Методики ультразвукового исследования. Томографические методы исследования

Трудно поверить, что столь широкое применение ультразвука в медицине началось с обнаружения его травмирующего действия на живые организмы. Впоследствии было определено, что физическое воздействие ультразвука на биологические ткани, полностью зависит от его интенсивности, и может быть стимулирующим или разрушающим. Особенности же распространения ультразвука в тканях, легли в основу ультразвуковой диагностики.

Сегодня, благодаря развитию компьютерных технологий, стали доступны принципиально новые методики обработки информации, получаемой с помощью лучевых диагностических методов. Медицинские изображения, являющиеся результатом компьютерной обработки искажений различных видов излучения (рентгеновского, магнитно-резонансного или ультразвукового), возникающих в результате взаимодействия с тканями организма, позволили поднять диагностику на новый уровень. Ультразвуковое исследование (УЗИ), обладая массой преимуществ, таких как небольшая стоимость, отсутствие вредного воздействия ионизации и распространенность, выгодно выделяющих его среди других диагностических методик, однако, очень незначительно уступает им в информативности.

Физические основы

Стоит отметить, что очень маленький процент пациентов, прибегающих к ультразвуковой диагностике, задается вопросом, что такое УЗИ, на каких принципах основано получение диагностической информации и какова ее достоверность. Отсутствие такого рода сведений, нередко приводит к недооценке опасности поставленного диагноза или, напротив, к отказу от обследования, в связи с ошибочно бытующим мнением о вредности ультразвука.

По сути, ультразвук представляет собой звуковую волну, частота которой находится выше порога, который способен воспринять человеческий слух. В основе УЗИ лежат следующие свойства ультразвука – способность распространяться в одном направлении и одновременно переносить определенный объем энергии. Воздействие упругих колебаний ультразвуковой волны на структурные элементы тканей, приводит к их возбуждению и дальнейшей передаче колебаний.

Таким образом, происходит формирование и распространение ультразвуковой волны, скорость распространения которой, полностью зависит от плотности и структуры исследуемой среды. Каждый вид ткани человеческого организма обладает акустическим сопротивлением различной интенсивности. Жидкость, оказывая наименьшее сопротивление, является оптимальной средой, обеспечивающей распространение ультразвуковых волн. Например, при частоте ультразвуковой волны, равной 1 MГц, ее распространение в костной ткани составит всего 2 мм, а в жидкой среде – 35 см.

При формировании УЗ-изображения используют еще одно свойство ультразвука – отражаться от сред, обладающих различным акустическим сопротивлением. То есть, если в однородной среде волны ультразвука распространяются исключительно прямолинейно, то при появлении на пути объекта с другим порогом сопротивления происходит частичное их отражение. Например, при переходе границы, разделяющей мягкую ткань от кости, происходит отражение 30% ультразвуковой энергии, а при переходе от мягких тканей к газовой среде, отражается практически 90%. Именно этот эффект обусловливает невозможность исследования полых органов.

Важно! Эффект полного отражения ультразвуковой волны от воздушных сред обусловливает необходимость применения при УЗИ-исследовании, контактного геля, устраняющего воздушную прослойку между сканером и поверхностью тела пациента.

В основе УЗИ лежит эффект эхолокации. Желтым цветом изображен генерируемый ультразвук, а голубым отраженный

Виды УЗИ-датчиков

Существуют различные виды УЗИ, суть которых заключаются в использовании УЗ-датчиков (преобразователей или трансдюссеров), имеющих различные конструктивные особенности, обусловливающие некоторые различия в форме получаемого среза. Ультразвуковой датчик представляет собой прибор, осуществляющий излучение и прием УЗ-волн. Форма луча, испускаемого преобразователем, а также его разрешающая способность, является определяющими при последующем получении качественного компьютерного изображения. Какие бывают УЗ-датчики?

Различают следующие их виды:

  • линейные . Форма среза, получаемая в результате применения такого датчика, выглядит в виде прямоугольника. В связи с высокой разрешающей способностью, но недостаточной глубиной сканирования, предпочтение таким датчикам отдают при проведении акушерских исследований, изучении состояния сосудов, молочной и щитовидной желез;
  • секторные . Картинка на мониторе имеет форму треугольника. Такие датчики имеют преимущества при необходимости исследования большого пространства из небольшой доступной площади, например, при исследовании через межреберное пространство. Применяются, преимущественно, в кардиологии;
  • конвексные . Срез, получаемый при применении такого датчика, имеет форму сходную с первым и вторым типом. Глубина сканирования, составляющая около 25 см, позволяет применять его для исследования глубоко расположенных органов, например, органов малого таза, брюшной полости, тазобедренных суставов.

В зависимости от целей и области исследования могут применяться следующие УЗ-датчики:

  • трансабдоминальный. Датчик, осуществляющий сканирование, непосредственно с поверхности тела;
  • трансвагинальный. Предназначен для исследования женских репродуктивных органов, непосредственно, через влагалище;
  • трансвезикальные. Применяется для исследования полости мочевого пузыря через мочевыводящий канал;
  • транректальный. Используется для исследования предстательной железы, путем введения преобразователя в прямую кишку.

Важно! Как правило, ультразвуковое исследование с помощью трансвагинального, трансректального или трансвезикального датчика, осуществляется с целью уточнения данных, полученных с помощью трансабдоминального сканирования.


Виды УЗ-датчиков, используемых для диагностики

Режимы сканирования

Способ отображения, полученной в результате сканирования информации, зависит от используемого режима сканирования. Различают следующие режимы работы ультразвуковых сканеров.

A-режим

Самый простой режим, позволяющий получить одномерное изображение эхо-сигналов, в виде обычной амплитуды колебаний. Каждое повышение пика амплитуды соответствует повышению степени отражения УЗ-сигнала. В связи ограниченной информативностью, УЗИ обследование в A-режиме, используется только в офтальмологии, для получения биометрических показателей глазных структур, а также для выполнения эхоэнцефалограмм в неврологии.

M-режим

В определенной степени, M-режим, представляет собой модифицированный A-режим. Где глубина исследуемой области отражена на вертикальной оси, а изменения импульсов, произошедшие в определенном временном промежутке – на горизонтальной оси. Метод применяется в кардиологии, для оценки изменений в сосудах и сердце.

B-режим

Наиболее используемый на сегодняшний день режим. Компьютерная обработка эхо-сигнала, позволяет получить серошкальное изображение анатомических структур внутренних органов, строение и структура которых позволяет судить о наличии или отсутствии патологических состояний или образований.

D-режим

Спектральная доплерография. Основывается на оценке сдвига частоты отражения УЗ-сигнала от движущихся объектов. Поскольку допплерография применяется для исследования сосудов, сущность эффекта Доплера заключается в изменении частоты отражения ультразвука от эритроцитов, движущихся от или к датчику. При этом движение крови в направлении датчика усиливает эхо-сигнал, а в противоположном направлении – уменьшает. Результатом такого исследования является спекрограмма, на которой по горизонтальной оси отражается время, а по вертикальной – скорость движения крови. Графическое изображение, расположенное выше оси, отражает поток, движущийся к датчику, а ниже оси –в направлении от датчика.

СDК-режим

Цветовое доплеровское картирование. Отражает зарегистрированный частотный сдвиг в виде цветного изображения, где красным цветом отображается поток, направленный в сторону датчика, а синим – в противоположную сторону. Сегодня изучение состояния сосудов выполняют в дуплексном режиме, сочетающим B- и СDК-режим.

3D-режим

Режим получения объемного изображения. Для осуществления сканирования в этом режиме, применяют возможность фиксирования в памяти сразу нескольких кадров, полученных во время исследования. Основываясь на данные серии снимков, выполненных с небольшим шагом, система воспроизводит трехмерное изображение. УЗИ 3D широко применяется в кардиологии, особенно в сочетании с доплеровским режимом, а также в акушерской практике.

4D-режим

4D УЗИ представляет собой 3D-изображение, выполненное в режиме реального времени. То есть, в отличие от 3D-режима, получают нестатическое изображение, которое можно повернуть и осмотреть со всех сторон, а двигающийся объемный объект. Применяется 4D-режим, преимущественно в кардиологии и акушерстве для осуществления скрининга.

Важно! К сожалению, в последнее время наблюдается тенденция использования возможностей четырехмерного ультразвукового исследования в акушерстве без медицинских показаний, что, несмотря на относительную безопасность процедуры, категорически не рекомендуется.

Области применения

Области применения ультразвуковой диагностики практически безграничны. Постоянное совершенствование оборудование позволяет исследовать ранее недоступные для ультразвука структуры.

Акушерство

Акушерство является той областью, где ультразвуковые методы исследования применяются наиболее широко. Основной целью, для чего делают УЗИ, при беременности являются:

  • определение наличия плодного яйца на начальных сроках беременности;
  • выявление патологических состояний, связанных с неправильным развитием беременности (пузырный занос, мертвый плод, внематочная беременность);
  • определение надлежащего развития и положения плаценты;
  • фитометрия плода – оценка его развития путем измерения его анатомических частей (головки, трубчатых костей, окружности живота);
  • общая оценка состояния плода;
  • выявление аномалий развития плода (гидроцефалия, анэнцифалия, синдром Дауна и т. д.).


УЗ-снимок глаза, при помощи которого диагностируется состояние всех элементов анализатора

Офтальмология

Офтальмология, является одной из областей, где ультразвуковая диагностика занимает несколько обособленные позиции. В определенной степени это связано с небольшим размером исследуемой области и довольно большим количеством альтернативных методов исследования. Применение ультразвука целесообразно при выявлении патологий структур глаза, особенно при потере прозрачности, когда обычное оптическое исследование абсолютно неинформативно. Хорошо доступна для исследования орбита глаза, однако, процедура требует применения высокочастотного оборудования с высоким разрешением.

Внутренние органы

Исследование состояния внутренних органов. При исследовании внутренних органов УЗИ делают с двумя целями:

  • профилактическое обследование, с целью выявления скрытых патологических процессов;
  • целенаправленное исследование при подозрении на наличие заболеваний воспалительного или иного характера.

Что показывает УЗИ при исследовании внутренних органов? В первую очередь, показателем, позволяющим оценить состояние внутренних органов, является соответствие внешнего контура исследуемого объекта его нормальным анатомическим характеристикам. Увеличение, уменьшение или утрата четкости контуров свидетельствует о различных стадиях патологических процессов. Например, увеличение размеров поджелудочной железы, свидетельствует об остром воспалительном процессе, а уменьшение размеров с одновременной потерей четкости контуров – о хроническом.

Оценка состояния каждого органа производится исходя из его функционального назначения и анатомических особенностей. Так, при исследовании почек, анализируют не только их размер, расположение, внутреннюю структуру паренхимы, но и размер чашечно-лоханочной системы, а также наличие конкрементов в полости. При исследовании паренхиматозных органов, смотрят на однородность паренхимы и ее соответствие плотности здорового органа. Любые изменения эхо-сигнала, не соответствующие структуре, расцениваются как посторонние образования (кисты, новообразования, конкременты).

Кардиология

Широкое применение, УЗИ диагностика, нашла в области кардиологии. Исследование сердечно-сосудистой системы позволяет определить ряд параметров, характеризующих наличие или отсутствие аномалий:

  • размер сердца;
  • толщина стенок сердечных камер;
  • размер полостей сердца;
  • строение и движение сердечных клапанов;
  • сократительная активность сердечной мышцы;
  • интенсивность движения крови в сосудах;
  • кровоснабжение миокарда.

Неврология

Исследование головного мозга взрослого человека, с помощью ультразвука достаточно затруднительно, вследствие физических свойств черепной коробки, имеющей многослойную структуру, разнообразной толщины. Однако, у новорожденных детей таких ограничений можно избежать, выполняя сканирование через незакрытый родничок. Благодаря отсутствию вредного воздействия и неинвазивности, УЗИ является методом выбора в детской пренатальной диагностике.


Исследование проводится как детям, так и взрослым

Подготовка

Ультразвуковое исследование (УЗИ), как правило, не требует длительной подготовки. Одним из требований при исследовании органов брюшной полости и малого таза, является максимальное снижение количества газов в кишечнике. Для этого, за сутки до процедуры, следует исключить из рациона продукты, вызывающие газообразование. При хроническом нарушении пищеварения, рекомендуется принять ферментативные препараты (Фестал, Мезим) или препараты, устраняющие вздутие живота (Эспумизан).

Исследование органов малого таза (матки, придатков, мочевого пузыря, предстательной железы) требуется максимальное наполнение мочевого пузыря, который, увеличиваясь не только отодвигает кишечник, но и служит своеобразным акустическим окном, позволяя четко визуализировать, расположенные позади него анатомические структуры. Органы пищеварения (печень, поджелудочную железу, желчный пузырь) исследуют на голодный желудок.

Отдельной подготовки требует трансректальное обследование предстательной железы у мужчин. Так как введение УЗ-датчика осуществляется через анус, непосредственно перед диагностикой, необходимо сделать очистительную клизму. Проведение трансвагинального обследования у женщин не требует наполнения мочевого пузыря.

Техника выполнения

Как делают УЗИ? Вопреки первому впечатлению, создающемуся у пациента, лежащего на кушетке, движения датчика по поверхности живота далеко не хаотичны. Все перемещения датчика направлены на получение изображения исследуемого органа в двух плоскостях (сагиттальной и аксиальной). Положение датчика в сагиттальной плоскости, позволяет получить продольное сечение, а в аксиальной – поперечное.

В зависимости от анатомической формы органа, его изображение на мониторе может существенно меняться. Так, форма матки при поперечном сечении имеет форму овала, а при продольном – грушевидную форму. Для обеспечения полного контакта датчика с поверхностью тела, на кожу периодически наносят гель.

Исследование органов брюшной полости и малого таза надо делать в положении лежа на спине. Исключением являются почки, которые исследуют сначала лежа, попросив пациента повернуться сначала на один бок, а затем на другой, после чего сканирование продолжают при вертикальном положении пациента. Таким образом, можно оценить их подвижность и степень смещения.


Трансректальное исследование простаты может проводиться в любых удобных для пациента и врача положениях (на спине или на боку)

Зачем делать УЗИ? Совокупность положительных сторон ультразвуковой диагностики, позволяет выполнять исследование не только при подозрении на наличие какого-либо патологического состояния, но и с целью осуществления планового профилактического обследования. Не вызовет затруднений и вопрос где сделать обследование, так как таким оборудованием сегодня располагает любая клиника. Однако, при выборе медицинского учреждения следует опираться в первую очередь не техническую оснащенность, а на наличие профессиональных врачей, так как качество результатов УЗИ в большей мере, нежели других диагностических методов, зависят от врачебного опыта.

Ультразвуковое исследование (УЗИ, сонография) является наиболее широко используемым методом визуализации в медицинской практике, что обусловлено его значительными преимуществами: отсутствием лучевой нагрузки, неинвазивностью, мобильностью и доступностью. Метод не требует применения контрастных веществ, и его результативность не зависит от функционального состояния почек, что имеет особое значение в урологической практике.

В настоящее время в практической медицине используются ультразвуковые сканеры, работающие в режиме реального времени, с построением изображения в серой шкале. В действии приборов реализуется физический феномен эхолокации. Отраженная ультразвуковая энергия улавливается сканирующим датчиком и преобразуется в электрическую, которая опосредованно формирует визуальный образ на экране ультразвукового прибора в палитре серых оттенков как в двух-, так и в трехмерном изображении.

При прохождении ультразвуковой волны через гомогенную жидкостную среду отраженная энергия минимальна, поэтому на экране формируется изображение в черном цвете, что носит название анэхогенной структуры. В том случае, когда жидкость содержится в замкнутой полости (киста), дальняя от источника ультразвука стенка визуализируется лучше, а непосредственно за ней формируется эффект дорсального усиления, являющийся важным признаком жидкостного характера исследуемого образования. Высокая гидрофильность тканей (зоны воспалительного отека, опухолевая ткань) также приводит к формированию изображения в оттенках черного или темно-серого цвета, что связано с малой энергией отраженного ультразвука. Такая структура носит название гипоэхогенной. В отличие от жидкостных структур гипоэхогенные образования не имеют эффекта дорсального усиления. С увеличением импеданса исследуемой структуры мощность отраженной ультразвуковой волны возрастает, что сопровождается формированием на экране структуры все более светлых оттенков серого цвета, называемых гиперэхогенными. Чем более значительной эхоплотностью (импедансом) обладает исследуемый объем, тем более светлыми оттенками характеризуется сформированное на экране изображение. Наибольшая отраженная энергия формируется при взаимодействии ультразвуковой волны и структур, содержащих кальций (камень, кость) или воздух (газовые пузыри в кишечнике).

Наилучшая визуализация внутренних органов возможна при минимальном содержании газов в кишечнике, для чего УЗИ выполняют натощак или с использованием специальных методик, приводящих к уменьшению метеоризма. Локация органов малого таза трансабдоминальным доступом возможна только при тугом заполнении мочевого пузыря, который в данном случае играет роль акустического окна, проводящего ультразвуковую волну от поверхности тела пациента до исследуемого объекта.


В настоящее время в работе ультразвуковых сканеров используют датчики трех модификаций с различной формой лоцирующей поверхности: линейные, конвексные и секторные - с частотой локации от 2 до 14 МГц. Чем выше частота локации, тем большей разрешающей способностью обладает датчик и тем крупнее масштаб полученного изображения. При этом датчики с высокой разрешающей способностью пригодны для исследования поверхностно расположенных структур. В урологической практике это наружные половые органы, поскольку мощность ультразвуковой волны по мере увеличения частоты существенно падает.

Задача врача при проведении УЗИ-диагностики - получить четкое изображение объекта исследования. С этой целью используют различные сонографические доступы и специальные модифицированные датчики. Сканирование, проводимое через кожные покровы, носит название транскутанное. Транскутанное ультразвуковое сканирование органов живота, малого таза традиционно называется трансадбоминальной сонографией.

Кроме транскутанного исследования часто используются эндокорпоральные способы сканирования, при которых датчик помещается в тело человека через физиологические отверстия. Наиболее широкое применение имеют трансвагинальные и трансректальные датчики, служащие для исследования органов малого таза. При проведении трансвагинального УЗИ визуализации доступны мочевой пузырь, внутренние половые органы, средне- и нижнеампулярные отделы толстой кишки, Дугласово пространство, частично уретра и дистальные отделы мочеточников. При трансректальном УЗИ визуализируются внутренние половые органы вне зависимости от пола обследуемого пациента, мочевой пузырь, уретра на всем ее протяжении, пузырно-мочеточниковые сегменты и тазовые отделы мочеточников.

Трансуретральный доступ не получил широкого распространения ввиду значительного перечня противопоказаний.

В настоящее время все чаще используются ультразвуковые сканеры, оснащенные миниатюрными датчиками высокого разрешения и вмонтированные в проксимальный конец гибкого уретероскопа. Данный метод, носящий название эндолюминальная сонография, позволяет провести исследование всех отделов мочевыводящих путей, что привносит ценную диагностическую информацию при заболеваниях мочеточника, чашечно-лоханочной системы почки.

УЗИ сосудов различных органов возможно благодаря эффекту Доплера, который основан на регистрации мелких перемещающихся частиц. В клинической практике данный метод был использован в 1956 году Satomuru при УЗИ сердца. В настоящее время применяются несколько ультразвуковых методик для исследования сосудистой системы, в основе которых лежит использование эффекта Доплера,- цветное доплеровское картирование, энергетический доплер. Данные методики дают представление о сосудистой архитектонике обследуемого объекта. Спектральный анализ позволяет оценивать распределение сдвига доплеровских частот, определять количественные скоростные характеристики сосудистого кровотока. Сочетание серошкального ультразвукового изображения, цветного доплеровского картирования и спектрального анализа носит название триплексное сканирование.

Доплеровские методики в практической урологии применяются для решения широкого круга диагностических вопросов. Наиболее распространена методика цветного доплеровского картирования. Определение хаотичных сосудистых структур в тканевом объемном образовании почки в большинстве случаев свидетельствует о его злокачественном характере. При выявлении асимметричного увеличения кровоснабжения патологических гипоэхогенных участков в простате значительно возрастает вероятность ее злокачественного поражения.

Спектральный анализ кровотока используется в дифференциальной диагностике вазоренальной гипертензии. Изучение скоростных показателей на различных уровнях сосудов почек: от основной почечной артерии до аркуатных артерий - позволяет определить причину артериальной гипертензии. Спектральный доплеровский анализ применяется в дифференциальной диагностике эректильной дисфункции. Данная методика проводится с использованием фармакологической пробы. Методическая последовательность включает определение скоростных показателей кровотока по кавернозным артериям и тыльной вене полового члена в состоянии покоя. В дальнейшем, после интракавернозного введения препарата (папаверин, кавердэскт и др.), проводится повторное измерение пенильного кровотока с определением индексов. Сопоставление полученных результатов позволяет не только установить диагноз вазогенной эректильной дисфункции, но и дифференцировать наиболее заинтересованное сосудистое звено - артериальное, венозное. Описано также применение таблетированных препаратов, вызывающих состояние тумесценции.

В соответствии с диагностическими задачами виды УЗИ подразделяются на скрининговые, инициальные и экспертные. Скрининговые исследования, направленные на выявление доклинических стадий заболеваний, относятся к превентивной медицине и проводятся здоровым людям, составляющим группу риска по каким-либо заболеваниям. Инициальное (первичное) УЗИ проводится пациентам, обратившимся за медицинской помощью в связи с возникновением определенных жалоб. Цель его - установить причину, анатомический субстрат имеющейся клинической картины. Диагностической задачей экспертного УЗИ является не только подтверждение диагноза, но в большей степени установление степени распространенности и стадии процесса, вовлечение других органов и систем в патологический процесс.

УЗИ почек. Основным доступом при локации почек является кособоковое расположение датчика по средней подмышечной линии. Данная проекция дает изображение почки, сопоставимое с изображением при рентгенологическом исследовании. При сканировании по длинной оси органа почка имеет вид овального образования с четкими, ровными контурами (рис. 4.10).

Полипозиционное сканирование с последовательным перемещением плоскости сканирования позволяет получить информацию обо всех отделах органа, в котором дифференцируются паренхима и центрально расположенный эхокомплекс. Кортикальньгй слой имеет равномерную, несколько повышенную по сравнению с мозговым веществом эхогенность. Мозговое вещество, или пирамиды, на анатомическом препарате почки имеют вид треугольных структур, обращенных основанием к контуру почки и вершиной к полостной системе. В норме видимая при УЗИ часть пирамиды составляет около трети от толщины паренхимы.

Рис. 4.10. Сонограмма. Нормальное строение почки


Рис. 4.11. Сонограмма. Солитарная киста почки:

1 - нормальная почечная ткань; 2 – киста

Центрально расположенный эхокомлекс характеризуется значительной эхоплотностью по сравнению с другими отделами почки. В формировании изображения центрального синуса принимают участие такие анатомические структуры, как элементы полостной системы, сосудистые образования, лимфатическая дренажная система, жировая ткань. У здоровых людей в отсутствие водной нагрузки элементы полостной системы, как правило, не дифференцируются, возможна визуализация отдельных чашек до 5 мм. В условиях водной нагрузки иногда визуализируется лоханка, как правило, она имеет форму треугольника размером не более 15 мм.

Представление о состоянии сосудистой архитектоники почки дает цветное доплеровское картирование (рис. 35, см. цв. вклейку).

Характер очаговой патологии почки определяется сонографической картиной выявленных изменений - от анэхогенного образования с дорсальным усилением до гиперэхогеннего образования, дающего акустическую тень. Анэхогенное жидкостное образование в проекции почки по своему происхождению может быть кистой (рис. 4.11) или расширением чашечек и лоханки – гидронефрозом (рис. 4.12).


Рис. 4.12. Сонограмма. Гидронефроз: 1 - выраженное расширение лоханки и чашечек со сглаживанием их контуров; 2 - резкое истончение паренхимы почки


Рис. 4.13. Сонограмма. Опухоль почки: 1 - опухолевый узел; 2 - нормальная почечная ткань

Очаговое образование низкой плотности без дорсального усиления в проекции почки может свидетельствовать о локальном повышении гидрофильности ткани. Такие изменения могут быть обусловлены либо воспалительными изменениями (формирование карбункула почки), либо наличием опухолевой ткани (рис. 4.13).

Картина эхоплотного образования без дорсального усиления характерна для наличия тканевой структуры с высокой отражающей способностью, такой как жир (липома), фиброзная ткань (фиброма) или смешанная структура (ангиомиолипома). Эхоплотная структура с формированием акустической тени свидетельствует о наличии кальция в выявленном образовании. Локализация такого образования в полостной системе почки или мочевыводящих путях говорит о имеющемся камне (рис. 4.14).


Рис. 4.14. Сонограмма. Камень почки: 1 - почка; 2 - камень; 3 - акустическая

тень от камня

УЗИ мочеточника. Инспекция мочеточника проводится при продвижении датчика по месту его анатомической проекции. При трансабдоминальном доступе наилучшими для визуализации местами являются пиелоуретеральный сегмент и место пересечения мочеточника с подвздошными сосудами. В норме мочеточник, как правило, не визуализируется. Тазовый отдел его оценивается при трансректальном УЗИ, когда возможна визуализация пузырно-мочеточникового сегмента.

УЗИ мочевого пузыря возможно только при его адекватном наполнении мочой, когда складчатость слизистого слоя уменьшается. Визуализация мочевого пузыря возможна трансабдоминальным (рис. 4.15), трансректальным (рис. 4.16) и трансвагинальным доступом.

В урологической практике предпочтительной является комбинация трансабдоминального и трансректального доступов. Первый позволяет судить о состоянии мочевого пузыря в целом. Трансректальный доступ дает ценную информацию о нижних отделах мочеточников, уретре, половых органах.

При УЗИ стенка мочевого пузыря имеет трехслойное строение. Средний гипоэхогенный слой представлен срединным слоем детрузора, внутренний гиперэхогенный слой является единым изображением внутреннего слоя детрузора и уротелиальной выстилки, наружный гиперэхогенный слой - изображением наружного слоя детрузора и адвентиции.


Рис. 4.15. Трансабдоминальная сонограмма мочевого пузыря в норме


Рис. 4.16. Трансректальная сонограмма мочевого пузыря в норме

При адекватном наполнении мочевого пузыря различают его анатомические отделы - дно, верхушку и боковые стенки. Шейка мочевого пузыря имеет вид неглубокой воронки. Моча, находящаяся в мочевом пузыре, является полностью анэхогенной средой, без взвеси. Иногда можно наблюдать поступление болюса мочи из устья мочеточников, что связано с возникновением турбулентного потока (рис. 4.17).

При трансректальном сканировании лучше визуализируется нижний сегмент мочевого пузыря. Пузырно-мочеточниковый сегмент представляет собой структуру, состоящую из юкставезикального, интрамурального отделов мочеточника и зоны мочевого пузыря рядом с устьем (рис. 4.18). Устье мочеточника определятся в виде щелевидного образования, несколько возвышающегося над внутренней поверхностью мочевого пузыря. При прохождении болюса мочи устье приподнимается, открывается, и струя мочи поступает в полость мочевого пузыря. По данным трансректального УЗИ можно оценивать моторную функцию пузырно-мочеточникового сегмента. Частота сокращений мочеточника в норме составляет 4-6 в минуту. При сокращении мочеточника его стенки полностью смыкаются, при этом диаметр юкставезикального отдела не превышает 3,5 мм. Сама стенка мочеточника лоцируется в виде эхоплотной однородной структуры шириной около 1,0 мм. В момент прохождения болюса мочи мочеточник расширяется и достигает 3-4 мм.

Рис. 4.17. Трансректальная сонограмма. Выброс мочи (1) из устья мочеточника (2) в мочевой пузырь (3)


Рис. 4.18. Трансректальная сонограмма пузырно-мочеточникового сегмента в норме: 1 - мочевой пузырь; 2 - устье мочеточника; 3 - интрамуральный отдел мочеточника; 4 - юкставезикальный отдел мочеточника

УЗИ предстательной железы. Визуализация предстательной железы возможна при использовании как трансабдоминального (рис. 4.19), так и трансректального (рис. 4.20) доступа. Предстательная железа в поперечном скане представляет собой образование овальной формы, при сканировании в сагиттальном скане имеет форму треугольника с широким основанием и заостренным апикальным концом.


Рис. 4.19. Трансабдоминальная сонограмма. Предстательная железа в норме


Рис. 4.20. Трансректальная сонограмма. Предстательная железа в норме

Периферическая зона является преобладающей в объеме простаты и лоцируется в виде однородной эхоплотной ткани в заднелатеральной части простаты от основания до верхушки. Центральная и периферическая зоны обладают меньшей эхоплотностью, что позволяет дифференцировать эти отделы простаты. Переходная зона располагается кзади от уретры и охватывает простатическую часть семявыбрасывающих протоков. Суммарное изображение этих отделов простаты в норме составляет около 30 % объема железы.

Визуализация сосудистой архитектоники предстательной железы осуществляется с помощью ультразвукового доплеровского исследования (рис. 4.21).


Рис. 4.21. Сонодоплерограмма предстательной железы в норме

Асимметричное увеличение кровоснабжения гипоэхогенных участков в простате значительно повышает вероятность ее злокачественного поражения.

УЗИ семенных пузырьков и семявыносящих протоков. Семенные пузырьки и семявыносящие протоки лоцируются кзади от простаты. Семенные пузырьки в зависимости от плоскости сканирования имеют вид конусообразных или овальных образований, прилежащих непосредственно к задней поверхности простаты (рис. 4.22). В норме их размер составляет около 40 мм по длиннику и 20 мм в поперечнике. Семенные пузырьки характеризуются однородной структурой низкой плотности.

Рис. 4.22. Трансректальная сонограмма: семенные пузырьки (1) и мочевой пузырь (2) в норме

Семявыносящие протоки лоцируются в виде эхоплотных трубчатых структур диаметром 3-5 мм от места впадения в простату вверх до физиологического изгиба на уровне тела мочевого пузыря, когда проток меняет направление от внутреннего отверстия пахового канала к простате.

УЗИ мочеиспускательного канала. Мужская уретра представлена протяженной структурой от шейки мочевого пузыря в направлении верхушки и имеет неоднородную структуру низкой эхоплотности. Место впадения семявыбрасывающего протока в простатическую уретру соответствует проекции семенного бугорка. За пределами простаты уретра продолжается в направлении мочеполовой диафрагмы в виде вогнутой по большому радиусу дуги. В проксимальных отделах, в непосредственной близости от верхушки простаты, уретра имеет утолщение, соответствующее рабдосфинктеру. Ближе к мочеполовой диафрагме кзади от уретры определяются парные периуретральные (куперовы) железы, имеющие вид симметричных округлых гипоэхогенных образований диаметром до 5 мм.

УЗИ органов мошонки. При УЗИ органов мошонки используют датчики высокой разрешающей способности, от 5 до 12 мГц, что позволяет хорошо видеть мелкие структуры и образования. В норме яичко определяется в виде гиперэхогенного образования овальной формы с четкими, ровными контурами (рис. 4.23).


Рис. 4.23. Сонограмма мошонки. Яичко в норме

Структура яичка характеризуется как однородная гиперэхогенная ткань. В центральных отделах его определяется линейная структура высокой плотности, ориентированная по длиннику органа, что соответствует изображению средостения яичка. В краниальных отделах яичка хорошо визуализируется головка придатка, имеющая форму, близкую к треугольной. К каудальному отделу яичка прилежит хвост придатка, повторяющий форму яичка. Тело придатка визуализируется неотчетливо. По своей эхогенности придаток яичка близок к эхогенности самого яичка, однороден, имеет четкие контуры. Межоболочечная жидкость анэхогенная, прозрачная, в норме определяется в виде минимальной прослойки от 0,3 до 0,7 см преимущественно в проекции головки и хвоста придатка.

Малоинвазивные диагностические и оперативные вмешательства под сонографическим контролем. Внедрение ультразвуковых сканеров позволило значительно расширить арсенал малоинвазивных методов в диагностике и лечении урологических заболеваний. К ним относятся:

диагностические:

■пункционная биопсия почки, предстательной железы, органов мошонки;

■ пункционная антеградная пиелоуретерография; лечебные:

■ пункция кист почки;

■ пункционная нефростомия;

■ пункционное дренирование гнойно-воспалительных очагов в почке, забрюшинной клетчатке, предстательной железе и семенных пузырьках;

■ пункционная (троакарная) эпицистостомия.

Диагностические пункции по способу получения материала подразделяются на цитологические и гистологические.

Цитологический материал получают при проведении тонкоигольной аспирационной биопсии. Более широкое применение имеет гистологическая биопсия, при которой забираются участки (столбики) ткани органа. Таким образом взятый полноценный гистологический материал может быть использован для постановки морфологического диагноза, проведения иммуногистохимического исследования и определения чувствительности к химиопрепаратам.

Способ получения диагностического материала определяется расположением интересующего органа и возможностями ультразвукового прибора. Пункции образований почек, забрюшинных объемных образований выполняются с использованием трансабдоминальных датчиков, которые позволяют визуализировать всю зону пункционного вмешательства. Пункция может проводиться по методике «свободная рука», когда врач совмещает траекторию иглы и зоны интереса, работая пункционной иглой без фиксирующей направляющей насадки. В настоящее время преимущественно используют методику с фиксацией биопсийной иглы в специальном пункционном канале. Направляющий канал для пункционной иглы предусмотрен либо в специальной модели ультразвукового датчика, либо в специальной пункционной насадке, которая может крепиться к обычному датчику. Пункция органов и патологических образований малого таза осуществляется в настоящее время только с использованием трансректальных датчиков со специальной пункционной насадкой. Специальные функции ультразвукового прибора позволяют наилучшим образом совмещать зону интереса с траекторией пункционной иглы.

Объем пункционного материала зависит от конкретной диагностической задачи. При диагностической пункции простаты в настоящее время используют веерную технологию с забором не менее 12 трепан-биоптатов. Данная методика позволяет распределить зоны забора гистологического материала равномерно по всем отделам простаты и получить адекватный объем исследуемого материала. При необходимости объем диагностической биопсии расширяют - увеличивают число трепан-биоптатов, биопсируют близлежащие органы, в частности семенные пузырьки. При повторных биопсиях простаты число трепан-биоптатов, как правило, удваивают. Такая биопсия носит название сатурационной. При подготовке биопсии простаты осуществляют профилактику воспалительных осложнений, кровотечений, подготавливают ампулу прямой кишки. Анестезию выполняют с помощью ректальных инстиллятов, применяют проводниковую анестезию.

Лечебные пункции под сонографическим контролем используются для эвакуации содержимого из патологических полостных образований - кист, абсцессов. В зависимости от конкретной задачи в освобожденную от патологического содержимого полость вводят лекарственные препараты. При кистах почек применяют склерозанты (этиловый спирт), что приводит к уменьшению объема кистозного образования вследствие повреждения его внутренней выстилки. Использование данного метода возможно только после проведения кистографии, позволяющей убедиться в отсутствии связи кисты с чашечно-лоханочной системой почки. Применение склеротерапии не исключает рецидива заболевания. После пункции абсцесса любой локализации пункционный канал расширяют, гнойную полость опорожняют, промывают растворами антисептиков и дренируют.

Сонографический контроль при выполнении чрескожной нефростомии позволяет с максимальной точностью пунктировать чашечно-лоханочную систему почки и установить нефростомический дренаж.

Ультразвуковое исследование (УЗИ) – одна из распространенных методик диагностики, при которой используются ультразвуковые волны для получения изображения внутренних органов человека. В отличие от других подобных методик, УЗИ не вызывает дискомфорта и негативного влияния на организм.

Подготовка пациента к УЗИ

Для проведения оптимально точной диагностики путем ультразвукового исследования, пациенту необходимо проделать ряд манипуляций и предписаний перед проведением УЗИ, а именно:


Процесс проведения УЗИ

В назначенное время медицинский персонал приглашает пациента разместится на специальной кушетке.

  • живот;
  • молочные железы;
  • и т.д.

Врач обрабатывает кожу исследуемого специальным гелем, который помогает качественно провести ультразвуковые волны сквозь тело. Далее в различных местах тела пациента врачом прижимается чувствительный датчик, который ретранслирует изображение внутренних органов на мониторе аппарата.

Стоимость УЗИ

Стоимость ультразвукового исследования зависит от ряда факторов, которые устанавливаются индивидуально, в соответствии с используемой методикой и диагнозом пациента. Более детальную у наших специалистов.

Несомненно, каждый человек ищет самые лучшие способы исследования его организма. Именно поэтому мы готовы помочь Вам. Для этого Вам необходимо обратится за консультацией к нашим специалистам, заполнив .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация , добавлен 10.02.2016

    Изучение физических основ ультразвуковой диагностики. Метрологические прослеживаемые акустические параметры, характеризующие ультразвуковое излучение медицинского оборудования. Государственная поверочная схема для средств измерений мощности излучения.

    курсовая работа , добавлен 20.12.2015

    История, принципы выполнения, преимущества и недостатки рентгенологического, ультразвукового и эндоскопического методов исследования пациентов. Применение аспирационной и операционной биопсии в клинической практике. Особенности компьютерной томографии.

    курсовая работа , добавлен 16.06.2015

    Методы диагностики патологии поджелудочной железы и двенадцатиперстной кишки. Показания к назначению ультразвукового исследования. Подготовка пациента к процедуре магнитно-резонансной томографии. Эндоскопическая ретроградная панкреатохолангиография.

    презентация , добавлен 02.03.2013

    Сущность и значение эхокардиографии как широко распространенной современной ультразвуковой методики, применяемой для диагностики многообразной сердечной патологии. Принципы работы ультразвукового датчика. Показаниями для чреспищеводной эхокардиографии.

    презентация , добавлен 16.05.2016

    Формы вирусного гепатита. Диагностические возможности ультразвукового метода. Радиоизотопные методы исследования. Диагностика желтухи при желчнокаменной болезни и новообразованиях гепатопанкреатодуоденальной зоны (рак головки поджелудочной железы).

    презентация , добавлен 13.05.2014

    Сущность ультразвукового метода как принципиально нового способа получения медицинского изображения, его разработка и внедрение в практику. Физические свойства и биологическое действие ультразвука. Преимущества эхографии, ее безопасность, виды датчиков.

    курсовая работа , добавлен 15.06.2013

    Значение определения опухолевых маркеров. Компьютерная томография грудной клетки. Преимущества виртуальной колоноскопии. Применение эндоскопических методов исследования в диагностике и профилактике ЗНО. Достоинства метода ультразвуковой диагностики.

    Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается . Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

    В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей , а также разницу в плотностях, образующих границу.

    Ультразвуковые колебания при распространении подчиняются законам геометрической оптики . В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

    Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

    Особый интерес в диагностике вызывает использование эффекта Допплера . Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

    При наложении первичных и отраженных сигналов возникают биения , которые прослушиваются с помощью наушников или громкоговорителя.

    Составляющие системы ультразвуковой диагностики

    Генератор ультразвуковых волн

    Генератором ультразвуковых волн является передатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

    Ультразвуковой датчик

    В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

    Виды датчиков

    Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

    Линейные датчики

    Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

    Конвексные датчики

    Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

    Секторные датчики

    Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография - исследование сердца.

    Методики ультразвукового исследования

    Отраженные эхосигналы поступают в усилитель и специальные системы реконструкции, после чего появляются на экране телевизионного монитора в виде изображения срезов тела, имеющие различные оттенки черно-белого цвета. Оптимальным является наличие не менее 64 градиентов цвета черно-белой шкалы. При позитивной регистрации максимальная интенсивность эхосигналов проявляется на экране белым цветом (эхопозитивные участки), а минимальная - чёрным (эхонегативные участки). При негативной регистрации наблюдается обратное положение. Выбор позитивной или негативной регистрации не имеет значения. Изображение, получаемое при исследовании, может быть разным в зависимости от режимов работы сканера. Выделяют следующие режимы:

    • A-режим . Методика даёт информацию в виде одномерного изображения, где первая координата, это амплитуда отраженного сигнала от границы сред с разным акустическим сопротивлением, а вторая расстояние до этой границы. Зная скорость распространения ультразвуковой волны в тканях тела человека, можно определить расстояние до этой зоны, разделив пополам (так как ультразвуковой луч проходит этот путь дважды) произведение времени возврата импульса на скорость ультразвука.
    • B-режим . Методика даёт информацию в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени, что позволяет оценивать их морфологическое состояние.
    • M-режим . Методика даёт информацию в виде одномерного изображения, вторая координата заменена временной. По вертикальной оси откладывается расстояние от датчика до лоцируемой структуры, а по горизонтальной - время. Используется режим в основном для исследования сердца. Дает информацию о виде кривых, отражающих амплитуду и скорость движения кардиальных структур.

    Допплерография

    Спектральный Допплер Общей Каротидной Артерии

    Методика основана на использовании эффекта Допплера . Сущность эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален скорости движения лоцируемых структур - если движение направлено в сторону датчика, то частота увеличивается, если от датчика - уменьшается.

    Потоковая спектральная допплерография (ПСД)

    Предназначена для оценки кровотока в относительно крупных сосудах и камерах сердца. Основным видом диагностической информации является спектрографическая запись, представляющая собой развертку скорости кровотока во времени. На таком графике по вертикальной оси откладывается скорость, а по горизонтальной - время. Сигналы, отображающиеся выше горизонтальной оси, идут от потока крови, направленного к датчику, ниже этой оси - от датчика. Помимо скорости и направления кровотока, по виду допплеровской спектрограммы можно определить характер потока крови: ламинарный поток отображается в виде узкой кривой с четкими контурами, турбулентный - широкой неоднородной кривой.

    Непрерывная (постоянноволновая) ПСД

    Методика основана на постоянном излучении и постоянном приеме отраженных ультразвуковых волн. При этом величина сдвига частоты отраженного сигнала определяется движением всех структур на пути ультразвукового луча в пределах глубины его проникновения. Недостаток: невозможность изолированного анализа потоков в строго определенном месте. Достоинства: допускает измерение больших скоростей потоков крови.

    Импульсная ПСД

    Методика базируется на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимаются тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которые устанавливаются по усмотрению врача. Место исследования кровотока называют контрольным объёмом. Достоинства: возможность оценки кровотока в любой заданной точке.

    Цветовое допплеровское картирование (ЦДК)

    Основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах. Красный цвет соответствует потоку, идущему в сторону датчика, синий - от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки - высоким. Недостаток: невозможность получения изображения мелких кровеносных сосудов с маленькой скоростью кровотока. Достоинства: позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока по ним.

    Энергетическая допплерография (ЭД)

    Методика основана на анализе амплитуд всех эхосигналов допплеровского спектра, отражающих плотность эритроцитов в заданном объёме. Оттенки цвета (от темно-оранжевого к жёлтому) несут сведения об интенсивности эхосигнала. Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков. Недостаток: невозможно судить о направлении, характере и скорости кровотока. Достоинства: отображение получают все сосуды, независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью кровотока.

    Комбинированные варианты

    Применяются также и комбинированные варианты, в частности:

    • ЦДК+ЭД - конвергентная цветовая допплерография
    • B-режим УЗИ + ПСД (или ЭД) - дуплексное исследование

    Трёхмерное допплеровское картирование и трёхмерная ЭД

    Методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями. В этом режиме используется возможность запоминания нескольких кадров изображения. После включения режима исследователь перемещает датчик или изменяет его угловое положение, не нарушая контакта датчика с телом пациента. При этом записываются серии двухмерных эхограмм с небольшим шагом (малое расстояние между плоскостями сечения). На основе полученных кадров система реконструирует псевдотрёхмерное [неизвестный термин ] изображение только цветной части изображения, характеризующее кровоток в сосудах. Поскольку при этом не строится реальная трехмерная модель объекта, при попытке изменения угла обзора появляются значительные геометрические искажения из-за того, что трудно обеспечить равномерное перемещение датчика вручную с нужной скоростью при регистрации информации. Метод позволяющий получать трёхмерные изображения без искажений, называется методом трёхмерной эхографии (3D).

    Эхоконтрастирование

    Методика основана на внутривенном введении особых контрастирующих веществ, содержащих свободные микропузырьки газа (диаметром менее 5 мкм при их циркуляции не менее 5 минут). Полученное изображение фиксируется на экране монитора, а затем регистрируется с помощью принтера .

    В клинической практике методика используется в двух направлениях.

    Динамическая эхоконтрастная ангиография

    Существенно улучшается визуализация кровотока, особенно в мелких глубоко расположенных сосудах с низкой скоростью кровотока; значительно повышается чувствительность ЦДК и ЭД; обеспечивается возможность наблюдения всех фаз контрастирования сосудов в режиме реального времени; возрастает точность оценки стенотических поражений кровеносных сосудов.

    Тканевое эхоконтрастирование

    Обеспечивается избирательностью включения эхоконтрастных веществ в структуру определенных органов. Степень, скорость и накопление эхоконтраста в неизменённых и патологических тканях различны. Появляется возможность оценки перфузии органов, улучшается контрастное разрешение между нормальной и пораженной тканью, что способствует повышению точности диагностики различных заболеваний, особенно злокачественных опухолей.

    Применение в медицине

    Терапевтическое применение ультразвука в медицине

    Помимо широкого использования в диагностических целях, ультразвук применяется в медицине как лечебное средство.

    Ультразвук обладает действием:

    • противовоспалительным, рассасывающим
    • анальгезирующим, спазмолитическим
    • кавитационным усилением проницаемости кожи

    Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

    • лечебное вещество при введении ультразвуком не разрушается
    • синергизм действия ультразвука и лечебного вещества

    Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; невриты, нейропатии, радикулиты, невралгии, травмы нервов.

    Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см 2 , в области грудного и поясничного отдела - 0,4-0,6 Вт/см 2).

    Опасность и побочные эффекты

    Ультразвуковое исследование в целом считается безопасным способом получения информации.

    Диагностическое ультразвуковое исследование плода так же в целом рассматривается как безопасный метод для применения в течение беременности. Эта диагностическая процедура должна применяться, только если есть веские медицинские показания, с таким наименьшим возможным сроком воздействия ультразвука, который позволит получить необходимую диагностическую информацию, то есть по принципу минимального допустимого или АЛАРА -принципу.

    Отчёт 875 Всемирной организации здравоохранения за 1998 г. поддерживает мнение, что ультразвук безвреден: «Диагностическое ультразвуковое исследование плода признаётся безопасным, эффективным и в высокой степени гибким способом получением изображения, позволяющим выявить клинически существенную информацию о большинстве частей тела быстрым и рентабельным способом». Несмотря на отсутствие данных о вреде ультразвука для плода, Управление по контролю качества продуктов и лекарств (США) рассматривает рекламу, продажу или аренду ультразвукового оборудования для создания «видео плода на память», как нецелевое, несанкционированное использование медицинского оборудования.

    Эхоэнцефалография

    Основная статья: Эхоэнцефалография

    Применение ультразвука для диагноза при серьёзных повреждениях головы позволяет хирургу определить места кровоизлияний. При использовании переносного зонда можно установить положение срединной линии головного мозга примерно в течение одной минуты. Принцип работы такого зонда основывается на регистрации ультразвукового эха от границы раздела полушарий.

    Офтальмология

    Ультразвуковые зонды применяются для измерения размеров глаза и определения положения хрусталика.

    Внутренние болезни

    Ультразвуковое исследование играет важную роль в постановке диагноза заболеваний внутренних органов, таких как:

    • брюшная полость и забрюшинное пространство
    • органы малого таза

    Ввиду относительно невысокой стоимости и высокой доступности ультразвуковое исследование является широко используемым методом обследования пациента и позволяет диагностировать достаточно большое количество заболеваний, таких как онкологические заболевания, хронические диффузные изменения в органах (диффузные изменения в печени и поджелудочной железе, почках и паренхиме почек, предстательной железе, наличие конкрементов в желчном пузыре, почках, наличие аномалий внутренних органов, жидкостных образований в органах и т. д.

    В силу физических особенностей не все органы можно достоверно исследовать ультразвуковым методом, например, полые органы желудочно-кишечного тракта труднодоступны для исследования из-за содержания в них газа. Тем не менее, ультразвуковая диагностика может применяться для определения признаков кишечной непроходимости и косвенных признаков спаечного процесса. При помощи ультразвукового исследования можно обнаружить наличие свободной жидкости в брюшной полости, если её достаточно много, что может играть решающую роль в лечебной тактике ряда терапевтических и хирургических заболеваний и травм.

    Печень

    Ультразвуковое исследование печени является достаточно высокоинформативным. Врачом оцениваются размеры печени, её структура и однородность, наличие очаговых изменений, а также состояние кровотока. УЗИ позволяет с достаточно высокой чувствительностью и специфичностью выявить как диффузные изменения печени (жировой гепатоз, хронический гепатит и цирроз), так и очаговые (жидкостные и опухолевые образования). Обязательно следует добавить, что любые ультразвуковые заключения исследования как печени, так и других органов, необходимо оценивать только вместе с клиническими, анамнестическими данными, а также данными дополнительных обследований.

    Жёлчный пузырь и желчные протоки

    Кроме самой печени оценивается состояние желчного пузыря и желчных протоков - исследуются их размеры, толщина стенок, проходимость, наличие конкрементов, состояние окружающих тканей. УЗИ позволяет в большинстве случаев определить наличие конкрементов в полости желчного пузыря.

    Поджелудочная железа

    При исследовании поджелудочной железы оцениваются её размеры, форма, контуры, однородность паренхимы, наличие образований. Качественное УЗИ поджелудочной железы часто довольно затруднительно, так как она может частично или полностью перекрываться газами, находящимися в желудке, тонком и толстом кишечнике. Наиболее часто выносимое врачами ультразвуковой диагностики заключение «диффузные изменения в поджелудочной железе» может отражать как возрастные изменения (склеротические, жировая инфильтрация), так и возможные изменения вследствие хронических воспалительных процессов.

    Почки и надпочечники , забрюшинное пространство

    Исследование забрюшинного пространства, почек и надпочечников является достаточно трудным для врача ввиду особенностей их расположения, сложности строения и многогранности и неоднозначности трактовки ультразвуковой картины этих органов. При исследовании почек оценивается их количество, расположение, размер, форма, контуры, структура паренхимы и чашечно-лоханочной системы. УЗИ позволяет выявить аномалии почек, наличие конкрементов, жидкостных и опухолевых образований, также изменения вследствие хронических и острых патологических процессов почек.

    Щитовидная железа

    В исследовании щитовидной железы ультразвуковое исследование является ведущим и позволяет определить наличие узлов, кист, изменения размера и структуры железы.

    Кардиология, сосудистая и кардиохирургия

    Эхокардиография (ЭхоКГ) - это ультразвуковая диагностика заболеваний сердца. В этом исследовании оцениваются размеры сердца и его отдельных структур (желудочки, предсердия, межжелудочковая перегородка, толщина миокарда желудочков, предсердий и т. д.), наличие и объём жидкости в перикарде - «сердечной сорочке», состояние клапанов сердца. С помощью специальных расчетов и измерений Эхокардиография позволяет определить массу сердца, сократительную способность сердца - фракцию выброса и т. д. Существуют зонды, которые помогают во время операций на сердце следить за работой митрального клапана, расположенного между желудочком и предсердием.

    Акушерство, гинекология и пренатальная диагностика

    Ультразвуковое исследование используется для изучения внутренних половых органов женщины, состояния беременной матки, анатомии и мониторинга внутриутробного развития плода.

    Трёхмерное ультразвуковое исследование 29-недельного плода.

    Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки, легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через неё крови, а через 9 - 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвукового исследования можно также определять количество зародышей или констатировать смерть плода.

    Аппарат ультразвуковой диагностики

    Аппарат ультразвуковой диагностики (УЗИ сканер) - прибор, предназначенный для получения информации о расположении, форме и структуре органов и тканей и измерения линейных размеров биологических объектов методом ультразвуковой локации.

    Классификация аппаратов УЗИ

    В зависимости от функционального назначения приборы подразделяются на следующие основные типы:

    • ЭТС - эхотомоскопы (приборы, предназначенные, в основном, для исследования плода, органов брюшной полости и малого таза);
    • ЭКС - эхокардиоскопы (приборы, предназначенные для исследования сердца);
    • ЭЭС - эхоэнцелоскопы (приборы, предназначенные для исследования головного мозга);
    • ЭОС - эхоофтальмоскопы (приборы, предназначенные для исследования глаза).

    В зависимости от времени получения диагностической информации приборы подразделяют на следующие группы:

    • С - статические;
    • Д - динамические;
    • К - комбинированные.

    Термины, понятия, сокращения

    • Advanced 3D - расширенная программа трёхмерной реконструкции.
    • ATO - автоматическая оптимизация изображения, оптимизирует качество изображения нажатием одной кнопки.
    • B-Flow - визуализация кровотока непосредственно в В-режиме без использования допплеровских методов.
    • Coded Contrast Imaging Option - режим кодированного контрастного изображения, используется при исследовании с контрастными веществами.
    • CodeScan - технология усиления слабых эхосигналов и подавления нежелательных частот (шумов, артефактов) путем создания кодированной последовательности импульсов на передаче с возможностью их декодирования на приеме при помощи программируемого цифрового декодера. Эта технология позволяет добиться непревзойденного качества изображения и повышения качества диагностики за счет новых режимов сканирования.
    • Color doppler (CFM или CFA) - цветовой допплер (Color Doppler) - выделение на эхограмме цветом (цветное картирование) характера кровотока в области интереса. Кровоток к датчику принято картировать красным цветом, от датчика - синим цветом. Турбулентный кровоток картируется сине-зелено-желтым цветом. Цветовой допплер применяется для исследования кровотока в сосудах, в эхокардиографии. Другие названия технологии - цветное допплеровское картирование (ЦДК), color flow mapping (CFM) и color flow angiography (CFA). Обычно с помощью цветового допплера, меняя положение датчика, находят область интереса (сосуд), затем для количественной оценки используют импульсный допплер. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
    • DICOM - возможность передачи «сырых» данных по сети для хранения на серверах и рабочих станциях, распечатки и дальнейшего анализа.
    • Easy 3D - режим поверхностной трёхмерной реконструкции с возможностью задания уровня прозрачности.
    • M-mode (M-режим) - одномерный режим ультразвукового сканирования (исторически первый ультразвуковой режим), при котором исследуются анатомические структуры в развертке по оси времени, в настоящий момент применяется в эхокардиографии. M-режим используется для оценки размеров и сократительной функции сердца, работы клапанного аппарата. С помощью этого режима можно рассчитать сократительную способность левого и правого желудочков, оценить кинетику их стенок.
    • MPEGvue - быстрый доступ к сохранённым цифровым данным и упрощенная процедура переноса изображений и видеоклипов на CD в стандартном формате для последующего просмотра и анализа на компьютере.
    • Power doppler - энергетический допплер - качественная оценка низкоскоростного кровотока, применяется при исследовании сети мелких сосудов (щитовидная железа, почки, яичник), вен (печень, яички) и др. Более чувствителен к наличию кровотока, чем цветовой допплер. На эхограмме обычно отображается в оранжевой палитре, более яркие оттенки свидетельствуют о большей скорости кровотока. Главный недостаток - отсутствие информации о направлении кровотока. Использование энергетического допплера в трёхмерном режиме позволяет судить о пространственной структуре кровотока в области сканирования. В эхокардиографии энергетический допплер применяется редко, иногда используется в сочетании с контрастными веществами для изучения перфузии миокарда. Цветовой и энергетический допплер помогают в дифференциации кист и опухолей, поскольку внутреннее содержимое кисты лишено сосудов и, следовательно, никогда не может иметь цветовых локусов.
    • Smart Stress - расширенные возможности стресс-эхо исследований. Количественный анализ и возможность сохранения всех настроек сканирования для каждого этапа исследования при визуализации различных сегментов сердца.
    • Tissue Harmonic Imaging (THI) - технология выделения гармонической составляющей колебаний внутренних органов, вызванных прохождением сквозь тело базового ультразвукового импульса. Полезным считается сигнал, полученный при вычитании базовой составляющей из отраженного сигнала. Применение 2-й гармоники целесообразно при ультразвуковом сканировании сквозь ткани, интенсивно поглощающие 1-ю (базовую) гармонику. Технология предполагает использование широкополосных датчиков и приемного тракта повышенной чувствительности, улучшается качество изображения, линейное и контрастное разрешение у пациентов с повышенным весом. * Tissue Synchronization Imaging (TSI) - специализированный инструмент для диагностики и оценки сердечных дисфункций.
    • Tissue Velocity Imaging" - тканевой допплер (Tissue Velocity Imaging или тканевая цветовая допплерография) - цветовое картирование движения тканей, применяется совместно с импульсным допплером в эхокардиографии для оценки сократительной способности миокарда. Изучая направления движения стенок левого и правого желудочков в систолу и диастолу тканевого допплера, можно обнаружить скрытые зоны нарушения локальной сократимости.
    • TruAccess - подход к получению изображений, основанный на возможности доступа к «сырым» ультразвуковым данным.
    • TruSpeed - уникальный набор программных и аппаратных компонентов для обработки ультразвуковых данных, обеспечивающий идеальное качество изображения и высочайшую скорость обработки данных во всех режимах сканирования.
    • Virtual Convex - расширенное конвексное изображение при использовании линейных и секторных датчиков.
    • VScan - визуализация и квантификация движения миокарда.
    • Импульсный допплер (PW, HFPW) - импульсный допплер (Pulsed Wave или PW) применяется для количественной оценки кровотока в сосудах. На временной развертке по вертикали отображается скорость потока в исследуемой точке. Потоки, которые двигаются к датчику, отображаются выше базовой линии, обратный кровоток (от датчика) - ниже. Максимальная скорость потока зависит от глубины сканирования, частоты импульсов и имеет ограничение (около 2,5 м/с при диагностике сердца). Высокочастотный импульсный допплер (HFPW - high frequency pulsed wave) позволяет регистрировать скорости потока большей скорости, однако тоже имеет ограничение, связанное с искажением допплеровского спектра.
    • Постоянно-волновой допплер - постоянно-волновой допплер (Continuous Wave Doppler или CW) применяется для количественной оценки кровотока в сосудах c высокоскоростными потоками. Недостаток метода состоит в том, что регистрируются потоки по всей глубине сканирования. В эхокардиографии с помощью постоянно-волнового допплера можно произвести расчеты давления в полостях сердца и магистральных сосудах в ту или иную фазу сердечного цикла, рассчитать степень значимости стеноза и т. д. Основным уравнением CW является уравнение Бернулли, позволяющее рассчитать разницу давления или градиент давления. С помощью уравнения можно измерить разницу давления между камерами в норме и при наличии патологического, высокоскоростного кровотока.


КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло