертные. Скрининговые исследования, направленные на выявление доклинических стадий заболеваний, относятся к превентивной медицине и проводятся здоровым людям, составляющим группу риска по каким-либо заболеваниям. Инициальное (первичное) УЗИ проводится пациентам, обратившимся за медицинской помощью в связи с возникновением определенных жалоб. Цель его - установить причину, анатомический субстрат имеющейся клинической картины. Диагностической задачей экспертного УЗИ является не только подтверждение диагноза, но в большей степени установление степени распространенности и стадии процесса, вовлечение других органов и систем в патологический процесс.

УЗИ почек. Основным доступом при локации почек является кособоковое расположение датчика по средней подмышечной линии. Данная проекция дает изображение почки, сопоставимое с изображением при рентгенологическом исследовании. При сканировании по длинной оси органа почка имеет вид овального образования с четкими, ровными контурами (рис. 4.10).

Полипозиционное сканирование с последовательным перемещением плоскости сканирования позволяет получить информацию обо всех отделах органа, в котором дифференцируются паренхима и центрально расположенный эхокомплекс. Кортикальньгй слой имеет равномерную, несколько повышенную по сравнению с мозговым веществом эхогенность. Мозговое вещество, или пирамиды, на анатомическом препарате почки имеют вид треугольных структур, обращенных основанием к контуру почки и вершиной к полостной системе. В норме видимая при УЗИ часть пирамиды составляет около трети от толщины паренхимы.

Рис. 4.10. Сонограмма. Нормальное строение почки


Рис. 4.11. Сонограмма. Солитарная киста почки:

1 - нормальная почечная ткань; 2 – киста

Центрально расположенный эхокомлекс характеризуется значительной эхоплотностью по сравнению с другими отделами почки. В формировании изображения центрального синуса принимают участие такие анатомические структуры, как элементы полостной системы, сосудистые образования, лимфатическая дренажная система, жировая ткань. У здоровых людей в отсутствие водной нагрузки элементы полостной системы, как правило, не дифференцируются, возможна визуализация отдельных чашек до 5 мм. В условиях водной нагрузки иногда визуализируется лоханка, как правило, она имеет форму треугольника размером не более 15 мм.

Представление о состоянии сосудистой архитектоники почки дает цветное доплеровское картирование (рис. 35, см. цв. вклейку).

Характер очаговой патологии почки определяется сонографической картиной выявленных изменений - от анэхогенного образования с дорсальным усилением до гиперэхогеннего образования, дающего акустическую тень. Анэхогенное жидкостное образование в проекции почки по своему происхождению может быть кистой (рис. 4.11) или расширением чашечек и лоханки – гидронефрозом (рис. 4.12).


Рис. 4.12. Сонограмма. Гидронефроз: 1 - выраженное расширение лоханки и чашечек со сглаживанием их контуров; 2 - резкое истончение паренхимы почки


Рис. 4.13. Сонограмма. Опухоль почки: 1 - опухолевый узел; 2 - нормальная почечная ткань

Очаговое образование низкой плотности без дорсального усиления в проекции почки может свидетельствовать о локальном повышении гидрофильности ткани. Такие изменения могут быть обусловлены либо воспалительными изменениями (формирование карбункула почки), либо наличием опухолевой ткани (рис. 4.13).

Картина эхоплотного образования без дорсального усиления характерна для наличия тканевой структуры с высокой отражающей способностью, такой как жир (липома), фиброзная ткань (фиброма) или смешанная структура (ангиомиолипома). Эхоплотная структура с формированием акустической тени свидетельствует о наличии кальция в выявленном образовании. Локализация такого образования в полостной системе почки или мочевыводящих путях говорит о имеющемся камне (рис. 4.14).


Рис. 4.14. Сонограмма. Камень почки: 1 - почка; 2 - камень; 3 - акустическая

тень от камня

УЗИ мочеточника. Инспекция мочеточника проводится при продвижении датчика по месту его анатомической проекции. При трансабдоминальном доступе наилучшими для визуализации местами являются пиелоуретеральный сегмент и место пересечения мочеточника с подвздошными сосудами. В норме мочеточник, как правило, не визуализируется. Тазовый отдел его оценивается при трансректальном УЗИ, когда возможна визуализация пузырно-мочеточникового сегмента.

УЗИ мочевого пузыря возможно только при его адекватном наполнении мочой, когда складчатость слизистого слоя уменьшается. Визуализация мочевого пузыря возможна трансабдоминальным (рис. 4.15), трансректальным (рис. 4.16) и трансвагинальным доступом.

В урологической практике предпочтительной является комбинация трансабдоминального и трансректального доступов. Первый позволяет судить о состоянии мочевого пузыря в целом. Трансректальный доступ дает ценную информацию о нижних отделах мочеточников, уретре, половых органах.

При УЗИ стенка мочевого пузыря имеет трехслойное строение. Средний гипоэхогенный слой представлен срединным слоем детрузора, внутренний гиперэхогенный слой является единым изображением внутреннего слоя детрузора и уротелиальной выстилки, наружный гиперэхогенный слой - изображением наружного слоя детрузора и адвентиции.


Рис. 4.15. Трансабдоминальная сонограмма мочевого пузыря в норме


Рис. 4.16. Трансректальная сонограмма мочевого пузыря в норме

При адекватном наполнении мочевого пузыря различают его анатомические отделы - дно, верхушку и боковые стенки. Шейка мочевого пузыря имеет вид неглубокой воронки. Моча, находящаяся в мочевом пузыре, является полностью анэхогенной средой, без взвеси. Иногда можно наблюдать поступление болюса мочи из устья мочеточников, что связано с возникновением турбулентного потока (рис. 4.17).

При трансректальном сканировании лучше визуализируется нижний сегмент мочевого пузыря. Пузырно-мочеточниковый сегмент представляет собой структуру, состоящую из юкставезикального, интрамурального отделов мочеточника и зоны мочевого пузыря рядом с устьем (рис. 4.18). Устье мочеточника определятся в виде щелевидного образования, несколько возвышающегося над внутренней поверхностью мочевого пузыря. При прохождении болюса мочи устье приподнимается, открывается, и струя мочи поступает в полость мочевого пузыря. По данным трансректального УЗИ можно оценивать моторную функцию пузырно-мочеточникового сегмента. Частота сокращений мочеточника в норме составляет 4-6 в минуту. При сокращении мочеточника его стенки полностью смыкаются, при этом диаметр юкставезикального отдела не превышает 3,5 мм. Сама стенка мочеточника лоцируется в виде эхоплотной однородной структуры шириной около 1,0 мм. В момент прохождения болюса мочи мочеточник расширяется и достигает 3-4 мм.

Рис. 4.17. Трансректальная сонограмма. Выброс мочи (1) из устья мочеточника (2) в мочевой пузырь (3)


Рис. 4.18. Трансректальная сонограмма пузырно-мочеточникового сегмента в норме: 1 - мочевой пузырь; 2 - устье мочеточника; 3 - интрамуральный отдел мочеточника; 4 - юкставезикальный отдел мочеточника

УЗИ предстательной железы. Визуализация предстательной железы возможна при использовании как трансабдоминального (рис. 4.19), так и трансректального (рис. 4.20) доступа. Предстательная железа в поперечном скане представляет собой образование овальной формы, при сканировании в сагиттальном скане имеет форму треугольника с широким основанием и заостренным апикальным концом.


Рис. 4.19. Трансабдоминальная сонограмма. Предстательная железа в норме


Рис. 4.20. Трансректальная сонограмма. Предстательная железа в норме

Периферическая зона является преобладающей в объеме простаты и лоцируется в виде однородной эхоплотной ткани в заднелатеральной части простаты от основания до верхушки. Центральная и периферическая зоны обладают меньшей эхоплотностью, что позволяет дифференцировать эти отделы простаты. Переходная зона располагается кзади от уретры и охватывает простатическую часть семявыбрасывающих протоков. Суммарное изображение этих отделов простаты в норме составляет около 30 % объема железы.

Визуализация сосудистой архитектоники предстательной железы осуществляется с помощью ультразвукового доплеровского исследования (рис. 4.21).


Рис. 4.21. Сонодоплерограмма предстательной железы в норме

Асимметричное увеличение кровоснабжения гипоэхогенных участков в простате значительно повышает вероятность ее злокачественного поражения.

УЗИ семенных пузырьков и семявыносящих протоков. Семенные пузырьки и семявыносящие протоки лоцируются кзади от простаты. Семенные пузырьки в зависимости от плоскости сканирования имеют вид конусообразных или овальных образований, прилежащих непосредственно к задней поверхности простаты (рис. 4.22). В норме их размер составляет около 40 мм по длиннику и 20 мм в поперечнике. Семенные пузырьки характеризуются однородной структурой низкой плотности.

Рис. 4.22. Трансректальная сонограмма: семенные пузырьки (1) и мочевой пузырь (2) в норме

Семявыносящие протоки лоцируются в виде эхоплотных трубчатых структур диаметром 3-5 мм от места впадения в простату вверх до физиологического изгиба на уровне тела мочевого пузыря, когда проток меняет направление от внутреннего отверстия пахового канала к простате.

УЗИ мочеиспускательного канала. Мужская уретра представлена протяженной структурой от шейки мочевого пузыря в направлении верхушки и имеет неоднородную структуру низкой эхоплотности. Место впадения семявыбрасывающего протока в простатическую уретру соответствует проекции семенного бугорка. За пределами простаты уретра продолжается в направлении мочеполовой диафрагмы в виде вогнутой по большому радиусу дуги. В проксимальных отделах, в непосредственной близости от верхушки простаты, уретра имеет утолщение, соответствующее рабдосфинктеру. Ближе к мочеполовой диафрагме кзади от уретры определяются парные периуретральные (куперовы) железы, имеющие вид симметричных округлых гипоэхогенных образований диаметром до 5 мм.

УЗИ органов мошонки. При УЗИ органов мошонки используют датчики высокой разрешающей способности, от 5 до 12 мГц, что позволяет хорошо видеть мелкие структуры и образования. В норме яичко определяется в виде гиперэхогенного образования овальной формы с четкими, ровными контурами (рис. 4.23).


Рис. 4.23. Сонограмма мошонки. Яичко в норме

Структура яичка характеризуется как однородная гиперэхогенная ткань. В центральных отделах его определяется линейная структура высокой плотности, ориентированная по длиннику органа, что соответствует изображению средостения яичка. В краниальных отделах яичка хорошо визуализируется головка придатка, имеющая форму, близкую к треугольной. К каудальному отделу яичка прилежит хвост придатка, повторяющий форму яичка. Тело придатка визуализируется неотчетливо. По своей эхогенности придаток яичка близок к эхогенности самого яичка, однороден, имеет четкие контуры. Межоболочечная жидкость анэхогенная, прозрачная, в норме определяется в виде минимальной прослойки от 0,3 до 0,7 см преимущественно в проекции головки и хвоста придатка.

Малоинвазивные диагностические и оперативные вмешательства под сонографическим контролем. Внедрение ультразвуковых сканеров позволило значительно расширить арсенал малоинвазивных методов в диагностике и лечении урологических заболеваний. К ним относятся:

диагностические:

■пункционная биопсия почки, предстательной железы, органов мошонки;

■ пункционная антеградная пиелоуретерография; лечебные:

■ пункция кист почки;

■ пункционная нефростомия;

■ пункционное дренирование гнойно-воспалительных очагов в почке, забрюшинной клетчатке, предстательной железе и семенных пузырьках;

■ пункционная (троакарная) эпицистостомия.

Диагностические пункции по способу получения материала подразделяются на цитологические и гистологические.

Цитологический материал получают при проведении тонкоигольной аспирационной биопсии. Более широкое применение имеет гистологическая биопсия, при которой забираются участки (столбики) ткани органа. Таким образом взятый полноценный гистологический материал может быть использован для постановки морфологического диагноза, проведения иммуногистохимического исследования и определения чувствительности к химиопрепаратам.

Способ получения диагностического материала определяется расположением интересующего органа и возможностями ультразвукового прибора. Пункции образований почек, забрюшинных объемных образований выполняются с использованием трансабдоминальных датчиков, которые позволяют визуализировать всю зону пункционного вмешательства. Пункция может проводиться по методике «свободная рука», когда врач совмещает траекторию иглы и зоны интереса, работая пункционной иглой без фиксирующей направляющей насадки. В настоящее время преимущественно используют методику с фиксацией биопсийной иглы в специальном пункционном канале. Направляющий канал для пункционной иглы предусмотрен либо в специальной модели ультразвукового датчика, либо в специальной пункционной насадке, которая может крепиться к обычному датчику. Пункция органов и патологических образований малого таза осуществляется в настоящее время только с использованием трансректальных датчиков со специальной пункционной насадкой. Специальные функции ультразвукового прибора позволяют наилучшим образом совмещать зону интереса с траекторией пункционной иглы.

Объем пункционного материала зависит от конкретной диагностической задачи. При диагностической пункции простаты в настоящее время используют веерную технологию с забором не менее 12 трепан-биоптатов. Данная методика позволяет распределить зоны забора гистологического материала равномерно по всем отделам простаты и получить адекватный объем исследуемого материала. При необходимости объем диагностической биопсии расширяют - увеличивают число трепан-биоптатов, биопсируют близлежащие органы, в частности семенные пузырьки. При повторных биопсиях простаты число трепан-биоптатов, как правило, удваивают. Такая биопсия носит название сатурационной. При подготовке биопсии простаты осуществляют профилактику воспалительных осложнений, кровотечений, подготавливают ампулу прямой кишки. Анестезию выполняют с помощью ректальных инстиллятов, применяют проводниковую анестезию.

Лечебные пункции под сонографическим контролем используются для эвакуации содержимого из патологических полостных образований - кист, абсцессов. В зависимости от конкретной задачи в освобожденную от патологического содержимого полость вводят лекарственные препараты. При кистах почек применяют склерозанты (этиловый спирт), что приводит к уменьшению объема кистозного образования вследствие повреждения его внутренней выстилки. Использование данного метода возможно только после проведения кистографии, позволяющей убедиться в отсутствии связи кисты с чашечно-лоханочной системой почки. Применение склеротерапии не исключает рецидива заболевания. После пункции абсцесса любой локализации пункционный канал расширяют, гнойную полость опорожняют, промывают растворами антисептиков и дренируют.

Сонографический контроль при выполнении чрескожной нефростомии позволяет с максимальной точностью пунктировать чашечно-лоханочную систему почки и установить нефростомический дренаж.

Введение

Возрастающее значение визуализирующих диагностических методик в клинической практике следует объяснять сту­дентам-медикам уже на ранних этапах образования. Ши­рокое распространение и неинвазивный характер сонографии требуют уже сегодня знакомить завтрашних врачей с этой сравнительно безопасной методикой. Не секрет, что подавляющее число специалистов ультразву­ковой диагностики проходили и проходят первичную специа­лизацию на рабочем месте, т.е. за спиной врача, проводящего обычный прием больных. Если везет - удается увидеть дос­таточно широкий спектр патологии, нет — только наиболее распространенные заболевания. В результате подготовка врача, вер­нувшегося после такого обучения, страдает большими пробе­лами в специальном образовании. В практической работе пе­ред ним возникает огромное количество вопросов, которые тре­буют немедленного ответа.

В то же время следует подчеркнуть, что каждый сонографический диагноз хорош настолько, насколько хорош специ­алист по ультразвуковой диагностике. Неправильных диаг­нозов можно избежать за счет глубокого знания анатомии и ультразвуковой морфологии, неослабевающей скрупулез­ности и, когда это необходимо, сопоставления с результа­тами других визуализирующих исследований. Начальный успех («Я уже вижу все паренхиматозные органы») не дол­жен порождать самоуверенности во время обучения. Дей­ствительно глубокие знания могут быть получены только путем длительной самостоятельной работы в клинике, на­копления практического опыта, изучения анатомических особенностей нормы и патологии.

При этом, тщательно подготовленный дидактический ма­териал, отражающий многолетний клинический опыт будет, стимулировать и возмож­но даже вдохновит многих обучающихся.

Теоретические основы метода

Звук - это механическая продольная волна, в которой колебания частиц находится в той же плос­кости, что и направление распространения энер­гии. Волна переносит энергию, но не ма­терию. Верхняя граница слышимого звука - 20000 Гц. Звук с частотой, превышающей эту величину, называется ультразвуком. Частота - эго число полных колебаний (циклов) за период вре­мени в 1 секунду. Единицами измерения частоты являются герц (Гц) и мегагерц (МГц). Один герц - это одно колебание в секунду. Один мега­герц = 1000000 герц. В современных ультразвуковых при­борах для получения изображения используется ультразвук частотой от 2 МГц и выше.

Для получения ультразвука используются специ­альные преобразователи или трансдьюсеры, кото­рые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте, упражнения . Суть эф­фекта состоит в том, что если к определенным ма­териалам (пьезоэлектрикам) приложить электриче­ское напряжение, то произойдет изменение их формы. С этой целью в ультразвуковых приборах чаще всего применяются искусственные пьезоэлектрики, такие, как цирконат или титанат свинца. При отсутствии электрического тока пье­зоэлемент возвращается к исходной форме, а при изменении полярности вновь произойдет измене­ние формы, но уже в обратном направлении. Если к пьезоэлементу приложить быстропеременный ток, то элемент начнет с высокой частотой сжимать­ся и расширяться (т.е. колебаться), генерируя ульт­развуковое поле. Рабочая частота трансдьюсера (резонансная частота) определяется отношением скорости распространения ультразвука в пьезоэлементе к удвоенной толщине этого пьезоэлемента. Детектирование отраженных сигналов базируется на прямом пьезоэлектрическом эффекте. Возвращающиеся сигналы вызывают коле­бания пьезоэлемента и появление на его гранях переменного электрического тока. В этом случае пьезоэлемент функционирует как ультразвуковой датчик. Обычно в ультразвуковых приборах для из­лучения и приема ультразвука используются одни и те же элементы. Поэтому термины "преобразо­ватель", "трансдьюсер", "датчик" являются синони­мами.

В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения звука не­обходима среда - он не может распространяться в вакууме. Как и все волны, звук можно описать ря­дом параметров. Кроме частоты это, длина волны, скорость распространения в среде, период, амплиту­да и интенсивность. Частота, период, амплитуда и интенсивность определяются источником звука, скорость распространения - средой, а длина вол­ны - и источником звука, и средой.

Период - это время, необходимое для получения одного полно­го цикла колебаний. Единицами измере­ния периода являются секунда (с) и микросекунда (мкс). Одна микросекунда является одной милли­онной долей секунды. Период (мкс) = 1/частота (МГц).

Длина волны - это длина, которую занима­ет в пространстве одно колебание. Еди­ницы измерения - метр (м) и миллиметр (мм). Ско­рость распространения ультразвука - это ско­рость, с которой волна перемещается в среде. Еди­ницами скорости распространения ультразвука яв­ляются метр в секунду (м/с) и миллиметр в микро­секунду (мм/мкс). Скорость распространения ульт­развука определяется плотностью и упругостью среды. Скорость распространения ультразвука уве­личивается при увеличении упругости и уменьшении плотности среды.

Усредненная скорость распространения ультразвука в тканях тела чело­века составляет 1540 м/с - на эту скорость запро­граммировано большинство ультразвуковых диаг­ностических приборов.

Эта величина, введенная в программу компьютера, основана на допущении, что скорость рас­пространения звука в тканях постоянна. Однако звук проходит через печень со скоростью около 1570 м/с, в то время как через жировую ткань идет с меньшей скорос­тью - около 1476 м/с. Предполагаемое среднее значение скорости, которое хранится в компьютере, приводит к некоторым отклонениям, но не вызывает больших иска­жений.

Скорость распространения ультразвука (С), частота (f) и длина волны () свя­заны между собой следующим уравнением: С= f х .

Так как в нашем случае скорость считается по­стоянной (1540 м/с), то оставшиеся две перемен­ные f и связаны между собой обратно пропор­циональной зависимостью. Чем выше частота, тем меньше длина волны и тем меньше размеры объ­ектов, которые мы можем увидеть.

Для получения изображения в ультразвуковой диагностике используется не ультразвук, который излучается трансдьюсером непрерывно (посто­янной волной), а ультразвук, излучаемый в виде коротких импульсов (импульсный).

Эти колебания испускаются кристаллом (пьезоэлектрический эф­фект) как звуковая волна точно так же, как звуковые волны испускаются мембраной громкоговорителя, хотя частоты, используемые в сонографии, не слышны челове­ческим ухом.

В зависимости от цели применения, монографическая частота может быть от 2.0 до 15.0 МГц.

Для характеристики импульсного ультразвука используются дополни­тельные параметры. Частота повторения импуль­сов - это число импульсов, излучаемых в едини­цу времени (секунду). Частота повторения им­пульсов измеряется в герцах (Гц) и килогерцах (кГц).

Продолжительность импульса - это вре­менная протяженность одного импульса.

Измеряется в секундах (с) и микросекундах (мкс).

Фактор занятости - это часть времени, в которое происходит излучение (в форме импуль­сов) ультразвука.

Пространственная протяжен­ность импульса (ППИ) - это длина пространст­ва, в котором размещается один ультразвуковой импульс.

Для мягких тканей простран­ственная протяженность импульса (мм) равна произведению 1.54 (скорость распространения ультразвука в мм/мкс) и числа колебаний (циклов) в импульсе (n), отнесенному к частоте в МГц. Или, ППИ = 1,54хn/f.

Уменьшения пространственной протяженности импульса можно достичь (а это очень важно для улучшения осевой разрешающей способности) за счет уменьшения числа колеба­ний в импульсе или увеличения частоты.

Ампли­туда ультразвуковой волны - это максимальное отклонение наблюдаемой физической перемен­ной от среднего значения

Интенсив­ность ультразвука - эго отношение мощности волны к площади, по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр (Вт/кв.см).

При равной мощности излучения, чем меньше площадь пото­ка, тем выше интенсивность. Интенсивность так­же пропорциональна квадрату амплитуды. Так, если амплитуда удваивается, то интенсивность учетверяется. Интенсивность неоднородна как по площади потока, так и, в случае импульсного ульт­развука, во времени.

При прохождении через любую среду будет на­блюдаться уменьшение амплитуды и интенсивно­сти ультразвукового сигнала, которое называется затуханием. Затухание ультразвукового сигнала вы­зывается поглощением, отражением и рассеивани­ем. Единицей затухания является децибел (дБ). Ко­эффициент затухания - это ослабление ультразву­кового сигнала на единицу длины пути этого сиг­нала (дБ/см). Коэффициент затухания возрастает с увеличением частоты.

Звуковые волны от датчика, состоящего из множества кристаллов, проникают через ткани, отражаются и возвращаются как эхо к датчику. Вернувшиеся эхосигналы в обратном порядке преобразуются кристаллами в электрические импульсы и используются затем компьюте­ром для построения сонографического изображения.

Преломление - это изменение направления распространения ультразвукового луча при пересечении им грани­цы сред с различными скоростями приведения ультразвука. Синус угла преломления равен про­изведению синуса угла падения на величину, по­лученную от деления скорости распространения ультразвука во второй среде на скорость в первой. Синус угла преломления, а, следовательно, и сам угол преломления тем больше, чем больше раз­ность скоростей распространения ультразвука в двух средах. Преломление не наблюдается, если скорости распространения ультразвука в двух сре­дах равны или угол падения равен 0. Говоря об от­ражении, следует иметь в виду, что в том случае, когда длина волны много больше размеров неров­ностей отражающей поверхности, имеет место зер­кальное отражение.

Еще одним важ­ным параметром среды является акустическое со­противление.

Акустическое сопротивление - это произведение значения плотности среды и ско­рости распространения ультразвука. Сопротивле­ние (Z) = плотность () х скорость распростране­ния (С).

При прохождении ультразвука через ткани на границе сред с различным акустическим сопро­тивлением и скоростью проведения ультразву­ка возникают явления отражения, преломления, рассеивания и поглощения. В зависимости от угла говорят о перпендикулярном и наклонном (под уг­лом) падения ультразвукового луча. При наклонном паде­нии ультразвукового луча определяют угол паде­ния, угол отражения и угол преломления. Угол падения равен углу отражения. При перпенди­кулярном падении ультразвукового луча он может быть полностью отражен или частично отражен, частично проведен через границу двух сред; при этом направление ультразвука, перешедшего из одной среды в другую среду, не изменяется. Интенсивность отраженного ультразвука и ультразвука, прошедшего границу сред, зави­сит от исходной интенсивности и разности аку­стических сопротивлений сред. Отношение ин­тенсивности отраженной волны к интенсивности падающей волны называется коэффициентом от­ражения. Отношение интенсивности ультразвуко­вой волны, прошедшей через границу сред, к ин­тенсивности падающей волны называется коэффи­циентом проведения ультразвука. Таким образом, если ткани имеют различные плотности, но одина­ковое акустическое сопротивление - отражения ультразвука не будет. С другой стороны, при боль­шой разнице акустических сопротивлении интен­сивность отражения стремится к 100%. Примером этого служит страница воздух/мягкие ткани. На гра­нице этих сред происходит практически полное от­ражение ультразвука. Чтобы улучшить проведение ультразвука в ткани тела человека, используют соединительные среды (гель). Звуковые волны отражаются от границы раздела между средами с различной акустической плотностью (т.е. различным распространением звука). Отражение зву­ковых волн пропорционально разнице акустической плот­ности: умеренная разница будет отражать, и возвращать часть звукового луча к датчику, ос­тавшиеся звуковые волны будут передаваться и проникать дальше в слои тканей, лежащие глубже. Если разница в акустической плотности больше, интенсивность отраженного звука также увеличивается, а интенсивность проникающего дальше зву­ка пропорционально уменьшается. Если акустическая плот­ность существенно различается, зву­ковой луч полностью отражается, и в результате образуется тотальная акустическая тень (полное отражение). Аку­стическая тень наблюдается позади костей (ребра), камней (в почках или желчном пузыре) и газа (газ в кишечнике).

Эхосигналы не появляются, если нет различий в акустической плотности граничащих сред: гомогенные жидкости (кровь, желчь, моча и содержимое кист, а также асцитическая жидкость и плев­ральный выпот) выглядят как эхонегативные (черные) структуры, например, желчный пузырь и печеночные сосуды.

Процессор УЗ аппарата рассчитывает глубину, на которой возникло эхо, путем регистрации разницы времени между момента­ми излучения акустической волны и получения эхосигнала. Эхосигналы от тканей, лежащих рядом с датчиком, возвращаются раньше, чем от тканей, лежащих на глу­бине.

В случае если длина волны сопоставима с неровностями от­ражающей поверхности или имеется неоднород­ность самой среды, происходит рассеивание ульт­развука. При обратном рассеивании ультразвук отражается в том направлении, откуда пришел исходный луч. Интенсивность рассеянных сигналов увеличивается с увеличением неоднород­ности среды и увеличением частоты (т.е. уменьше­нием длины волны) ультразвука. Рассеивание от­носительно мало зависит от направления падающе­го луча и, следовательно, позволяет лучше визуа­лизировать отражающие поверхности, не говоря уже о паренхиме органов. Для того, чтобы отражен­ный сигнал был правильно расположен на экране, необходимо знать не только направление излучен­ного сигнала, но и расстояние до отражателя. Это расстояние равно 1/2 произведения скорость и ультразвука в среде на время между излучением и прие­мом отраженного сигнала. Произведе­ние скорости на время делится пополам, так как ультразвук проходит двойной путь (от излучателя до отражателя и назад), а нас интересует только расстояние от излучателя до отражателя.

В то же время, перед тем как вернуться к датчику, эхо может отражаться не­сколько раз назад и вперед, что занимает время движения, не соответствующее расстоянию до места его возникновения. Процессор УЗ аппарата ошибочно располагает эти реверберационные сигналы в более глубоком слое.

Применение в общемедицинской практике

Известно, что прохождение ультразвука через биологические объекты вызывает два вида эффектов: механические и тепловые. Поглощение энергии звуковой волны приводит к её затуханию, а высвободившаяся энергия трансформируется в тепловую. Причём выраженность разогрева взаимосвязана с интенсивностью УЗ - излучения. Частным случаем биологических эффектов ультразвука является кавитация. При этом в озвученной жидкости формируется множество пульсирующих пузырьков, заполненных газом, паром или их смесью.

Рис. 1. Тест-объект Американского института ультразвука в медицине

Американ­ский институт ультразвука в медицине на основании анализа результатов исследований воздействия ультразвука, на клетки растений и животных в 1993 году сделал следую­щее заявления: “Никогда не сообщалось о подтвержденных био­логических эффектах у пациентов или лиц, рабо­тающих на приборе, вызванных облучением (ульт­развуком), интенсивность которого типична для со­временных ультразвуковых диагностических уста­новок. Хотя существует возможность, что такие биологические эффекты могут быть выявлены в будущем, современные данные указывают, что польза для больного при благоразумном использо­вании диагностического ультразвука перевешива­ет потенциальный риск, если таковой вообще су­ществует"’.

Происходит постоянное совершенствование ультра­звуковых диагностических приборов и бурное развитие ультразвуковой ди­агностики,.

Представляется перспективным дальнейшее совершенствование доп­плеровских методик, особенно таких, как энерге­тический допплер, допплеровская цветовая визуа­лизация тканей.

Вариант цветового допплеровского картирования получил название "энергетического допплера" (Power Doppler). При энергетическом допплере определяется не значение допплеровско­го сдвига в отраженном сигнале, а его энергия. Та­кой подход позволяет повысить чувствительность ме­тода к низким скоростям, сделать её почти угол независимой, правда, ценой потери возможности оп­ределения абсолютного значения скорости, и направ­ления потока.

В будущем может стать весьма важным направлением ультразвуковой ди­агностики трехмерная эхография. На сегодняшний день существуют не­сколько коммерчески доступных ультразвуковых диагностических установок, позволяющих прово­дить трехмерную реконструкцию изображений, од­нако, вопрос о клиническом значении этого направле­ние остается открытым.

В конце шестидесятых годов прошлого тысячелетия были впервые применены ультразвуковые контра­сты. Для визуализации правых отделов сердца в настоящее время существует ком­мерчески доступный контраст “Эховист" (Шеринг). Препарат следующего поколения, полученный путём умень­шения размеров частиц контраста, может рецир­кулировать в кровеносной системе человека (“Левовист”, Шеринг). Этот контраст существенно улуч­шает допплеровский сигнал, как спектральный, так и цветовой, что может оказаться существенным для оценки опухолевого кровотока.

Использование ультратонких датчиков при внутриполостной эхографии открывает новые возможно­сти для исследования полых органов и структур. В то же время, широкое применение этой методики ограничивается высокой стоимо­стью специализированных датчиков, которые к тому же могут применяться для исследования ог­раниченное число раз.

Весьма перспективным направлением объективизации получаемой информации при УЗИ является компьютерная обработка изображений. В этом случае появляется возможность улучшить точность диагностики незначи­тельных структурных изменений в паренхиматоз­ных органах. Однако, полученные к настояще­му времени результаты существенного клиническо­го значения не имеют.

Основные сведения об используемом оборудовании

В качестве типичного примера сонографического оборудования рассмотрим устройство аппарата среднего класса (рис. 2).

Рис. 2. Панель управления УЗ аппарата (Toshiba)

Прежде всего, необходимо правильно ввести имя пациента (А, В), чтобы в дальнейшем правильно идентифицировать изображение. Клавиши для изменения программы обработки изображе­ния (С) или Lsugopa датчика (D) находятся в верхней поло­вине панели управления. На большинстве панелей клавиша остановки изображе­ния (FREEZE) (Е) находится в правом нижнем углу. После ее нажатия ультразвуковое изображение в реальном масшта­бе времени застывает. Мы рекомендуем всегда держать палец левой руки наготове. Это сокращает какую-либо задержку при остановке желаемого изображения с целью измерения, изу­чения или вывода на принтер. Для общего усиления получа­емых эхосигналов используется регулятор GAIN (F). Для избирательно­го управления эхосигналами на разной глубине усиление можно выборочно изменять с помощью ползунковых ре­гуляторов (G), компенсируя потери сигнала, связанные с глубиной. С помощью «колобка» (I) изображение можно смещать вверх или вниз, увеличивать или уменьшать раз­мер поля зрения, а также размещать метки или маркеры для измерения в любом месте экрана. Режим работы «ко­лобка» (измерение или ввод комментариев) устанавлива­ется соответствующими клавишами. Чтобы облегчить пос­ледующее изучение сонограммы, рекомендуется до выведения изображения на принтер (М) выбрать соответ­ствующий маркер тела (L) и с помощью «колобка» (I) от­метить позицию датчика. Остальные функции не столь важ­ны и могут быть изучены позже в процессе работы с аппаратом.

Сердцем современных сонографических комплексов являет­ся главный генератор импульсов (в современных аппаратах - мощный процессор), который управ­ляет всеми системами ультразвукового прибора. Генератор импульсов посылает электри­ческие импульсы на трансдьюсер, который генери­рует ультразвуковой импульс и направляет его в ткани, принимает отраженные сигналы, преобразо­вывая их в электрические колебания. Эти электри­ческие колебания далее направляются на радио­частотный усилитель, к которому обычно подклю­чается временно-амплитудный peгулятop усиления (ВАРУ, регулятор компенсации тканевого поглоще­ния по глубине) Ввиду того, что затухание ультразвукового сигнала в тканях происходит по экспо­ненциальному закону, яркость объектов на экране с увеличением глубины прогрессивно падает. Использование линейного усилителя, т.е. усилителя, пропорционально усиливающего все сигналы, привело бы к переусилению сигналов в непосредственной близости от датчика при попытке улучшения визуализации глубоко расположенных объектов. Использование логарифмических усили­телей позволяет решить эту проблему. Ультразву­ковой сигнал усиливается пропорционально време­ни задержки его возвращения - чем позже вернул­ся, тем сильнее усиление. Таким образом, приме­нение ВАРУ позволяет получить на экране изобра­жение одинаковой яркости по глубине. Усиленный таким образом радиочастотный электрический сиг­нал подается затем на демодулятор, где он выпрям­ляется и фильтруется и еще раз усиленный на видеоусилителе подается на экран монитора.

Для сохранения изображения на экране мони­тора необходима видеопамять. Она может быть разделена на аналоговую и цифровую. Первые мо­ниторы позволяли представлять информацию в аналоговой бистабильной форме. Устройство, на­зываемое дискриминатором, позволяло изменять порог дискриминации - сигналы, интенсивность которых была ниже порога дискриминации, не про­ходили через него и соответствующие участки эк­рана оставались темными. Сигналы, интенсивность которых превышала порог дискриминации, пред­ставлялись на экране в виде белых точек. При этом яркость точек не зависела от абсолютного значе­ния интенсивности отраженного сигнала - все бе­лые точки имели одинаковую яркость. При таком способе представления изображения - он получил название "бистабильный" хорошо были видны границы органов и структуры с высокой отражаю­щей способностью (например, почечный синус), однако, оценить структуру паренхиматозных орга­нов не представлялось возможным. Появление в 70-х годах приборов, которые позволяли переда­вать на экране монитора оттенки серого цвета, зна­меновало начало эры серошкальных приборов. Эти приборы давали возможность получать информа­цию, которая была недостижима при использова­нии приборов с бистабильным изображением. Раз­витие компьютерной техники и микроэлектроники позволило вскоре перейти от аналоговых изобра­жений к цифровым. Цифровые изображения в ульт­развуковых установках формируются на больших матрицах (обычно 512x512 пикселей) с числом гра­даций серого 16-32-64-128-256 (4-5-6-7-8 бит). При визуализации на глубину 20 см на матрице 512x512 пикселей один пиксель будет соответствовать линейным размерам в 0.4 мм. На современ­ных приборах имеется тенденция к увеличению раз­меров дисплеев без потери качества изображения и на приборах среднего класса (12 дюймовый <30 см по диагонали) экран становится обычным явле­нием.

Электронно-лучевая трубка ультразвукового при­бора (дисплей, монитор) использует остро сфоку­сированный пучок электронов для получения ярко­го пятна на экране, покрытом специальным фосфо­ром. С помощью отклоняющих пластин это пятно можно перемещать по экрану. При А-типе разверт­ки (А - вместо английского слова “амплитуда” (Аmplitude)) по одной оси откладывается расстояние от датчика, по другой - интенсивность отраженного сигнала. В современных приборах А-тип развертки практически не используется. В-тип раз­вертки (В - вместо английского слова “яркость" (Brightness)) позволяет вдоль линии сканирования получить информацию об интенсивности отражен­ных сигналов в виде различия яркости отдельных точек, составляющих эту линию. М-тип (иногда ТМ) развертки (М - вместо английского слова ‘"движе­ние" (Motion)) позволяет регистрировать движение (перемещение) отражающих структур во времени. При этом по вертикали регистрируются перемеще­ния отражающих структур в виде точек различной яркости, а по горизонтали - смещение положения этих точек во времени. Для получения двумерного томографического изображения необ­ходимо тем или иным образом произвести переме­щение линии сканирования вдоль плоскости скани­рования. В приборах медленного сканирования это достигалось перемещением датчика вдоль поверх­ности тела пациента вручную.

Используемые в настоящее время сонографические аппа­раты могут работать с различными типами датчиков, что позволяет их использовать как в кабинете ультразвуковой диагностики, так и в отделениях интенсивной терапии и неотложной помощи. Датчики обычно хранятся на удерживающей стойке с правой стороны аппарата.

Ультразвуковые датчики представляют собой сложные устройства и, в зависимости от способа развертки изображения, делятся на датчики для приборов медленного сканирования (одноэлемент­ные) и быстрого сканирования (сканирования в ре­альном времени) - механические и электронные. Механические датчики могут быть одно- и много­элементными (анулярные). Развертка ультразвуково­го луча может достигаться за счет качания элемента, вращения элемента или качания акустического зеркала. Изображение на экране в этом случае имеет форму сектора (секторные датчики) или окружности (круговые датчики). Электронные датчики являются многоэлементными и в зависи­мости от формы получаемого изображения могут быть секторными, линейными, конвексными (вы­пуклыми). Развертка изображения в сек­торном датчике достигается за счет качания ульт­развукового луча с его одновременной фокусировкой. Секторальные датчики дают веерообразное изображе­ние, узкое вблизи датчика и расширяющееся по мере уве­личения глубины. Такое расходящееся распространение звука может быть получено за счет механического движения пьезоэлементов. Датчики, исполь­зующие такой принцип, дешевле, но имеют слабую изно­состойкость. Электронный вариант (фазовое управление) более дорогой и используются преимущественно в кар­диологии. Их рабочая частота 2.5-3.0 МГц. Помех, связан­ных с отражением звука ребрами, можно избежать, при­кладывая датчик в межреберные промежутки и выбирая оптимальное расхождение луча в диапазоне 60-90° для уве­личения глубины проникновения. Недостатками этих типов датчиков являются низкая разрешающая спо­собность в ближнем поле, уменьшение количества линий сканирования с увеличением глубины (пространственная разрешающая способность), сложность обращения.

В линейных и конвексных датчиках развертка изображения достигается путем возбуждения группы элементов с пошаговым их переме­щением вдоль антенной решетки с одновременной фокусировкой.

Одноэлементный трансдьюсер в форме диска в режиме непрерывного излучения образует ультра­звуковое поле, форма которого меняется в зави­симости от расстояния. В ряде случаев могут на­блюдаться дополнительные ультразвуковые "пото­ки", получившие названия боковых лепестков. Рас­стояние от диска на длину протяженности ближне­го поля (зоны) называется ближней зоной. Зона за границей ближней называется дальней. Прожженность ближней зоны равна отношению квадрата диаметра трансдьюсера к 4 длинам волны. В даль­ней зоне диаметр ультразвукового поля увеличи­вается. Место наибольшего сужения ультразвуко­вого луча называется зоной фокуса, а расстояние между трансдьюсером и зоной фокуса - фокусным расстоянием. Существуют различные способы фокусировки ультразвукового луча. Наиболее про­стым способом фокусировки является акустиче­ская линза. С ее помощью можно сфо­кусировать ультразвуковой луч на определенной глубине, которая зависит от кривизны линзы. Дан­ный способ фокусировки не позволяет оперативно изменять фокусные расстояние, что неудобно в практической работе.

Другим способом фокусировки является использование акустического зер­кала. В этом случае, изменяя расстоя­ние между зеркалом и трансдьюсером, мы будем менять фокусное расстояние. В современных при­борах с многоэлементными электронными датчи­ками основой фокусировки является электронная фокусировка. Имея систему электрон­ной фокусировки, мы можем с панели прибора изменять фокусное расстояние, однако, для каждого изображения мы будем иметь только одну зону фо­куса.

Так как для получения изображения исполь­зуются очень короткие ультразвуковые импульсы, излучаемые 1000 раз в секунду (частота повторе­ния импульсов 1 кГц), то 99,9% времени прибор работает как приемник отраженных сигналов. Имея такой запас времени, возможно, запрограммировать прибор таким образом, чтобы при первом по­лучении изображения была выбрана ближняя зона фокуса и информация, полученная с этой зоны, была сохранена. Далее - выбор следующей зоны фокуса, получение информации, сохранение. И так далее. В результате получается комбиниро­ванное изображение, сфокусированное по всей глубине. Следует, правда, отметить, что такой спо­соб фокусировки требует значительных временных затрат на получение одного изображения (кадра), что вызывает уменьшение частоты кадров и мер­цание изображения. Почему же столько усилий при­кладывается для фокусировки ультразвукового луча? Дело в том, что чем уже луч, тем лучше боко­вая (латеральная) разрешающая способность. Боковая разрешающая способность - это минимальное расстояние между двумя объек­тами, расположенными перпендикулярно направ­лению распространения энергии, которые пред­ставляются на экране монитора в виде раздельных структур. Боковая разрешающая спо­собность равна диаметру ультразвукового луча. Осевая разрешающая способность - это мини­мальное расстояние между двумя объектами, рас­положенными вдоль направления распространения энергии, которые представляются на экране мони­тора в виде раздельных структур. Осе­вая разрешающая способность зависит от пространственной протяженности ультразвукового им­пульса - чем короче импульс, тем лучше разреше­ние. Для укорочения импульса используется как ме­ханическое, так и электронное гашение ультразву­ковых колебаний. Как правило, осевая разрешаю­щая способность лучше боковой.

В настоящее время приборы медленного (руч­ного, сложного) сканирования представляют лишь исторический интерес. Морально они умерли с по­явлением приборов быстрого сканирования (при­боров, работающих в реальном времени). Однако их основные компоненты сохраняются и в совре­менных приборах (естественно, с использованием современной элементной базы).

Приборы быстрого сканирования, или как их чаще называют, приборы, работающие в реальном времени, в настоящее время полностью заменили приборы медленного, или ручного, сканирования. Это связано с целым рядом преимуществ, которы­ми обладают эти приборы: возможность оценивать движение органов и структур в реальном времени (т.е. практически в тот же момент времени); резкое уменьшение затрат времени на исследование; воз­можность проводить исследования через неболь­шие акустические окна. Если приборы медленного сканирования можно сравнить с фотоаппаратом (получение неподвижных изображений), то прибо­ры, работающие в реальном времени, с кино, где неподвижные изображения (кадры) с большой частотой сменяют друг друга, создавая впечатление движения. В приборах быстрого сканирования ис­пользуются, как уже говорилось выше, механиче­ские и электронные секторные датчики, электрон­ные линейные датчики, электронные конвексные (выпуклые) датчики, механические радиальные датчики. Некоторое время назад на ряде приборов появились трапециевидные датчики, поле зрения которых имело трапециевидную форму, однако, они не показали преимуществ относительно конвексных датчиков, но сами имели целый ряд недостат­ков.

В настоящее время наилучшим датчиком для исследования органов брюшной полости, забрюшинного пространства и малого таза является конвексный. Он обладает относительно небольшой контактной поверхностью и очень большим полем зрения в средней и дальней зонах, что упрощает и ускоряет проведение исследования.

Рабочие частоты таких датчиков от 2.5 МГц (у пациентов с ожирением) до 5 МГц (у худощавых пациентов), в среднем - 3.5-3.75 МГц. Такую конструкцию можно рассматривать как компромисс между линейными и секторальными датчиками. Конвексный датчик дает широкую ближнюю и дальнюю зоны изоб­ражения и легче в обращении, чем секторальный датчик. Однако плотность линий сканирования с увеличением рас­стояния от датчика уменьшается. При сканировании органов верхней части живота необходимо аккуратно управлять датчиком, чтобы избежать появления акустической тени от нижних ребер.

При сканировании ультразвуковым лучом ре­зультат каждого полного прохода луча называется кадром. Кадр формируется из большого количест­ва вертикальных линий. Каждая пиния - это как минимум один ультразвуковой импульс.

Частота повторения импульсов для получения се­рошкального изображения в современных прибо­рах составляет 1 кГц (1000 импульсов в секунду). Существует взаимосвязь между частотой повторе­ния импульсов (ЧПИ), числом линий, формирующих кадр, и количеством кадров в единицу времени: ЧПИ = число линий х частота кадров. На экране мо­нитора качество получаемого изображения будет определяться, в частности, плотностью линий. Для линейного датчика плотность линий (линий/см) яв­ляется отношением числа линий, формирующих кадр, к ширине части монитора, на котором фор­мируется изображение. Линейные датчики испускают звуковые волны парал­лельно друг другу и создают прямоугольное изображение. Ширина изображения и количество линий сканирования постоянны по всей глубине. Достоинством линейных датчиков является хорошая разрешающая спо­собность в ближнем поле. Эти датчики используются преимущественно с высокой частотой (5.0-7.5 МГц и выше) для исследования мягких тканей и щитовидной железы. Недостатком их является большая площадь рабочей по­верхности, что ведет к появлению артефактов при прикла­дывании к искривленной поверхности тела из-за попадаю­щих между датчиком и кожей пузырьков газа. Кроме того, акустическая тень, которая образуется от ребер, мо­жет портить изображение. Как правило, линей­ные датчики не годятся для визуализации органов грудной клетки или верхней части живота. Для датчика секторного типа плотность линий (линий/градус) - отношение числа линий, формирующих кадр, к углу сектора. Чем выше частота кадров, установленная в прибо­ре, тем (при заданной частоте повторения импуль­сов) меньше число линий, формирующих кадр, тем меньше плотность линий на экране монитора, тем ниже качество получаемою изображения. Правда, при высокой частоте кадров мы имеем хорошее временное разрешение, что очень важно при эхокардиографических исследованиях.

Ультразвуковой метод исследования позволяет получать не только информацию о структурном со­стоянии органов и тканей, но и характеризовать потоки в сосудах. В основе этой способности ле­жит эффект Допплера - изменение частоты при­нимаемого звука при движении относительно сре­ды источника или приемника звука или тела, рас­сеивающего звук. Он наблюдается из-за того, что скорость распространения ультразвука в любой однородной среде является постоянной. Следова­тельно, если источник звука движется с постоян­ной скоростью, звуковые волны, излучаемые, в на­правлении движения как бы сжимаются, увеличи­вая частоту звука Волны, излучаемые в обратном направлении, как бы растягиваются, вызывая сни­жение частоты звука. Путем сопостав­ления исходной частоты ультразвука с измененной возможно определить допплеровский сдвиги рас­считать скорость. Не имеет значения, излучается ли звук движущимся объектом или этот объект отражает звуковые волны. Во втором случае источ­ник ультразвука может быть неподвижным (ультра­звуковой датчик), а в качестве отражателя ультра­звуковых волн могут выступать движущиеся эрит­роциты. Допплеровский сдвиг может быть как по­ложительным (если отражатель движется к источ­нику звука), так и отрицательным (если отражатель движется от источника звука) в том случае, если направление падения ультразвукового луча не па­раллельно направлению движения отражателя, необходимо скорректировать допплеровский сдвиг на косинус угла и между падающим лучом и направлением движения отражателя. Для получения допплеровской информации применяются два типа устройств - постоянноволновые и импульсные. В постоянноволновом доп­плеровском приборе датчик состоит из двух трансдьюсеров: один из них постоянно излучает ультразвук, другой постоянно принимает отражен­ные сигналы. Приемник определяет допплеров­ский сдвиг, который обычно составляет -1/1000 частоты источника ультразвука (слышимый диапа­зон) и передает сигнал на громкоговорители и. параллельно на монитор для качественной и количественной оценки кривой. Постоянноволновые приборы детектируют кровоток почти по всему ходу ультразвукового луча или. другими словами, имеют большой контрольный объем. Это может вызвать получение неадекватной информации при попадании в контрольный объем нескольких сосудов. Однако большой контрольный объем бывает, полезен при расчете падения давления при cтeнозе клапанов сердца. Для того чтобы оценить кровоток в какой-либо конкретной области, необходимо разместить кон­трольный объем в исследуемой области (например, внутри определенного сосуда) под визуальным кон­тролем на экране монитора. Это может быть дос­тигнуто при использовании импульсного прибора. Существует верхний предел допплеровского сдви­га, который может быть детектирован импульсны­ми приборами (иногда его называют пределом Найквиста). Он составляет примерно 1/2 частоты повто­рения импульсов. При его превышении происходит искажение допплеровского спектра (aliasing) Чем выше частота повторения импульсов, тем больший допплеровский сдвиг может быть определен без искажений, однако, тем ниже чувствительность прибора к низкоскоростным потокам.

Ввиду того, что ультразвуковые импульсы, на­правляемые в ткани, содержат большое количест­во частот помимо основной, а также из-за того, что скорости отдельных участков потока неодинаковы, отраженный импульс состоит из большого количе­ства различных частот. С помощью бы­строго преобразования Фурье частотный состав импульса может быть представлен в виде спектра, который может быть изображен на экране монито­ра в виде кривой, где по горизонтали откладыва­ются частоты допплеровскою сдвига, а по вертикали - амплитуда каждой составляющей. По доп­плеровскому спектру, возможно, определять боль­шое количество скоростных параметров кровото­ка (максимальная скорость, скорость в конце диа­столы, средняя скорость и т.д.), однако, эти показатели являются углозависимыми и их точность крайне зависит от точности коррекции угла. И если в крупных неизвитых сосудах коррекция угла не вы­зывает проблем, то в мелких извитых сосудах (со­суды опухоли) определить направление потока дос­таточно сложно. Для решения этой проблемы был предложен ряд почти уголнезависимым индексом наиболее распространенными из которых являют­ся индекс резистентности и пульсаторный индекс. Индекс резистентности является отношением раз­ности максимальной и минимальной скоростей к максимальной скорости потока. Пульсаторный индекс является отношением разности максимальной и минимальной скоростей к средней скорости потока.

Получение допплеровского спектра с одною кон­трольного объема позволяет оценивать кровоток в очень небольшом участке. Цветовая визуализация потоков (цветовое допплеровское картирование) по­зволяет получать двумерную информацию о крово­токах в реальном времени в дополнение к обычной серошкальной двумерной визуализации. Цветовая допплеровская визуализация расширяет возможно­сти импульсного принципа получения изображения Сигналы, отраженные от неподвижных структур, рас­познаются и представляются е серошкальном виде. Если отраженный сигнал имеет частоту, отличную от излученного, то это означает, что он отразился от дви­жущегося объекта. В этом случае производится оп­ределение допплеровского сдвига, его знак и вели­чина средней скорости. Эти параметры используют­ся для определения цвета, его насыщенности и яр­кости. Обычно направление потока к датчику кодиру­ется красным, а отдатчика - синим цветом. Яркость цвета определяется скоростью потока.

Для правильной интерпретации ультразвукового изображе­ния обязательно знание физических свойств звука, лежа­щих в основе образования артефактов.

Артефакт в ультразвуковой диагностике - это появ­ление на изображении несуществующих структур, отсут­ствие существующих структур, неправильное располо­жение структур неправильная яркость структур, непра­вильные очертания структур, неправильные размеры структур.

Реверберацию, один из наиболее часто встре­чающихся артефактов, наблюдается в том случае, если ультразвуковой импульс попадает между двумя или бо­лее отражающими поверхностями. При этом часть энергии ультразвукового импульса многократно отражается от этих поверхностей, каждый раз, частично возвраща­ясь к датчику через равные промежутки времени. Результатом этого будет появление на экране мо­нитора несуществующих отражающих поверхностей, ко­торые будут располагаться за вторым отражателем на расстоянии равном расстоянию между первым и вторым отражателями. Уменьшить реверберации иногда удает­ся изменением положения датчика.

Не менее важный артефакт - это так называемая дистальная акустическая тень. Артефакт акустической тени возникает за сильно отражающими или сильно поглощающими ультразвук структурами. Меха­низм образования акустической тени аналогичен фор­мированию оптической.

Акустическая тень проявляется как зона сниже­ния эхогенности (гипоэхогенная или анэхогеная = черная) и обнаруживается позади сильно отражающих структур, таких как содержащая кальций кость. Так, исследованию органов верхней части живота препятствуют нижние реб­ра, а нижней части таза - лонное сочленение. Этот эф­фект, однако, может быть использован для выявления кальцифицированных камней желчного пузыря, камней почек и атеросклеротических бляшек. Похожая тень может вызываться газом в легких или в кишечнике.

Артефакт эхогенного «хвоста кометы», ряд авторов рассматривают как проявление акустической тени. В свою очередь другие источники указывают, что данный артефакт наблюдается в том случае, когда ультразвук вызывает собственные колебания объекта и является вариантом реверберации. Он часто наблюдается позади мелких пузырьков газа или мелких металлических предметов. Артефакт эхогенного «хвоста кометы» может препят­ствовать выявлению структур, расположенных позади пе­тель кишечника, содержащих газ. Воздушный артефакт служит препятствием преимуще­ственно при выявлении органов, расположенных ретроперитонеально (поджелудочная железа, почки, лимфатичес­кие узлы), позади желудка или петель кишечника, содержащих газ.

Ввиду того, что далеко не всегда весь отраженный сигнал возвращает­ся к датчику, возникает артефакт эффектив­ной отражательной поверхности, которая меньше реаль­ной отражательной поверхности. Из-за этого артефакта определяемые с помощью ультразвука размеры конкрементов обычно немного меньше, чем истинные. Прелом­ление может вызывать неправильное положение объек­та на полученном изображении. В том случае, если путь ультразвука отдатчика к отражающей структу­ре и назад не является одним и тем же, возникает неправильное положение объекта на полученном изображе­нии.

Следующим характерным проявлением является так называемая краевая тень позади кист. Наблюда­ется, главным образом, позади всех округлых полостей, скрывающих звуковые волны по ходу касательной. Краевая тень вызывается рассеянием и преломлением зву­ковой волны, может наблюдаться позади желчного пузыря. Это требует тщательного анализа, чтобы объяс­нить происхождение акустической тени эффектом краевой тени, вызванной желчным пузырем, а не очагом жировой инфильтрации печени.

Артефакт боковых теней свя­зан с преломлением и, иногда, интерференцией ультра­звуковых волн при падении ультразвукового луча по ка­сательной на выпуклую поверхность (киста, шеечный отдел желчного пузыря) структуры, скорость прохожде­ния ультразвука в которой существенно отличается от ок­ружающих тканей.

Артефакты, связанные с неправильным определением скорости ультразвука возникают из-за того, что реальная скорость распростра­нения ультразвука в той или иной ткани больше или мень­ше усредненной (1,54 м/с) скорости, на которую запро­граммирован прибор.

Артефакты толщины ультразвукового луча - это появление, главным обра­зом в жидкость содержащих органах, пристеночных от­ражений, обусловленных тем, что ультразвуковой луч имеет конкретную толщину и часть этого луча может од­новременно формировать изображение органа и изо­бражение рядом расположенных структур.

Артефакт дистального псевдоусиления сигнала возникает позади слабо по­глощающих ультразвук структур (жидкостные, жидкость содержащие образования). Относительное дистальное акустическое усиление обнаруживается, когда часть звуковых волн проходит ка­кое-то расстояние через гомогенную жидкость. Из-за сни­женного уровня отражения в жидкости звуковые волны ос­лабляются меньше, по сравнению с проходящими через соседние ткани, и имеют большую амплитуду. Это дает в дистальных отделах повышенную эхогенность, которая проявляется как полоска повышенной яркости поза­ди желчного пузыря, мочевого пузыря или даже позади крупных сосудов, таких как аорта. Такое повышение эхогенности является физическим феноменом, не связанным с истин­ными свойствами нижележащих тканей. Акустическое усиление, тем не менее, может быть использовано для того, чтобы отличить почечные или печеночные кисты от гипоэхогенных опухолей.

Контроль качества ультразвукового оборудова­ния включает в себя определение относительной чувствительности системы, осевой и боковой раз­решающей способностей, мертвой зоны, правиль­ности работы измерителя расстояния, точности ре­гистрации, правильности работы ВАРУ, определе­ние динамическою диапазона серой шкалы и т.д. Для контроля качества работы ультразвуковых при­боров используются специальные тест-объекты или тканево-эквивалентные фантомы. Они являются коммерчески доступными, однако в нашей стране пока мало распространены, что делает практически невозможным провести поверку ультразвукового диагностического оборудовании на местах.

Прежде чем рассмотреть виды и направления ультразвукового обследования, необходимо понять и разобраться, на чем основывается диагностический эффект УЗИ. История ультразвука уходит своими корнями в далекий 1881 год, когда братья Кюри открыли «пьезоэффект». Ультразвуком называются звуковые колебания, лежащие выше порога восприятия органа слуха человека. «Пьезоэффект», благодаря которому получают ультразвуковые колебания, нашел первое применение во время первой мировой войны, когда впервые был разработан сонар, использовавшийся для навигации судов, определения расстояния до цели и поиска подводных лодок. В 1929 году ультразвук нашел свое применение в металлургии для определения качества получаемого продукта (дефектоскопия). Первые попытки применения ультразвука в целях медицинской диагностики привели к появлению в 1937 году одномерной эхоэнцефалографии. Только в начале пятидесятых годов девятнадцатого столетия удалось получить первое ультразвуковое изображение внутренних органов человека. С этого момента ультразвуковая диагностика стала широко применяться в лучевой диагностике многих патологий и повреждений внутренних органов. В дальнейшем, ультразвуковая диагностика постоянно совершенствовалась и расширяла сферу своего применения.

Виды ультразвукового обследования

Ультразвуковое обследование совершило определенный прорыв в медицине, позволив быстро и безопасно, а самое главное правильно диагностировать и проводить лечение множества патологий. В настоящее время ультразвуковое обследование используется практически во всех областях медицины. Например, с помощью УЗИ брюшной полости определяют состояние внутренних органов, УЗИ и Допплер сосудов применяется для диагностики множества сосудистых заболеваний. Различают следующие виды и направления ультразвукового обследования: А) Ультразвуковое исследование с компьютерной обработкой и цветным допплеровским картированием (УЗИ щитовидной железы, УЗИ печени УЗИ молочных желез, УЗИ желчного пузыря, УЗИ поджелудочной железы, УЗИ мочевого пузыря, УЗИ селезенки, УЗИ почек, исследования с вагинальным и ректальным датчиками, УЗИ органов малого таза у женщин, УЗИ простаты у мужчин); Б) Ультразвуковое исследование с допплерографией, цветным дуплексным сканированием (УЗИ сосудов головного мозга и шеи, нижних конечностей, суставы и позвоночник, УЗИ при беременности).

Ультразвуковое обследование позволяет создать изображения внутренних органов посредствам применения звуковых волн высокой частоты. УЗИ исследование безболезненно. Ультразвуковое обследование безопасно для беременных и детей, так как не связано с радиацией. Для получения УЗИ изображений на кожу пациента, в том месте, где будет проводиться обследование, наносится гель, далее специалист перемещает датчик УЗИ аппарата над данной областью. Компьютер обрабатывает полученный сигнал и выводит его на экран монитора в виде объемного изображения.

УЗИ щитовидной железы

В обследовании щитовидной железы ультразвуковое обследование является ведущим и позволяет определить наличие узлов, кист, изменения размера и структуры железы. Как показывает практика, в силу физических особенностей строения не все органы можно достоверно исследовать ультразвуковым методом. Например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за преобладающего содержания в них газа. Однако ультразвуковое обследование может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи УЗИ щитовидной железы можно выявить наличие свободной жидкости в брюшной полости, если ее достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

УЗИ печени

Ультразвуковое обследование печени является достаточно высокоинформативным методом диагностики. Применение данного вида обследования позволяет специалисту оценить размеры, структуру и однородность, а также наличие очаговых изменений и состояние кровотока. УЗИ печени позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Пациенту необходимо знать, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать и рассматривать только в совокупности с клиническими, анамнестическими данными, а также данными дополнительных обследований. Только в этом случае специалист сможет воспроизвести полную картину и поставить правильный и адекватный диагноз.

УЗИ молочных желез (ультразвуковая маммография)

Главное применение ультразвукового обследования в маммологии заключается в уточнении природы образований в молочной железе. Ультразвуковая маммография относится к наиболее полному и эффективному обследованию молочных желез. Современное ультразвуковое обследование молочной железы позволяет с максимальной детализацией одинаково эффективно оценивать состояние как поверхностно, так и глубоко расположенных тканей молочной железы любых размеров и строения. За счет максимальной детализации тканей еще больше удается приблизить ультразвуковую анатомию молочных желез к их морфологическому строению.

УЗИ молочных желез является как самостоятельным методом выявления доброкачественных и злокачественных образований в молочной железе, так и дополнительным, применяемым в совокупности с маммографией. В ряде случаев, ультразвуковое обследование по своей результативности превосходит маммографию. Например, при исследовании плотных молочных желез у молодых женщин; у женщин, имеющих фиброзно-кистозную мастопатию; при выявлении кист. Кроме того, УЗИ молочных желез применяется для динамического наблюдения за уже выявленными доброкачественными образованиями молочной железы , что позволяет выявить динамику и вовремя принять адекватные меры. Современное развитие медицинских технологий привело к тому, что в протокол ультразвукового исследования включена не только оценка состояния молочных желез, но и регионарных лимфатических узлов (подмышечных, надключичных, подключичных, загрудинных, переднегрудных). Одной из составных частей ультразвукового исследования является оценка кровотока молочных желез с помощью специальной методики – допплерографии (спектральной и цветокодированной – цветовое допплеровское картирование (ЦДК) и энергетическая допплерография), что имеет решающее значение при выявлении злокачественных образований молочной железы на самых ранних стадиях развития.

УЗИ желчного пузыря

УЗИ желчного пузыря является информативным методом диагностики. Для выявления различных патологий желчного пузыря специалисты часто применяют ультразвуковое обследование. Желчный пузырь отвечает за хранение и выделение желчи, вырабатываемой печенью. Этот процесс может быть нарушен множеством заболеваний, которым подвержен орган: камни, полипы, холецистит и даже рак. Чаще всего встречается дискинезия желчного пузыря и желчевыводящих путей.

Целью ультразвукового обследования является определение размеров, положение, исследование стенок желчного пузыря и содержимого полости. Эхографию желчного пузыря и желчевыводящих протоков проводят обязательно натощак, не ранее чем через 8–12 часов после приема пищи. Это необходимо для достаточного заполнения пузыря желчью. Пациента обследуют в трех позициях – в положении на спине, на левом боку, стоя, на высоте глубокого вдоха. УЗИ желчного пузыря вполне безопасно и не вызывает осложнений. К показаниям для проведения УЗИ желчного пузыря можно отнести клиническое подозрение на заболевание желчного пузыря, в том числе острое, а также пальпируемое образование в проекции желчного пузыря, кардиалгии неясного характера, динамическое наблюдение при консервативном лечении хронического холецистита, желчнокаменной болезни, подозрение на опухоль желчного пузыря.

УЗИ поджелудочной железы

Ультразвуковое обследование поджелудочной железы позволяет получить врачу дополнительную информацию для постановки диагноза и назначения правильного лечения. При ультразвуковом обследовании поджелудочной железы оцениваются ее размеры, форма, контуры, однородность паренхимы, наличие образований. К сожалению, качественное УЗИ поджелудочной железы часто довольно затруднительно, так как она может частично, или полностью перекрываться газами, находящимися в желудке, тонком и толстом кишечнике. Наиболее часто выносимое врачами ультразвуковой диагностики заключение «диффузные изменения в поджелудочной железе» может отражать как возрастные изменения (склеротические, жировая инфильтрация), так и возможные изменения вследствие хронических воспалительных процессов. В любом случае, ультразвуковое обследование поджелудочной железы является неотъемлемым этапом проведения адекватного лечения.

УЗИ почек, надпочечников и забрюшинного пространства

Проведение ультразвукового обследования забрюшинного пространства, почек и надпочечников является достаточно трудной процедурой для врача-узиста. В первую очередь это обусловлено особенностями расположения данных органов, сложностью их строения и многогранности, а также неоднозначности трактовки ультразвуковой картины этих органов. При исследовании почек оценивается их размер, расположение, форма, контуры и структура паренхимы и чашечно-лоханочной системы. Ультразвуковое обследование позволяет выявить аномалии почек, наличие конкрементов, жидкостных и опухолевых образований, также изменения вследствие хронических и острых патологических процессов почек.

В последние годы получили широкое развитие методы УЗИ диагностики и лечения путем пункции под контролем ультразвука. Этот раздел ультразвуковой диагностики имеет большое будущее, поскольку позволяет поставить точный морфологический диагноз. Дополнительным плюсом проведения лечебных пункций под контролем УЗИ является значительно меньшая травматичность в сравнении с обычными медицинскими манипуляциями. Например, патологический участок, из которого берется материал на исследование, располагается в глубине организма, поэтому без контроля над ходом биопсии с помощью специальной визуализирующей аппаратуры нельзя быть уверенным в том, что материал для исследования взят из нужного места. Для контроля над ходом пункционной биопсии применяется УЗИ. Данный метод высокоинформативен и позволяет легко определить положение иглы в органе и быть уверенным в правильности биопсии. Без проведения такого контроля биопсия многих органов невозможна.

В заключении, необходимо отметить, что виды и направления ультразвукового обследования настолько многогранны, а также применимы в самых разных областях современной медицины, что не представляется возможным полностью охватить УЗИ диагностику в одном материале. На сегодняшний день, ультразвуковое обследование, благодаря относительно невысокой стоимости и широкой доступности является распространенным методом обследования пациента. УЗИ диагностика позволяет выявить достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах. Например, диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах и т. д. Следите за своим здоровьем, не забывайте про профилактическое обследование и Вы избавите себя от многих проблем в будущем.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло